Oceanologia No. 68 (1) / 26


Original Research Articles

Short communications


Original Research Articles



High vertical resolution measurements of pH, pCO2, Total Alkalinity and Dissolved Inorganic Carbon using a new approach: the carbonate profile
Oceanologia, 68 (1)/2026, 68101, 14 pp.
https://doi.org/10.5697/VMDA8631

Fernando Aguado Gonzalo*, Katarzyna Koziorowska, Laura Bromboszcz-Szczypior, Alexandra Loginova, Karol Kuliński
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: aguadof@iopan.pl (F. Aguado Gonzalo)
*corresponding author

Keywords: Ocean acidification; pH; Total alkalinity; pCO2; Land ocean continuum; Arctic; Baltic Sea

Received: 26 June 2025; revised: 4 November 2025; accepted: 12 November 2025

Highlights

Abstract

The equilibrium between the different parameters of the marine carbonate system – dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2, and pH – is the core of ocean acidification studies, evaluation of inorganic carbon inventory, and air-sea CO2 fluxes. To date, it has been challenging to simultaneously measure all those components in the water column due to different sampling methodologies, and especially in stratified waters, where sharp vertical biogeochemical gradients may occur. In this study, we designed a low-cost and easy-to-assemble pumping system, which, combined with a CTD profiler, makes a PUMP-CTD system that can efficiently serve as a precise water column sampler, allowing for simultaneous measurements and sampling of dissolved inorganic carbon, total alkalinity, partial pressure of CO2, and pH with high vertical resolution. Importantly, this water sampler (denoted as the carbonate profiler) can be easily integrated with equilibrator-based continuous pCO2 measurement systems, which are routinely used for underway data acquisition, making them suitable for water column sampling as well. We tested the carbonate profiler in the open ocean water column, where we obtained excellent consistency between measured pCO2 and calculated values based on pH and DIC. Afterwards, we tested the operability of the system by measuring the vertical variability of all the components of the marine carbonate system in the Vistula River estuarine waters (southern Baltic Sea) and within the Arctic fjords affected by continental freshwater runoff. Overall, this system performed outstandingly, with a vertical resolution of half a meter, proving its utility in accurately measuring steep biogeochemical changes in the water column regardless of the analytical method used.

  References   ref

Aguado Gonzalo, F., Koziorowska, K., Szymczycha, B., Kuliński, K., 2025. The Consistency between Calculated and Measured Variables of the Marine Carbonate System in Arctic Open and Coastal Waters. Mar. Chem. (pre-print). https://doi.org/10.2139/ssrn.5205880

Aguado Gonzalo, F., Koziorowska, K., Bromboszcz-Szczypior, L., Kulinski, K., 2025b. High resolution, vertical distribution of the marine carbonate system in estuarine waters of the Baltic Sea and Arctic fjords (Svalbard Archipelago). [Dataset]. Geonetwork. https://doi.org/10.48457/IOPAN.2025.515

Aguado Gonzalo, F., Stokowski, M., Koziorowska-Makuch, K., Makuch, P., Beszczyńska-Möller, A., Kukliński, P., Kuliński, K., 2024. Key processes controlling the variability of the summer marine CO2 system in Fram Strait surface waters. Front. Mar. Sci. 11, 1–19. https://doi.org/10.3389/fmars.2024.1464653

Ahmed, M.M.M., Else, B.G.T., Capelle, D., Miller, L.A., Papakyriakou, T., 2020. Underestimation of surface pCO2 and air-sea CO2 fluxes due to freshwater stratification in an Arctic shelf sea, Hudson Bay. Elementa 8. https://doi.org/10.1525/elementa.084

Arruda, R., Atamanchuk, D., Cronin, M., Steinhoff, T., Wallace, D.W.R., 2020. At-sea intercomparison of three underway pCO2 systems. Limnol. Oceanogr. Methods 18, 63–76. https://doi.org/10.1002/lom3.10346

Azevedo, C.C., González-Dávila, M., Santana-Casiano, J.M., González-Santana, D., Caldeira, R.M.A., 2024. Impact of sampling depth on CO2 flux estimates. Sci. Rep. 14, 1–9. https://doi.org/10.1038/s41598-024-69177-x

Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., Regnier, P.A.G., 2013. The changing carbon cycle of the coastal ocean. Nature 504, 61–70. https://doi.org/10.1038/nature12857

Bresnahan, P.J., Martz, T.R., Takeshita, Y., Johnson, K.S., LaShomb, M., 2014. Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods Oceanogr. 9, 44–60. https://doi.org/10.1016/j.mio.2014.08.003

Cai, W.J., 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Ann. Rev. Mar. Sci. 3, 123–145. https://doi.org/10.1146/annurev-marine-120709-142723

Carter, B.R., Radich, J.A., Doyle, H.L., Dickson, A.G., 2013. An automated system for spectrophotometric seawater pH measurements. Limnol. Oceanogr. Methods 11, 16–27. https://doi.org/10.4319/lom.2013.11.16

Carter, B.R., Sharp, J.D., Garcı́a-ib, M.I., Woosley, R.J., Fong, M.B., Alvarez, M., Barbero, L., Clegg, S.L., Easley, R., Fassbender, A.J., Li, X., Schockman, K.M., Wang, Z.A., 2024., Review Random and systematic uncertainty in ship-based seawater carbonate chemistry observations, 1–16. https://doi.org/10.1002/lno.12674

Chen, B., Cai, W.J., Chen, L., 2015. The marine carbonate system of the Arctic Ocean: Assessment of internal consistency and sampling considerations, summer 2010. Mar. Chem. 176, 174–188. https://doi.org/10.1016/j.marchem.2015.09.007

Clarke, J.S., Achterberg, E.P., Connelly, D.P., Schuster, U., Mowlem, M., 2017. Developments in marine pCO2 measurement technology; towards sustained in situ observations. TrAC – Trends Anal. Chem. 88, 53–61. https://doi.org/10.1016/j.trac.2016.12.008

Clayton, T.D., Byrne, R.H., 1993. Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep. Res. Pt. I 40, 2115–2129. https://doi.org/10.1016/0967-0637(93)90048-8

Cross, J.N., Mathis, J.T., Pickart, R.S., Bates, N.R., 2018. Formation and transport of corrosive water in the Pacific Arctic region. Deep. Res. Pt. II Top. Stud. Oceanogr. 152, 67–81. https://doi.org/10.1016/j.dsr2.2018.05.020

Dai, M., Su, J., Zhao, Y., Hofmann, E.E., Cao, Z., Cai, W.J., Gan, J., Lacroix, F., Laruelle, G.G., Meng, F., Mudieller, J.D., Regnier, P.A.G., Wang, G., Wang, Z., 2022. Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary Processes, and Future Trends. Annu. Rev. Earth Planet. Sci. 50, 593–626. https://doi.org/10.1146/annurev-earth-032320-090746

Dickson, A.G.; Sabine, C.L. and Christian, J.R., 2007. Guide to best practices for ocean CO2 measurement. Sidney, British Columbia, North Pacific Marine Science Organization, 191 pp. (PICES Special Publication 3; IOCCP Report 8). https://doi.org/10.25607/OBP-1342

Dickson, A.G., 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Res. Pt. A, Oceanogr. Res. Pap. 28, 609–623. https://doi.org/10.1016/0198-0149(81)90121-7

Dickson, A.G., Afghan, J.D., Anderson, G.C., 2003. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0

Dickson, A.G., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E., 1990. Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250°C. J. Phys. Chem. 94, 7978–7985. https://doi.org/10.1021/j100383a042

Ericson, Y., Falck, E., Chierici, M., Fransson, A., Kristiansen, S., Platt, S.M., Hermansen, O., Myhre, C.L., 2018. Temporal Variability in Surface Water pCO2 in Adventfjorden (West Spitsbergen) With Emphasis on Physical and Biogeochemical Drivers. J. Geophys. Res. Ocean. 123, 4888–4905. https://doi.org/10.1029/2018JC014073

Fietzek, P., Fiedler, B., Steinhoff, T., Körtzinger, A., 2014. In situ quality assessment of a novel underwater pCO2 sensor based on membrane equilibration and NDIR spectrometry. J. Atmos. Ocean. Technol. 31, 181–196. https://doi.org/10.1175/JTECH-D-13-00083.1

Fransson, A., Chierici, M., Nomura, D., Granskog, M.A., Kristiansen, S., Martma, T., Nehrke, G., 2015. Effect of glacial drainage water on the CO2 system and ocean acidification state in an Arctic tidewater-glacier fjord during two contrasting years. J. Geophys. Res. Ocean. https://doi.org/10.1002/2014JC010320

Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I.T., Olsen, A., Peters, G.P., 2025. Global carbon budget. Earth Syst. Sci. Data 17, 965–1039. https://doi.org/10.5194/essd-17-965-2025

Humphreys, M. P. and Matthews, R. S. 2024. Calkulate: total alkalinity from titration data in Python. Zenodo. https://doi.org/10.5281/zenodo.2634304

