

Benthic nitrogen processes and ecosystem functioning along environmental gradients in the Arctic marine system

(A Spitsbergen Fjord)

PhD Student : Politi Tobia

Klaipeda University ; Marine Research Institute

25_11_2020

Main Aim

 In this study we analyzed benthic processes, including oxygen and nitrate-based respiration and ammonium regeneration in bioturbated arctic sediments along an organic/disturbance gradient generated by a tidal glacier.

 Benthic fluxes where interpreted on the basis of the sedimentary organic content and of the glacier disturbance on the macrofauna community.

Ph: Kajetan Deja

Study Site and Material & Method

16 intact cores (i.d. 8 cm, length 30 cm) Start-end Dark Incubations:

- Metabolism
- R-IPT

Kongsfjorden (79N and 12E) is located on the northwest part of Spitsbergen Island in the Svalbard archipelago.

Benthic nitrogen cycle & Bioturbation

Gradients of Salinity, Org. Matter, Bioturbation....

Atlantic currents (St B)

Trends in macrobenthic abundance in Kongsfjord

Wlodarska-Kowalczuk et al. 2005

Wlodarska-Kowalczuk, M., Pearson, T. H., & Kendall, M. A. (2005). Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. *Marine Ecology Progress Series*, *303*, 31-41.

Preliminary results 1: Benthic macrofauna

Figure. Taxonomic diversity (number of species per station) and total abundance of benthic macrofauna (ind. m^{-2}) in incubated cores at the 2 study sites (left). (n= 8 ; average \pm st. error).

- Polychaetes; Bivalvia; Nematodes; Crustacean (Crustacea) the most abbundant taxa.
- Polychaetes 65 %, mollusks 30 %;
 Nematoda + Crustacea 4 %.
- Borrower as polycaetes, nematodes and oligochaetes were found exclusively at Station B.
- Functional group diversity become higher with distance from the glacier.

Macrofauna community (mean \pm st.err.; n=8)								
Station	Diveristy	Abbundance	Total	Sediment dwelling,		Others		
	(Species station ⁻¹)	(Ind. m ⁻²)	Biomas (g m ⁻²)	Bioturbators (%)		Func. groups		
			, io		\bigtriangleup		(%)	
Α	9 ± 0.5	5525 \pm 611	192 \pm 53		61		39	
В	12 ± 0.8	3225 ± 523	28 ± 11		73		27	

Sediment properties (0-5 cm ;mean \pm st.err.; n=4)								
Station	Organic matter	C:N	Pelite fraction					
	(%)		63 < μm					
			(%)					
Α	10.5 ± 0.9	8.59 ±	90.59					
В	6.5 ± 1.5	7.51 \pm	95.16					

Preliminary results 2: Benthic fluxes

Figure: Fluxes of dissolved O₂ (TOU), CH₄ and N₂ and NH₄⁺ measured across the sediment–water interface; Total denitrification rates (D14) and Denitrification coupled with nitrification (Dn) and denitrification of NO₃⁻ coming from the overlying water (Dw). (n= 8 ; average \pm st. er.).

• Higher organic inputs, sedimentary pools and macrofauna abundance resulted in higher rates of aerobic and anaerobic metabolisms and ammonium regeneration at *Station A* (Fig.1 a , b).

Preliminary results 3: Multivariate analyis

Figure. dbRDA triplot of the relationships between the modelled predictors (macrofauna functional groups) and response variables (Solute fluxes and Nitrogen reductive processes)

- The *distLM* model explained 66.8% (sum of all canonical eigenvalues) of total variation in NO3– reduction processes (Dn, Dw) and fluxes using 6 groups of macrofauna.
- Marginal test revealed that only Polychaetes (F=3.9, p=0.022) and Bivalvia (F=5.3, p=0.007) were significant parameters in the model.
- The first two axes were accounted for 89.9% of the tot. explained variance .

Discussion and Conclusions

- Results align with previous studies on biogeochemical dynamics at Arctic sediments (i.e. Rysgaard et al. 2006) and on macrofauna community composition in Kongsfjorden (i.e. Wlodarska-Kowalczuk et al. 2005).
- Organic matter inputs, tidal glacier disturbance on macrofauna community at *Station A* and more stable conditions at *Station B* likely represent the main factors determining differences between the two sites and affecting their benthic functioning.
- Macrofauna community and associated bioturbation explains most of the variability in biogeochemical fluxes.
- Higher organic inputs and less diverse macrofauna community (poorly represented by long living burrowers in *St. A*) result in higher ammonium effluxes (less internal recycling).

Thank you!