Jiang, Z.P., Hydes, D.J., Hartman, S.E., Hartman, M.C., Campbell, J.M., Johnson, B.D., Schofield, B., Turk, D., Wallace, D., Burt, W.J., Thomas, H., Cosca, C., Feely, R., 2014. Application and assessment of a membrane-based pCO2 sensor under field and laboratory conditions. Limnol. Oceanogr. Methods 12, 264–280. https://doi.org/10.4319/lom.2014.12.264

Johengen, T., Smith, G.J., Schar, D., Atkinson, M., Purcell, H., Loewensteiner, D., Epperson, Z., Tamburri, M., 2015. Performance Verification Statement for the Sunburst SAMI-pH Sensor. Solomons, MD, Alliance for Coastal Technologies, 63 pp. (ACTVS15-06). http://doi.org/10.25607/OBP-306

Kerr, D.E., Turner, C., Grey, A., Keogh, J., Brown, P.J., Kelleher, B.P., 2023. OrgAlkCalc: Estimation of organic alkalinity quantities and acid-base properties with proof of concept in Dublin Bay. Mar. Chem. 251, 104234. https://doi.org/10.1016/j.marchem.2023.104234

Koziorowska-Makuch, K., Szymczycha, B., Thomas, H., Kuliński, K., 2023. The marine carbonate system variability in high meltwater season (Spitsbergen Fjords, Svalbard). Prog. Oceanogr. 211. https://doi.org/10.1016/j.pocean.2023.102977

Kuliński, K., Hammer, K., Schneider, B., Schulz-Bull, D., 2016. Remineralization of terrestrial dissolved organic carbon in the Baltic Sea. Mar. Chem. 181, 10–17. https://doi.org/10.1016/j.marchem.2016.03.002

Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P.O.J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H.E.M., Müller-Karulis, B., Naumann, M., Olesen, J.E., Savchuk, O., Schramm, A., Slomp, C.P., Sofiev, M., Sobek, A., Szymczycha, B., Undeman, E., 2022. Biogeochemical functioning of the Baltic Sea. Earth Syst. Dynam. 13, 633–685. https://doi.org/10.5194/esd-13-633-2022

Kuliński, K., Schneider, B., Szymczycha, B., Stokowski, M., 2017. Structure and functioning of the acid-base system in the Baltic Sea. Earth Syst. Dynam. 8, 1107–1120. https://doi.org/10.5194/esd-8-1107-2017

Lai, C.Z., DeGrandpre, M.D., Darlington, R.C., 2018. Autonomous optofluidic chemical analyzers for marine applications: Insights from the Submersible Autonomous Moored Instruments (SAMI) for pH and pCO2. Front. Mar. Sci. 4, 1–11. https://doi.org/10.3389/fmars.2017.00438

Lee, K., Kim, T.W., Byrne, R.H., Millero, F.J., Feely, R.A., Liu, Y.M., 2010. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811. https://doi.org/10.1016/j.gca.2009.12.027

Lewis, E., Wallace, D., and Allison, L. J., 1998. Program developed for CO2 system calculations (TN (United States: Brookhaven Natl. Lab., Dept. Appl. Sci., Upton, NY; Oak Ridge Natl. Lab., Carbon Dioxide Information Analysis Center). No. ORNL/CDIAC-105).

Liu, P., He, S., Wei, H., Wang, J., Sun, C., 2015. Characterization of α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of m-Cresol. Ind. Eng. Chem. Res. 54, 130–136. https://doi.org/10.1021/ie5037897

Lueker, T.J., Dickson, A.G., Keeling, C.D., 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chem. 70(1–3), 105–119.

McGovern, M., Pavlov, A.K., Deininger, A., Granskog, M.A., Leu, E., Søreide, J.E., Poste, A.E., 2020. Terrestrial Inputs Drive Seasonality in Organic Matter and Nutrient Biogeochemistry in a High Arctic Fjord System (Isfjorden, Svalbard). Front. Mar. Sci. 7, 1–15. https://doi.org/10.3389/fmars.2020.542563

Meslard, F., Bourrin, F., Many, G., Kerhervé, P., 2018. Suspended particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard). Estuar. Coast. Shelf Sci. 204, 212–224. https://doi.org/10.1016/j.ecss.2018.02.020

Millero, F.J., 2007. The marine inorganic carbon cycle. Chem. Rev. 107, 308–341. https://doi.org/10.1021/cr0503557

Mosley, L.M., Husheer, S.L.G., Hunter, K.A., 2004. Spectrophotometric pH measurement in estuaries using thymol blue and m-cresol purple. Mar. Chem. 91, 175–186. https://doi.org/10.1016/j.marchem.2004.06.008

Mosley, L.M., Liss, P.S., 2020. Particle aggregation, pH changes and metal behaviour during estuarine mixing: Review and integration. Mar. Freshw. Res. 71, 300–310. https://doi.org/10.1071/MF19195

Orr, J.C., Epitalon, J.M., Dickson, A.G., Gattuso, J.P., 2018. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem. 207, 84–107. https://doi.org/10.1016/j.marchem.2018.10.006

Perez, F.F., Fraga, F., 1987. Association constant of fluoride and hydrogen ions in seawater. Mar. Chem. 21, 161–168. https://doi.org/10.1016/0304-4203(87)90036-3

Pierrot, D., Lewis, E., Wallace, D.W.R., 2006. MS Excel Program Developed for CO2 System Calculations. Tech. Rep. Carbon Dioxide Inf. Anal. Cent. Oak Ridge Natl. Lab., U.S. DOE, Oak Ridge, Tenn.

Regnier, P., Resplandy, L., Najjar, R.G., Ciais, P., 2022. The land-to-ocean loops of the global carbon cycle. Nature 603, 401–410. https://doi.org/10.1038/s41586-021-04339-9

Resplandy, L., Keeling, R.F., Rödenbeck, C., Stephens, B.B., Khatiwala, S., Rodgers, K.B., Long, M.C., Bopp, L., Tans, P.P., 2018. Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nat. Geosci. 11, 504–509. https://doi.org/10.1038/s41561-018-0151-3

Schar, D., Atkinson, M., Johengen, T., Pinchuk, A., Purcell, H., Robertson, C., Smith, G.J., 2010a. Pro-Oceanus Systems Inc. PSI CO2-Pro TM. Situ 1–24.

Schar, D., Atkinson, M., Johengen, T., Pinchuk, A., Purcell, H., Robertson, C., Smith, G.J., Tamburri, M., 2010b. Performance Demonstration Statement Sunburst Sensors SAMI-CO sub(2). ACT Technol. Eval. Reports DS10-04, 1–23.

Signori, R.T., de Souza, S.A., Ferreira, R.B., da Silva, J.T., de Andrade, A.M.D., dos Reis, G.C.G., 2021. Data acquisiton and transmission system for carbon dioxide analysis. Rev. Bras. Meteorol. 36, 115–123. https://doi.org/10.1590/0102-77863610003

Stokowski, M., Makuch, P., Rutkowski, K., Wichorowski, M., Kuliński, K., 2021a. A system for the determination of surface water pCO2 in a highly variable environment, exemplified in the southern Baltic Sea. Oceanologia 63(2), 276–282. https://doi.org/10.1016/j.oceano.2021.01.001

Stokowski, M., Winogradow, A., Szymczycha, B., Carstensen, J., Kuliński, K., 2021b. The CO2 system dynamics in the vicinity of the Vistula River mouth (the southern Baltic Sea): A baseline investigation. Estuar. Coast. Shelf Sci. 258, 2–11. https://doi.org/10.1016/j.ecss.2021.107444

Strady, E., Pohl, C., Yakushev, E. V., Krüger, S., Hennings, U., 2008. PUMP-CTD-System for trace metal sampling with a high vertical resolution. A test in the Gotland Basin, Baltic Sea. Chemosphere 70, 1309–1319. https://doi.org/10.1016/j.chemosphere.2007.07.051

Szeligowska, M., Trudnowska, E., Boehnke, R., Dąbrowska, A.M., Wiktor, J.M., Sagan, S., Błachowiak-Samołyk, K., 2020. Spatial Patterns of Particles and Plankton in the Warming Arctic Fjord (Isfjorden, West Spitsbergen) in Seven Consecutive Mid-Summers (2013–2019). Front. Mar. Sci. 7, 1–18. https://doi.org/10.3389/fmars.2020.00584

Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C., 1993. Seasonal variation of CO2 and nutrients in the high-latitude oceans: A comparative study. Global Biogeochem. Cycles 7, 843–878.

Ulfsbo, A., Kuliński, K., Anderson, L.G., Turner, D.R., 2015. Modelling organic alkalinity in the Baltic Sea using a Humic-Pitzer approach. Mar. Chem. 168, 18–26. https://doi.org/10.1016/j.marchem.2014.10.013

Woosley, R.J., Millero, F.J., Takahashi, T., 2017. Internal consistency of the inorganic carbon system in the Arctic Ocean. Limnol. Oceanogr. Methods 15, 887–896. https://doi.org/10.1002/lom3.10208

full, complete article - PDF


Determination of biometric and somatic parameters of Rhyssoplax olivacea (Polyplacophora: Chitonidae) on the Algerian west coast, Mediterranean Sea: Implication for management and conservation
Oceanologia, 68 (1)/2026, 68102, 17 pp.
https://doi.org/10.5697/EQNS8658

Nacima Mesli1,*, Yassine Guendouzi2, Zoheir Bouchikhi-Tani1
1Laboratoire Valorisation des actions de l’Homme pour la protection de l’environnement et application en santé publique (VAHPEASP), Department of Biology, University of Tlemcen Abou Bekr Belkaid, BP 119, 13000 Tlemcen, Algeria;
e-mail: meslinacima74@gmail.com (N. Mesli)
2Laboratory Management and Valorization of Agricultural and Aquatic Ecosystems, Science Institute, University Center of Tipaza Morsli Abdallah, Oued Merzoug, 42200 Tipaza, Algeria
*corresponding author

Keywords: Chiton; Rhyssoplax olivacea; Ecophysiology; Condition Index; Body Shape Indices; Body Mass Indices

Received: 23 January 2025; revised: 12 May 2025; accepted: 28 October 2025

Highlights

Abstract

A detailed description of Rhyssoplax olivacea biometry, sampled over two seasons in 2019 at five sites on the Algerian west coast, was provided for the first time: total and shell length, total and shell width, total animal weight, soft tissue and shell weight. With a total length ranging from 15.09 mm in the cold season to 14.23 mm in the hot season and a total weight varying from 0.45 g in the cold season to 0.42 g in the hot season, the chiton of the Algerian west coast is intermediate between the larger chiton of the western Mediterranean and the smaller one of the eastern regions. The relationship between the parameters studied highlighted the effects of site and season on growth performance. Several somatic indices (i.e. condition index, body shape and body mass indices) were used to assess the chiton’s overall health and physiological status, highlighting its adaptability to its environment, as well as the quality, and availability of nutritional resources and its reproductive performance.

  References   ref

Abadia-Chanona, Q.Y., Avila-Poveda, O.H., Arellano-Martı́nez, M., Ceballos-Vázquez, B.P., 2016. Observation and establishment of gonad development stages in polyplacophorans (Mollusca): Chiton articulatus a case study, Acta Zool. – Stockholm, 97 (4), 506–521. https://doi.org/10.1111/azo.12165

Abadia-Chanona, Q.Y., Avila-Poveda, O.H., Arellano-Martı́- nez, M., Ceballos-Vazquez, B.P., Benitez-Villalobos, F., Parker, G.A., Rodriguez-Dominguez, G., Garcia-Ibañez, S., 2018. Reproductive traits and relative gonad expenditure of the sexes of the free spawning Chiton articulatus (Mollusca : Polyplacophora). Invertebr Reprod Dev., 62 (4), 268–289. https://doi.org/10.1080/07924259.2018.1514670

AFNOR, 1985, Norme Française. Huitres creuses. Dénominations et classification, NF V 45-056. Publication de l’association française de normalisation (AFNOR), 5.

Aguilera, M.A., Navarrete, S.A., 2007. Effects of Chiton granosus (Frembly, 1827) and other molluscan grazers on algal succession in wave exposed mid-intertidal rocky shores of central Chile. J. Exp. Mar. Biol. Ecol. 349 (1), 84–98. https://doi.org/10.1016/j.jembe.2007.05.002

Aguilera, M.A., Navarrete, S.A., 2012. Interspecific Competition for Shelters in Territorial and Gregarious Intertidal Grazers: Consequences for Individual Behaviour. PLoS ONE 7 (9). https://doi.org/10.1371/journal.pone.0046205

Aguilera, M., Navarrete, S., Broitman, B., 2013. Differential effects of grazer species on periphyton of a temperate rocky shore. Mar. Ecol.-Prog. Ser. 484, 63–78. https://doi.org/10.3354/meps10297

Amara, R., Paul, C., 2003. Seasonal patterns in the fish and epibenthic crustaceans community of an intertidal zone with particular reference to the population dynamics of plaice and brown shrimp. Estuar. Coast. Shelf S. 56 (3–4), 807–818. https://doi.org/10.1016/S0272-7714(02)00315-3

Amara, R., 2010. Impact de l’anthropisation sur la biodiversité et le fonctionnement des écosystèmes marins. Exemple de la Manche-mer du nord. VertigO (Horssérie 8). https://doi.org/10.4000/vertigo.10129

Amara, R., 2011. L’homme et la biodiversité marine: les liaisons dangereuses. Revue Synthèse 23, 6–21.

Amiard, J.C., Amiard-Triquet, C., Berthet, B., Métayer, C., 1986. Contribution to the ecotoxicological study of cadmium, lead, copper and zinc in the mussel Mytilus edulis. Mar. Biol. 90 (3), 425–431. https://doi.org/10.1007/BF00428566

Amiard, J. c., Caquet, T., Agadic, L., 1998. Les biomarqueurs parmi les méthodes d’évaluation de la qualité de l’environnement [In:] Lagadic, L., Caquet, T., Amiard, J. c., Ramade, F. (Eds.), Utilisation de biomarqueurs pour la surveillance de la qualité de l’environnement. Lavoisier. Paris, XXI–XXXr.

Amini, S., Miserez, A., 2013. Wear and abrasion resistance selection maps of biological materials. Acta Biomater. 9 (8), 7895–7907. https://doi.org/10.1016/j.actbio.2013.04.042

Avila-Poveda, O.H., 2013. Annual Change in Morphometry and in Somatic and Reproductive Indices of Chiton articulatus Adults (Polyplacophora: Chitonidae) from Oaxaca, Mexican Pacific. Am. Malacol. Bull. 31 (1), 65–74. https://doi.org/10.4003/006.031.0118

Avila-Poveda, O.H., 2020. Large-scale project “Chiton of the Mexican Tropical Pacific”: Chiton articulatus (Mollusca: Polyplacophora). Research Ideas and Outcomes 6. https://doi.org/10.3897/rio.6.e60446

Avila-Poveda, O-H., Abadia-Chanona, Q-Y., 2013. Emergence, Development, and Maturity of the Gonad of Two Species of Chitons “Sea Cockroach” (Mollusca: Polyplacophora) through the Early Life Stages. PLoS ONE 8 (8), e69785. https://doi.org/10.1371/journal.pone.0069785

Avila-Poveda, O.H., Abadia-Chanona, Q.Y., Alvarez-Garcia, I.L., Arellano-Martı́nez, M., 2021. Plasticity in reproductive traits of an intertidal rocky shore chiton (Polyplacophora: Chitonida) under pre-ENSO and ENSO events. J. Mollusc. Stud. 87 (1). https://doi.org/10.1093/mollus/eyaa033

Bakalem A., Romano J.C., 1989. Les peuplements benthiques des fonds meubles du port de Béjaia. Bull. Centre. Océano. Pêche. PELAGOS VII (1), 41–48.

Barbosa, S.S., Byrne, M., Kelaher, B.P., 2008. Bioerosion caused by foraging of the tropical chiton Acanthopleura gemmata at One Tree Reef, southern Great Barrier Reef. Coral Reefs 27, 635–639. https://doi.org/10.1007/s00338-008-0369-4

Baxter, J.M., Jones, A.M. 1986. Allometric and morphological characteristics of Tonicella marmorea (Fabricius, 1780) populations (Mollusca: Polyplacophora: Ischnochitonidae). Zool. J. Linn. Soc.-Lond. 88 (2), 167–177. https://doi.org/10.1111/j.1096-3642.1986.tb01185.x

Berg, S. Christianou, M., Jonsson, T., et al., 2011. Using sensitivity analysis to identify keystone species and keystone links in size-based food webs. Oikos 120 (4), 510–519. https://doi.org/10.1111/j.1600-0706.2010.18864.x

Bergenhayn, J.R.M., 1930. Die Loricaten von Dr. Sixten Bocks Pazifik-Expedition 1917–1918, mit spezieller Berücksichtigung der Perinotumbildungen und der Schalenstruktur. Göteborgs Kungliga Vetenskaps-och Vitterhets-Samhälles Handlingar, Ser. B, 12 (1), 1–52, pls 1–3.

Blackburn, T.M., Gaston, K.J., Loder, N., 1999. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5 (4), 165–174. https://doi.org/10.1046/j.1472-4642.1999.00046.x

Bodoy, A., Prou, J., Berthome, J.-P. 1986. Étude comparative de différents indices de condition chez l’huitre creuse (Crassostrea gigas). Haliotis (Société Française de Malacololgie), 15, 173–182.

Bonner, N., Peters, R.H., 1985. The Ecological Implications of Body Size. J. Appl. Ecol. 22 (1) p. 291. https://doi.org/10.2307/2403351

Bouiba Yahiaoui, S., El Amine Bendimerad, M., Richir, J., 2024. Morphological and physiological characterization of the regular sea urchin Paracentrotus lividus in Algeria, with recommendations for the sustainable fishing of the resource. Reg. Stud. Mar. Sci. 74, 103490. https://doi.org/10.1016/j.rsma.2024.103490

Boyden, C.R., 1974. Trace element content and body size in molluscs. Nature 251 (5473), 311–314. https://doi.org/10.1038/251311a0

Brito, M.J., Camus, P.A., Torres, F., Sellanes, J., et al., 2020. First comparative assessment of the reproductive cycle of three species of Chiton on a temperate rocky shore of the southeastern Pacific. Invertebr. Biol. 139 (4). https://doi.org/10.1111/ivb.12302

Bruet, B.J.F., Song, J., Boyce, M.C., Ortiz, Ch., 2008. Materials design principles of ancient fish armour. Nat. Mater. 7 (9), 748–756. https://doi.org/10.1038/nmat2231

Bryan, G.W., 1973. The occurrence and seasonal variation of trace metals in the scallops Pecten maximus (L.) and Chlamys opercularis (L.). J. Mar. Biol. Assoc. UK 53 (1), 145–166. https://doi.org/10.1017/S0025315400056691

Collareta, A., Merella, M., Casati, S., Di Cencio, A., Tinelli, C., Bianucci, G., 2023. Polyplacophoran Feeding Traces on Mediterranean Pliocene Sirenian Bones: Insights on the Role of Grazing Bioeroders in Shallow-Marine Vertebrate Falls. Life, 13, 327. https://doi.org/10.3390/life13020327

Connors, M.J., Ehrlich, H., Hog, M., Godeffroy, C., Araya, S., Kallai, I., Gazit, D., Boyce, M., Ortiz, Ch., 2012. Threedimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. J. Struct. Biol. 177 (2), 314–328. https://doi.org/10.1016/j.jsb.2011.12.019

Connors, M., Yang, T., Hosny, A. Deng, Z., Yazdandoost, F., Massaadi, H., Eernisse, D., Mirzaeifar, R., Dean, M.N., Weaver, J.C., Ortiz, Ch., Li, L., 2019. Bioinspired design of flexible armor based on chiton scales. Nat. Commun. 10 (1), 5413. https://doi.org/10.1038/s41467-019-13215-0

Córdoba, D., Serra, L., Belton, E., 2021. Clasificación y cuantificación de quitones (Mollusca : Polyplacophora) en cinco playas del distrito de San Carlos, provincia de Panamá Oeste. Centros 6 (1), 12–30.

Cossa D., 1980. Utilisation de la moule bleue comme indicateur du niveau de pollution par les métaux lourds et les hydrocarbures dans l’estuaire et le golfe du St Laurent. Rapport INRS Océanologie. Univ. Quebec. NSI-43600/00, 74.

Costanza, R., D’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital, Nature 387 (6630), 253–260. https://doi.org/10.1038/387253a0

Crocetta, F., Bitar, G., Capua, D. et al. 2014. Biogeographical homogeneity in the eastern Mediterranean Sea – III. New records and a state of the art of Polyplacophora, Scaphopoda and Cephalopoda from Lebanon, Spixiana, Zeitschrift für Zoologie, 037 (2), 183–206.

Crosby, M.P., Gale, L.D., 1990. A review and evaluation of bivalve condition index methodologies with a suggested standard method. J. Shellfish Res. 9 (1), 233–237. http://www.biodiversitylibrary.org/item/48925

Crosby, M., Gale, L., 2010. Indice de condiçao: métodos, 9 (January).

Dell’Angelo, B., 1982. Sui Casi di Anomalie nel Numero di Piastre dei Polyplacophora. Boll. Malacol. 18 (9–12), 235–246.

Dell’Angelo, B., Schwabe, E., 2010. Teratology in chitons (Mollusca, Polyplacophora): a brief summary. Boll. Malacologico 46, 9–15. http://www.chitons.it/pdf/87%20Teratology.pdf

DGF, 2005. Fiche descriptive sur les zones humides Ramsar. Direction Générale des Forêts, Alger. http://www.dgf.org.dz

Digel, C., Riede, J.O., Brose, U., 2011. Body sizes, cumulative and allometric degree distributions across natural food webs. Oikos 120 (4), 503–509. https://doi.org/10.1111/j.1600-0706.2010.18862.x

Drobenko, B., 2010. Gestion intégrée des zones côtières et des risques. VertigO – la revue électronique en sciences de l’environnement, 8 (Hors-série). http://vertigo.revues.org/10297

Eernisse, D., Clark, R., Draeger, A. 2007. Polyplacophora. [In:] Carlton, J.T. (ed.), Light and Smith Manual: The Intertidal Invertebrates of Central California to Oregon, 4th Edn., Univ. California Press, Berkeley, CA., 701–713. https://www.researchgate.net/publication/240610287

Eernisse, D.J., 2008. Introduction to the symposium “Advances in Chiton Research”. AM Malacol. Bull. 25(1), 21–24. https://doi.org/10.4003/0740-2783-25.1.21

Elias, J.D., 2021. Effectiveness of Macroinvertebrate Species to Discern Pollution Levels in Aquatic Environment. Open J. Ecol. 11 (04), 357–373. https://doi.org/10.4236/oje.2021.114025

Elleboode, R., Mahe, K., 2024. Guide pratique pour la réalisation des relations Taille-Poids, Poids-Poids et Taille-Taille en Halieutique à l’aide des paramètres biologiques Ifremer. https://doi.org/https://doi.org/10.13155/101632

Emam, W.M., Ismail, N.S., 1993. Intraspecific variation in the morphometrics of Acanthopleura haddoni (Mollusca: Polyplacophora) from the Arabian Gulf and Gulf of Oman. Zool. Middle East 8 (1), 45–52. https://doi.org/10.1080/09397140.1993.10637636

EPA (United States Environmental Protection Agency), 2019. Application of quality assurance and quality control principles to ecological restoration project monitoring.

Fischer, F.P., Alger, M., Cieslar, D., et al. 1990. The Chiton Gill: Ultrastructure in Chiton olivaceus (Mollusca, Polyplacophora). J. Morphol. 204, 75–87.

Ghodbani, T., Berrahi-Midoun, F., 2013. La littoralisation dans l’Ouest algérien: analyse multiscalaire des interactions hommes-espaces-écosystèmes. Espace populations sociétés 2013 (1–2), 231–243. https://doi.org/10.4000/eps.5488

Ghodbani, T., Kansab, O., Kouti, A., 2016. Développement du tourisme balnéaire en Algérie face à la problématique de protection des espaces littoraux. Le cas des côtes mostaganemoises. Études caribéennes, 33–34. https://doi.org/10.4000/etudescaribeennes.9305

Ghodbani, T., Bougherira, A., 2019. Le littoral algérien entre protection de l’environnement et impératifs du développement. Enjeux et Perspectives, Geo-Eco-Trop, 43 (4), 559–568.

Glynn, P.W. 1970. On the ecology of the Caribbean chitons Acanthopleura granulata Gmelin and Chiton tuberculatus Linné: density, mortality, feeding, reproduction, and growth, Smithsonian Contributions to Zoology, 6(66), pp. 1–21. Available at: https://doi.org/10.5479/si.00810282.66

Gracia, A., Dı́az, J.M., Ardila, N.E., 2005. Quitones (Mollusca: Polyplacophora) del mar Caribe colombiano. Biota Colombiana 6 (1), 117–125.Guendouzi, Y., Soualili, D.L., Boulahdid, M., Boudjellal, B., 2018. Biological Indices and Monitoring of Trace Metals in the Mussel from the Southwestern Mediterranean (Algeria): Seasonal and Geographical Variations. Thalassas 34 (1), 103–112. https://doi.org/10.1007/s41208-017-0043-0

Guendouzi, Y., Soualili, D.L., Fowler, S.W., Boulahdid, M., 2020. Environmental and human health risk assessment of trace metals in the mussel ecosystem from the Southwestern Mediterranean. Mar. Pollut. Bull. 151, 110820. https://doi.org/10.1016/j.marpolbul.2019.110820

Halpern, B.S., Selkoe, K.A., Micheli, F., Kappel, C.V., 2007. Evaluating and Ranking the Vulnerability of Global Marine Ecosystems to Anthropogenic Threats. Conserv. Biol. 21 (5), 1301–1315. https://doi.org/10.1111/j.1523-1739.2007.00752.x

Halpern, B.S., Walbridge, S., Selkoe, K.A., et al., 2008. A Global Map of Human Impact on Marine Ecosystems. Science 319 (5865), 948–952. https://doi.org/10.1126/science.1149345

Hernández-P, R., Benı́tez, H.A., Ornelas-Garcı́a, C.P., Correa, M., Suazo, M.J., Piñero, D., 2023. Bergmann’s Rule under Rocks: Testing the Influence of Latitude and Temperature on a Chiton from Mexican Marine Ecoregions. Biology 12 (6), 766. https://doi.org/10.3390/biology12060766

Horn, P.L., 1982. Adaptations of the chiton Sypharochiton pelliserpentis to rocky and estuarine habitats. New Zeal. J. Mar. Fresh. 16 (3–4), 253–261. https://doi.org/10.1080/00288330.1982.9515968

Ibáñez, C.M., Carter, M.J., Aguilera, M.A. et al. 2021. Body size variation in polyplacophoran molluscs: Geographical clines and community structure along the south-eastern Pacific. Global Ecol. Biogeogr. 30 (9), 1781–1795. https://doi.org/10.1111/geb.13341

Kaas, P., Knudsen, J., 1992. Lorentz Spengler’s descriptions of chitons (Mollusca: Polyplacophora). Zool. Med. Leiden 66 (3), 49–90.

Kaiser, J., 2001. Bioindicators and Biomarkers of Environmental Pollution and Risk Assessment. Science Publ. Inc.

Kéfi, S., Berlow, E.L., Wieters, E.A., Joppa, L.N., Wood, S.A., Brose, U., Navarrete, S.A., 2015. Network structure beyond food webs : mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96 (1), 291–303. https://doi.org/10.1890/13-1424.1

Koc-Bilican, B., Çakmak, E., 2024. Removing the uncertainty of chitin structure in chitons (Mollusca: Polyplacophora: Chitonida). Zool. Anz. 310, 67–72. https://doi.org/10.1016/j.jcz.2024.05.002

Koukouras, A., Karachle, P., 2005. The polyplacophoran (Eumollusca, Mollusca) fauna of the Aegean Sea with the description of a new species, and comparison with those of the neighbouring seas. J. Biol. Res. 3, 23–38. http://www.jbr.gr/

Kovačić, I., Žunec, A., Matešković, M., Burić, P., Iveša, N., Štifanić, M., Frece, J., 2023. Commercial Quality, Biological Indices and Biochemical Composition of Queen Scallop Aequipecten opercularis in Culture. Fishes 8 (1), 48. https://doi.org/10.3390/fishes8010048

Le Moullac, G., Vairuha-Lechat, I., Bianchini, J.P., et al. 2004. Évaluation des besoins en acides gras et stérols au cours de l’ovogenèse chez l’huître perlière Pinctada margaritifera. Ifremer.

Liversage, K., Kotta, J., 2018. Unveiling commonalities in understudied habitats of boulder-reefs: life-history traits of the widespread invertebrate and algal inhabitants. Mar. Biol. Res. 14 (7), 655–671. https://doi.org/10.1080/17451000.2018.1510180

Lora-Vilchis, M.C., Robles-Mungaray, M., Doktor, N., Voltolina, D., 2004. Food Value of Four Microalgae for Juveniles of the Lion’s Paw Scallop Lyropecten subnodosus (Sowerby, 1833). J. World Aquacult. Soc. 35 (2), 297–304. https://doi.org/10.1111/j.1749-7345.2004.tb01088.x

Lord, J.P., 2012. Longevity and Growth Rates of the Gumboot Chiton, Cryptochiton stelleri, and the Black Leather Chiton, Katharina tunicata. Malacologia 55 (1), 43–54. https://doi.org/10.4002/040.055.0104

Lord, J.P., Shanks, A.L., 2012. Continuous growth facilitates feeding and reproduction: impact of size on energy allocation patterns for organisms with indeterminate growth. Mar. Biol. 159 (7), 1417–1428. https://doi.org/10.1007/s00227-012-1918-5

Markert, B.A., Breure, A.M., Zechmeister, H.G., 2003. Definitions, strategies and principles for bioindication/biomonitoring of the environment. [In:] Trace Metals and Other Contaminants in the Environment, 3–39. https://doi.org/10.1016/S0927-5215(03)80131-5

Mygdalias, T., Varkoulis, A., Voulgaris, K., Zaoutsos, S., Vafidis, D., 2024. Elemental Composition and Morphometry of Rhyssoplax olivacea (Polyplacophora): Part I – Radula and Valves. J. Mar. Sci. Eng. 12 (12), 2186. https://doi.org/10.3390/jmse12122186

Mesli, N., Rouane-Hacene, O., Bouchikhi-Tani, Z., Richir, J., 2023. A first study on the bioaccumulation of trace metals in Rhyssoplax olivacea (Mediterranean Polyplacophora). Mar. Pollut. Bull. 194, 115202. https://doi.org/10.1016/j.marpolbul.2023.115202

Moore, P.J., Thompson, R.C., Hawkins, S.J., 2011. Phenological changes in intertidal con-specific gastropods in response to climate warming. Glob. Change Biol. 17 (2), 709–719. https://doi.org/10.1111/j.1365-2486.2010.02270.x

Mourgaud, Y., Martinez, É., Geffard, A., Andral, B., Stanisiere, J.-Y., Amiard, J.-C., 2002. Metallothionein concentrationin the mussel Mytilus galloprovincialis as a biomarker of response to metal contamination: validation in the field. Biomarkers 7 (6), 479–490. https://doi.org/10.1080/1354750021000034528

Mulder, C., Vonk, J.A., Den Hollander, H.A., Hendriks, A.J., Breure, A.M., 2011. How allometric scaling relates to soil abiotics, Oikos 120 (4), 529–536. https://doi.org/10.1111/j.1600-0706.2011.18869.x

Nieto, C., Ovando, X.M.C., Loyola, R., et al., 2017. The role of macroinvertebrates for conservation of freshwater systems. Ecol. Evol. 7, 5502–5513. https://doi.org/10.1002/ece3.3101

Oehlmann, J., Schulte-Oehlmann, U., 2003. Chapter 17. Molluscs as bioindicators. [In:] Markert, B.A., Breure, A.M., Zechmeister, H.G., (Eds.), Bioindicators and Biomonitors.. Vol. 6, Elsevier, 577–635. https://doi.org/10.1016/S0927-5215(03)80147-9

Otaı́za, R.D., Santelices, B., 1985. Vertical distribution of chitons (Mollusca: Polyplacophora) in the rocky intertidal zone of central Chile. J. Exp. Mar. Biol. Ecol. 86 (3), 229–240. https://doi.org/10.1016/0022-0981(85)90105-4

Otchere, F., 2003. Heavy metals concentrations and burden in the bivalves (Anadara (Senilia) senilis, Crassostrea tulipa and Perna perna) from lagoons in Ghana: Model to describe mechanism of accumulation/excretion. Afr. J. Biotechnol. 2 (9), 280–287. https://doi.org/10.5897/AJB2003.000-1057

Pérez-Matus, A., Ospina-Alvarez, A., Camus, P.A., Carrasco, S.A., Fernández, M., Gelcich, S., Godoy, N., Ojeda, F.P., Pardo, L.M., Rozbaczylo, N., Dulce Subida, M., Thiel, M., Wieters, E.A., Navarrete, S.A., 2017. Temperate rocky subtidal reef community reveals human impacts across the entire food web. Mar. Ecol. Prog. Ser. 567, 1–16. https://doi.org/10.3354/meps12057

Phillips, D.J.H., Rainbow, P.S., 1994. Biomonitoring of Trace Aquatic Contaminants. 2nd edn. Ponka, P., Tenenbein, M., Eaton, J.W., 2015. Iron. [In:] Handbook on the Toxicology of Metals. Elsevier, 879–902. https://doi.org/10.1016/B978-0-444-59453-2.00041-X

Quintana, H.L., Hernández, J., 2021. Abundancia y morfometría de los quitones (Mollusca : Polyplacophora) asociados a rompeolas en Coveñas, Sucre-Colombia. Intropica, 55–65. https://doi.org/10.21676/23897864.3788

Radenac, G., Miramand, P., Tardy, J., 1997. Search for impact of a dredged material disposal site on growth and metal contamination of Mytilus edulis (L.) in charentemaritime (France). Mar. Pollut. Bull. 34 (9), 721–729. https://doi.org/10.1016/S0025-326X(97)00011-8

Raffaelli, D., Hawkins, S., 1996. Intertidal Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1489-6

Rall, B.C., Kalinkat, G., Ott, D., Vucic-Pestic, O., Brose, U., 2011. Taxonomic versus allometric constraints on non-linear interaction strengths Oikos 120 (4), 483–492. https://doi.org/10.1111/j.1600-0706.2010.18860.x

Ramirez-Santana, B.P., Rodriguez-Dominguez, G., Avila-Poveda, O.H., 2019. De herbívoro a detritivoro: evidencia anatómica del tipo de alimentación en Chiton articulatus (Mollusca: Polyplacophora). RENAMAC, Reunion Nacional Malacologica, Congress. October 8–11, 2019, Merida, Yucatan, Mexico. https://smmac.org.mx/renamac-2019/

Ramirez-Santana, B.P., Ospina-Garcés, S.M., Ramirez-Perez, J.S., Avila-Poveda, O.H., 2023. A landmark-based geometric morphometric approach to quantify deviations from bilateral symmetry in polyplacophorans. Zool. Anz. 306, 37–50. https://doi.org/10.1016/j.jcz.2023.06.008

Richir, J., Gobert, S., 2014. The effect of size, weight, body compartment, sex and reproductive status on the bioaccumulation of 19 trace elements in rope-grown Mytilus galloprovincialis. Ecol. Indic. 36, 33–47. https://doi.org/10.1016/j.ecolind.2013.06.021

Rivero-Rodrı́guez, S., Beaumont, A.R., Lora-Vilchis, M.C., 2007. The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 263 (1–4), 199–210. https://doi.org/10.1016/j.aquaculture.2006.09.038

Rouane-Hacene, O., Boutiba, Z., Belhaouari, B., Guibbolini- Sabatier, M.E., Francour, P., Risso-de Faverney, Ch., 2015. Seasonal assessment of biological indices, bioaccumulation and bioavailability of heavy metals in mussels Mytilus galloprovincialis from Algerian west coast, applied to environmental monitoring. Oceanologia 57 (4), 362–374. https://doi.org/10.1016/j.oceano.2015.07.004

Rouane-Hacene, O., Boutiba, Z., Benaissa, M., Belhaouari, B., Francour, P., Guibbolini-Sabatier, M.E., Risso-De Faverney, Ch., 2018. Seasonal assessment of biological indices, bioaccumulation, and bioavailability of heavy metals in sea urchins Paracentrotus lividus from Algerian west coast, applied to environmental monitoring. Environ. Sci. Pollut. R. 25 (12), 11238–11251. https://doi.org/10.1007/s11356-017-8946-0

Sahnoun, F., Bendraoua, A., Hadjel, M., 2010. Controle De La Pollution Marine Du Littoral Oranais. Comm. Sci. Tech. No. 8, Oran. https://www.researchgate.net/publication/271485657

Saier, B. 2000. Age-dependent zonation of the periwinkle Littorina littorea (L.) in the Wadden Sea. Helgoland Mar. Res. 54 (4), 224–229. https://doi.org/10.1007/s101520000054

Salloum, M.P., Lavery, D.S., de Villemereuil, P., Santure, W.A., 2023. Local adaptation in shell shape traits of a brooding chiton with strong population genomic differentiation. Evolution 77 (1), 210–220. https://doi.org/10.1093/evolut/qpac011

Salomidi, M., Katsanevakis, S., Borja, A., Braeckman, U., Damalas, D., Galparsoro, I., Mifsud, R., Mirto, S., Pascual, M., Pipitone, C., Rabaut, M., Todorova, V., Vassilopoulou, V., Vega Fernandez, T., 2012. Assessment of goods and services, vulnerability, and conservation status of European seabed biotopes: a stepping stone towards ecosystem-based marine spatial management. Mediterr. Mar. Sci. 13 (1), 49. https://doi.org/10.12681/mms.23

Schönberg, C.H.L., Wisshak, M., 2014. Marine Bioerosion. [In:] Goffredo, S., Dubinsky, Z. (Eds), The Mediterranean Sea, Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_26

Schwabe, E., 2010. Illustrated summary of chiton terminology (Mollusca, Polyplacophora). Spixiana, Zeitschrift für Zoologie, 33 (2), 171–194. Selleslagh, J., Amara, R., Laffargue, P., Lesourd, S., Lepage, M., Girardin,M., 2009. Fish composition and assemblage structure in three Eastern English Channel macrotidal estuaries : A comparison with other French estuaries. Estuar. Coast. Shelf S. 81 (2), 149–159. https://doi.org/10.1016/j.ecss.2008.10.008

Sebens, K.P., 2002. Energetic constraints, size gradients, and size limits in benthic marine invertebrates. Integr. Comp. Biol. 42 (4), 853–861. https://doi.org/10.1093/icb/42.4.853

Shaw, J.A., Clode, P., Brooker, L.R., Maker, G., 2009. The chiton fauna of the Swan River Estuary and their potential role as indicators of environmental contamination. Report, University of the Sunshine Coast, Queensland, Swan River Trust Publ.

Shaw, J.A., Macey, D.J., Brooker, L.R., Clode, P., 2010. Tooth Use and Wear in Three Iron-Biomineralizing Mollusc Species. Biol. Bull. 218 (2), 132–144. https://doi.org/10.1086/BBLv218n2p132

Sigwart, J.D., Stoeger, I., Knebelsberger, T., Schwabe, E., 2013. Chiton phylogeny (Mollusca: Polyplacophora) and the placement of the enigmatic species Choriplax grayi (H. Adams & Angas). Invertebr. Syst. 27 (6), 603. https://doi.org/10.1071/IS13013

Sigwart, J.D., Green, P.A., Crofts, S.B., 2015. Functional morphology in chitons (Mollusca, Polyplacophora): influences of environment and ocean acidification. Mar. Biol. 162 (11), 2257–2264. https://doi.org/10.1007/s00227-015-2761-2

Silva-Cavalcanti, J.S., Costa, M.F., Alves, L.H.B., 2018. Seasonal variation in the abundance and distribution of Anomalocardia flexuosa (Mollusca, Bivalvia, Veneridae) in an estuarine intertidal plain. PeerJ. 6, e4332. https://doi.org/10.7717/peerj.4332

Soliman, F.E., Hussein, M.A., Elmaraghji, A.H., Yousif, T.N., 1996. Reproductive ecology of the common rock chiton Acanthopleura gemmata (Mollusca: Polyplacophora) in the northwestern coast of the red sea. Qatar Univ. Sci. J. 16 (1), 95–102. http://qspace.qu.edu.qa/handle/10576/9664

Soto, M., Ireland, M.P., Marigómez, I., 2000. Changes in mussel biometry on exposure to metals: Implications in estimation of metal bioavailability in “Mussel-Watch” programmes. Sci. Total Environ. 247 (2–3), 175–187. https://doi.org/10.1016/S0048-9697(99)00489-1

Stevenson, R.D., Woods, W.A., 2006. Condition indices for conservation: new uses for evolving tools. Integr. Comp. Biol. 46 (6), 1169–1190. https://doi.org/10.1093/icb/icl052

Taleb, M., Tahraoui, F., Kerfouf, A., 2015. Impact of Anthropic Activity on a Coastal Environment of Ecological Interest: Stidia (Mostaganem – Algerian West). Int. J. Sci.: Basic Appl. Res. (IJSBAR), 21 (1), 254–260. https://www.gssrr.org/JournalOfBasicAndApplied/article/view/3467

Taibi, N., 2016. Conflict between coastal tourism development and sustainability: case of Mostaganem, Western Algeria. Eur. J. Sustain. Develop. 5 (4), 13–24. https://doi.org/10.14207/ejsd.2016.v5n4p13

Tokeshi, M., Ota, N., Kawai, T., 2000. A comparative study of morphometry in shell-bearing molluscs. J. Zool. 251 (1), 31–38 https://doi.org/10.1017/S0952836900005057

Varkoulis, A., Voulgaris, K., Zachos, D.S., Vafidis, D., 2023. Population Dynamics of Three Polyplacophora Species from the Aegean Sea (Eastern Mediterranean). Diversity, 15, 867. https://doi.org/10.3390/d15070867

Von Middendorff, A.T., 1847. Beiträge zu einer Malakozoologia Rossica. Mémoires Sciences Naturelles de l’Académie Impériale des Sciences St. Petersburg. 6 (1), 69–215.

Wang, W., Fisher, N., 1997. Modeling the influence of body size on trace element accumulation in the mussel Mytilus edulis. Mar. Ecol.-Prog. Ser. 161, 103–115. https://doi.org/10.3354/meps161103

Watters, G.T., 1991. Utilization of a simple morphospace by polyplacophorans and its evolutionary implications. Malacologia 33(1–2), 221–240.

Webb, T.J., Dulvy, N.K., Jennings, S., Polunin, N.V.C., 2011. The birds and the seas: body size reconciles differences in the abundance–occupancy relationship across marine and terrestrial vertebrates. Oikos 120 (4), 537–549. https://doi.org/10.1111/j.1600-0706.2011.18870.x

Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesenf, J.M., Validog, A., Warren, Ph.H., 2005. Body size in ecological networks. Trends Ecol. Evol. 20 (7), 402–409. https://doi.org/10.1016/j.tree.2005.04.005

Zorita, I., Apraiz, I., Ortiz-Zarragoitia, M., Orbea, A., Cancio, I., Soto, M., Marigómez, I., Cajaraville, M.P., 2007. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms. Environ. Pollut. 148 (1), 236–250. https://doi.org/10.1016/j.envpol.2006.10.022

full, complete article - PDF


Lowland catchment runoff response to climate change under CMIP6 in the Baltic region
Oceanologia, 68 (1)/2026, 68103, 17 pp.
https://doi.org/10.5697/PORP9186

Darius Jakimavičius*, Diana Šarauskienė, Jūratė Kriaučiūnienė, Aldona Jurgelėnaitė
Laboratory of Hydrology, Lithuanian Energy Institute, Breslaujos St. 3, LT–44403 Kaunas, Lithuania;
e-mail: darius.jakimavicius@lei.lt (D. Jakimavičius)
*corresponding author

Keywords: River runoff; Climate change; CMIP6; HBV

Received: 10 April 2025; revised: 8 November 2025; accepted: 12 November 2025

Highlights

Abstract

Record or near-record high or low river flows are more often observed in different regions of the world. A thriving society must understand the magnitude of these changes in the future, mitigate their negative impacts, and be prepared to live in a different world. That is why qualified, constantly updated scientific projections of future changes are essential. Neither Lithuania nor the other Baltic countries have yet assessed runoff changes according to the latest climate change projection tools outlined in the IPCC 6th AR on climate change. In this study, the HBV model was used to project potential changes in river runoff. The ranking procedure was developed and used to select the best-fit GCMs that most accurately reproduced the climate conditions of Lithuania. Due to the anticipated changes in climatic factors affecting the studied rivers, the average annual discharge is projected to decrease by 12 to 42%, depending on the hydrological region (i.e., the conditions of river runoff formation) and the selected future period. High flows (Q5) are likely to decline very similarly to the annual ones, while low flows (Q95) are expected to decrease by approximately two-thirds compared to the reference period. An uncertainty analysis of the projections revealed that GCMs contributed up to two-thirds of the total uncertainty in the final results.

  References   ref

Afzal, M., Vavlas, N., Ragab, R., 2021. Modelling study to quantify the impact of future climate and land use changes on water resources availability at catchment scale. J. Water Clim. Change 12, 339–361. https://doi.org/10.2166/wcc.2020.117

Akstinas, V., Jakimavičius, D., Meilutytė-Lukauskienė, D., Kriaučiūnienė, J., Šarauskienė, D., 2020. Uncertainty of annual runoff projections in Lithuanian rivers under a future climate. Hydrol. Res. 51, 257–271. https://doi.org/10.2166/nh.2019.004

Akstinas, V., Šarauskienė, D., Kriaučiūnienė, J., Nazarenko, S., Jakimavičius, D., 2022. Spatial and Temporal Changes in Hydrological Regionalization of Lowland Rivers. Int. J. Environ. Res. 16, 1. https://doi.org/10.1007/s41742-021-00380-8

Alan Yeakley, J., Ervin, D., Chang, H., Granek, E.F., Dujon, V., Shandas, V., Brown, D., 2016. Ecosystem services of streams and rivers. [In:] Gilvear, D.J., Greenwood,M.T., Thoms, M.C., Wood, P.J. (Eds.), River Science, Wiley, 335–352. https://doi.org/10.1002/9781118643525.ch17

Anil, S., P, A.R., Vema, V.K., 2024. Catchment response to climate change under CMIP6 scenarios: a case study of the Krishna River Basin. J. Water Clim. Change 15, 476–498. https://doi.org/10.2166/wcc.2024.442

Bergström, S., 1992. The HBV model – its structure and applications. SMHI RH No 4. Norrköping, 32. Bhanage, V., Lee, H.S., Cabrera, J.S., Kubota, T., Pradana, R.P., Fajary, F.R., Nimiya, H., 2024. Identification of optimal CMIP6 GCMs for future typical meteorological year in major cities of Indonesia using multi-criteria decision analysis. Front. Environ. Sci. 12, 1341807. https://doi.org/10.3389/fenvs.2024.1341807

Bian, G., Zhang, J., Chen, J., Song, M., He, R., Liu, C., Liu, Y., Bao, Z., Lin, Q., Wang, G., 2021. Projecting Hydrological Responses to Climate Change Using CMIP6 Climate Scenarios for the Upper Huai River Basin, China. Front. Environ. Sci. 9, 759547. https://doi.org/10.3389/fenvs.2021.759547

Bongaarts, J., 2019. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 45, 6800–681. https://doi.org/10.1111/padr.12283

Brêda, J.P.L.F., De Paiva, R.C.D., Collischon, W., Bravo, J.M., Siqueira, V.A., Steinke, E.B., 2020. Climate change impacts on South American water balance from a continentalscale hydrological model driven by CMIP5 projections. Clim. Change 159, 503–522. https://doi.org/10.1007/s10584-020-02667-9

Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., et al., 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change First Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland. https://10.59327/IPCC/AR6-9789291691647

Chen, H., Sun, J., Lin, W., Xu, H., 2020. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bull. 65, 1415–1418. https://doi.org/10.1016/j.scib.2020.05.015

Clark, M.P., Bierkens, M.F.P., Samaniego, L., Woods, R.A., Uijenhoet, R., Bennet, K.E., Pauwels, V.R.N., Cai, X., Wood, A.W., Peters-Lidard, C.D., 2017. The evolution of processbased hydrologic models: Historical challenges and the collective quest for physical realism. https://doi.org/10.5194/hess-2016-693

Copernicus Climate Change Service (C3S), 2024. European State of the Climate 2023. Copernicus Climate Change Service (C3S). https://doi.org/10.24381/BS9V-8C66

Dallison, R.J.H., Williams, A.P., Harris, I.M., Patil, S.D., 2022. Modelling the impact of future climate change on streamflow and water quality in Wales, UK. Hydrol. Sci. J. 67, 939–962. https://doi.org/10.1080/02626667.2022.2044045

Dialogue Earth, 2022. Irreversible climate impacts already here: IPCC. https://dialogue.earth/en/climate/ipcc-sixth-assessment-stark-warning/ (accessed on 04-06-2024)

Döll, P., Jiménez-Cisneros, B., Oki, T., Arnell, N.W., Benito, G., Cogley, J.G., Jiang, T., Kundzewicz, Z.W., Mwakalila, S., Nishijima, A., 2015. Integrating risks of climate change into water management. Hydrol. Sci. J. 60, 4–13. https://doi.org/10.1080/02626667.2014.967250

Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., Ludwig, F., 2017. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Change 143, 13–26. https://doi.org/10.1007/s10584-017-1971-7

Duan, K., Sun, G., McNulty, S.G., Caldwell, P.V., Cohen, E.C., Sun, S., Aldridge, H.D., Zhou, D., Zhang, L., Zhang, Y., 2017. Future shift of the relative roles of precipitation and temperature in controlling annual runoff in the conterminous United States. Hydrol. Earth Syst. Sci. 21, 5517–5529. https://doi.org/10.5194/hess-21-5517-2017

Etukudoh, E.,A., Ilojianya, V. I., Ayorinde, O., B., Daudu, C. D. , Adefemi, A., Hamdan, A., 2024. Review of climate change impact on water availability in the USA and Africa. Int. J. Sci. Res. Arch. 11, 942–951. https://doi.org/10.30574/ijsra.2024.11.1.0169

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

European Environment Agency (EEA), 2023. Economic losses from weather- and climate-related extremes in Europe. https://www.eea.europa.eu/en/analysis/indicators/economic-losses-from-climate-related (accessed on 02-06-2024)

Gailiušis, B., Jablonskis, J., Kovalenkoviene, M., 2001. Lithuanian rivers: hydrography and runoff. Lithuanian Energy Inst., Kaunas, Lithuanuia. 792 pp.

Gebrechorkos, S., Leyland, J., Slater, L., Wortmann, M., Ashworth, P.J., Bennett, G.L., Boothroyd, R., Cloke, H., Delorme, P., Griffith, H., Hardy, R., Hawker, L., McLelland, S., Neal, J., Nicholas, A., Tatem, A.J., Vahidi, E., Parsons, D.R., Darby, S.E., 2023. A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses. Sci. Data 10, 611. https://doi.org/10.1038/s41597-023-02528-x

Gebresellase, S.H., Wu, Z., Xu, H., Muhammad, W.I., 2022. Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA), Ethiopia: Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA), Ethiopia. Theor. Appl. Climatol. 149, 1521–1547. https://doi.org/10.1007/s00704-022-04056-x

Grose, M.R., Narsey, S., Delage, F.P., Dowdy, A.J., Bador, M., Boschat, G., Chung, C., Kajtar, J.B., Rauniyar, S., Freund, M.B., Lyu, K., Rashid, H., Zhang, X., Wales, S., Trenham, C., Holbrook, N.J., Cowan, T., Alexander, L., Arblaster, J.M., Power, S., 2020. Insights From CMIP6 for Australia’s Future Climate. Earth’s Futur. 8, e2019EF001469. https://doi.org/10.1029/2019EF001469

Guan, X., Zhang, J., Bao, Z., Liu, C., Jin, J., Wang, G., 2021. Past variations and future projection of runoff in typical basins in 10 water zones, China. Sci. Total Environ. 798, 149277. https://doi.org/10.1016/j.scitotenv.2021.149277

Gusain, A., Ghosh, S., Karmakar, S., 2020. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 232, 104680. https://doi.org/10.1016/j.atmosres.2019.104680

Haider, S., Masood, M.U., Rashid, M., Alshehri, F., Pande, C.B., Katipoğlu, O.M., Costache, R., 2023. Simulation of the Potential Impacts of Projected Climate and Land Use Change on Runoff under CMIP6 Scenarios. Water 15, 3421. https://doi.org/10.3390/w15193421

Hattermann, F.F., Vetter, T., Breuer, L., Su, B., Daggupati, P., Donnelly, C., Fekete, B., Flörke, F., Gosling, S.N., Hoffmann, P., Liersch, S., Masaki, Y., Motovilov, Y., Müller, C., Samaniego, L., Stacke, T., Wada, Y., Yang, T., Krysnaova, V., 2018. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environ. Res. Lett. 13, 015006. https://doi.org/10.1088/1748-9326/aa9938

Held, I.M., Soden, B.J., 2006. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 19, 5686–5699. https://doi.org/10.1175/JCLI3990.1

Integrated Hydrological Modelling System (IHMS), 2005. Manual. Version 5.8. Swedish Meteorol. Hydrol.Inst., 115 pp.

Intergovernmental Panel On Climate Change (IPCC), 2023a. Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1st edn., Cambridge Univ. Press. https://doi.org/10.1017/9781009325844

Intergovernmental Panel On Climate Change (IPCC), 2023b. Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1st edn., Cambridge Univ. Press. https://doi.org/10.1017/9781009157896

Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., Ziarh, G.F., Chung, E.-S., Wang, X., 2021. Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos. Res. 254, 105525. https://doi.org/10.1016/j.atmosres.2021.105525

Jakimavičius, D., Adžgauskas, G., Šarauskienė, D., Kriaučiūnienė, J., 2020. Climate Change Impact on Hydropower Resources in Gauged and Ungauged Lithuanian River Catchments. Water 12, 3265. https://doi.org/10.3390/w12113265

Jakimavičius, D., Kriaučiūnienė, J., Šarauskienė, D., 2018. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 60 (3), 378–389. https://doi.org/10.1016/j.oceano.2018.02.003

Jeantet, A., Thirel, G., Lemaitre-Basset, T., Tournebize, J., 2023. Uncertainty propagation in a modelling chain of climate change impact for a representative French drainage site. Hydrol. Sci. J. 68, 1426–1442. https://doi.org/10.1080/02626667.2023.2203322

Jiang, T., Su, B., Huang, J., Zhai, J., Xia, J., Tao, H., Wang, Y., Sun, H., Luo, Y., Zhang, L., Wang, G., Zhan, C., Xiong, M., Kundzewicz, Z.W., 2020. Each 0.5°C of Warming Increases Annual Flood Losses in China by More than US$60 Billion. Bull. Am. Meteorol. Soc. 101, E1464–E1474. https://doi.org/10.1175/BAMS-D-19-0182.1

Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J., Sandstad, M., 2020. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extremes 29, 100269. https://doi.org/10.1016/j.wace.2020.100269

Kis, A., Pongrácz, R., 2024. The projected changes of hydrological indicators in European catchments with different climatic conditions. Hydrol. Sci. J. 69, 1797–1812. https://doi.org/10.1080/02626667.2024.2390908

Kriauciuniene, J., Jakimavicius, D., Sarauskiene, D., Kaliatka, T., 2013. Estimation of uncertainty sources in the projections of Lithuanian river runoff. Stoch. Environ. Res. Risk. Assess. 27, 769–784. https://doi.org/10.1007/s00477-012-0608-7

Kriaučiūnienė, J., Meilutytė-Barauskienė, D., Rimkus, E., Kažys, J., Vincevičius, A., 2008. Climate change impact on hydrological processes in Lithuanian Nemunas river basin. Baltica 21, 51–61.

Kriaučiūnienė, J., Virbickas, T., Šarauskienė, D., Jakimavičius, D., Kažys, J., Bukantis, A., Kesminas, V., Povilaitis, A., Dainys, J., Akstinas, V., Jurgelėnaitė, A., Meilutytė-Lukauskienė, D., Tomkevičienė, A., 2019. Fish assemblages under climate change in Lithuanian rivers. Sci. Total Environ. 661, 563–574. https://doi.org/10.1016/j.scitotenv.2019.01.142

Kundzewicz, Z.W., Krysanova, V., Benestad, R.E., Hov, Ø., Piniewski, M., Otto, I.M., 2018. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 79, 1–8. https://doi.org/10.1016/j.envsci.2017.10.008

Kurniadi, A., Weller, E., Kim, Y., Min, S., 2023. Evaluation of Coupled Model Intercomparison Project Phase 6 model-simulated extreme precipitation over Indonesia. Int. J. Climatol. 43, 174–196. https://doi.org/10.1002/joc.7744

Lane, R.A., Kay, A.L., 2021. Climate Change Impact on the Magnitude and Timing of Hydrological Extremes Across Great Britain. Front. Water 3, 684982. https://doi.org/10.3389/frwa.2021.684982 Lennox, R.J., Crook, D.A., Moyle, P.B., Struthers, D.P., Cooke, S.J., 2019. Toward a better understanding of freshwater fish responses to an increasingly drought-stricken world. Rev. Fish. Biol. Fisheries 29, 71–92. https://doi.org/10.1007/s11160-018-09545-9

Martel, J.-L., Brissette, F., Troin, M., Arsenault, R., Chen, J., Su, T., Lucas-Picher, P., 2022. CMIP5 and CMIP6 Model Projection Comparison for Hydrological Impacts Over North America. Geophys. Res. Lett. 49, e2022GL098364. https://doi.org/10.1029/2022GL098364

Meinshausen, M., Nicholls, Z.R.J., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S., Smith, S.J., Van Den Berg, M., Velders, G.J.M., Vollmer, M.K., Wang, R.H.J., 2020. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020

Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., Martius, O., 2021. River runoff in Switzerland in a changing climate – runoff regime changes and their time of emergence. Hydrol. Earth Syst. Sci. 25, 3071–3086. https://doi.org/10.5194/hess-25-3071-2021

Murphy, C., Kettle, A., Meresa, H., Golian, S., Bruen, M., O’Loughlin, F., Mellander, P.-E., 2023. Climate Change Impacts on Irish River Flows: High Resolution Scenarios and Comparison with CORDEX and CMIP6 Ensembles. Water Resour. Manage. 37, 1841–1858. https://doi.org/10.1007/s11269-023-03458-4

Nazarenko, S., Meilutytė-Lukauskienė, D., Šarauskienė, D., Kriaučiūnienė, J., 2022. Spatial and Temporal Patterns of Low-Flow Changes in Lowland Rivers. Water 14, 801. https://doi.org/10.3390/w14050801

Nazarenko, S., Šarauskienė, D., Putrenko, V., Kriaučiūnienė, J., 2023. Evaluating Hydrological Drought Risk in Lithuania. Water 15, 2830. https://doi.org/10.3390/w15152830

Nguyen-Duy, T., Ngo-Duc, T., Desmet, Q., 2023. Performance evaluation and ranking of CMIP6 global climate models over Vietnam. J. Water Clim. Change 14, 1831–1846. https://doi.org/10.2166/wcc.2023.454

Núñez Mejı́a, S.X., Mendoza Paz, S., Tabari, H., Willems, P., 2023. Climate change impacts on hydrometeorological and river hydrological extremes in Quito, Ecuador. J. Hydrol.: Reg. Stud. 49, 101522. https://doi.org/10.1016/j.ejrh.2023.101522

Palmer, T.E., Booth, B.B.B., McSweeney, C.F., 2021. How does the CMIP6 ensemble change the picture for European climate projections? Environ. Res. Lett. 16, 094042. https://doi.org/10.1088/1748-9326/ac1ed9

Pervin, L., Gan, T.Y., Scheepers, H., Islam, M.S., 2021. Application of the HBV model for the future projections of water levels using dynamically downscaled global climate model data. J. Water Clim. Change 12, 2364–2377. https://doi.org/10.2166/wcc.2021.302

Piniewski, M., Szcześniak, M., Huang, S., Kundzewicz, Z.W., 2018. Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrol. Res. 49, 303–317. https://doi.org/10.2166/nh.2017.280

Rahman, A., Pekkat, S., 2024. Identifying and ranking of CMIP6-global climate models for projected changes in temperature over Indian subcontinent. Sci. Rep. 14, 3076. https://doi.org/10.1038/s41598-024-52275-1

Raju, K.S., Kumar, D.N., 2020. Review of approaches for selection and ensembling of GCMs. J. Water Clim. Change 11, 577–599. https://doi.org/10.2166/wcc.2020.128

Ritter, A., Muñoz-Carpena, R., 2013. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 480, 33–45. https://doi.org/10.1016/j.jhydrol.2012.12.004

Rivera, P., 2024. Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models. Model. Earth Syst. Environ. 10, 2031–2049. https://doi.org/10.1007/s40808-023-01881-5

Šarauskienė, D., Akstinas, V., Kriaučiūnienė, J., Jakimavičius, D., Bukantis, A., Kažys, J., Povilaitis, A., Ložys, L., Kesminas, V., Virbickas, T., Pliuraitė, V., 2018. Projection of Lithuanian river runoff, temperature and their extremes under climate change. Hydrol. Res. 49, 344–362. https://doi.org/10.2166/nh.2017.007

Šarauskienė, D., Akstinas, V., Nazarenko, S., Kriaučiūnienė, J., Jurgelėnaitė, A., 2020. Impact of physico-geographical factors and climate variability on flow intermittency in the rivers of water surplus zone. Hydrol. Proc. 34, 4727–4739. https://doi.org/10.1002/hyp.13912

Senatore, A., Fuoco, D., Maiolo, M., Mendicino, G., Smiatek, G., Kunstmann, H., 2022. Evaluating the uncertainty of climate model structure and bias correction on the hydrological impact of projected climate change in a Mediterranean catchment. J. Hydrol.: Reg. Stud.42, 101120. https://doi.org/10.1016/j.ejrh.2022.101120

Sleziak, P., Výleta, R., Hlavčová, K., Danáčová, M., Aleksić, M., Szolgay, J., Kohnová, S., 2021. A Hydrological Modeling Approach for Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia. Water 13, 3358. https://doi.org/10.3390/w13233358

Stonevičius, E., Rimkus, E., Štaras, A., Kažys, J., Valiuškevičius, G., 2017. Climate change impact on the Nemunas River basin hydrology in the 21st century. Boreal Environ. Res. 22, 49–65.

Su, B., Huang, J., Zeng, X., Gao, C., Jiang, T., 2017. Impacts of climate change on streamflow in the upper Yangtze River basin. Clim. Change 141, 533–546. https://doi.org/10.1007/s10584-016-1852-5

Susnik, J., Masia, S., Teutschbein, C., 2023. Water as a key enabler of nexus systems (water-energy-food). Camb. Prisms Water 1–29. https://doi.org/10.1017/wat.2023.1

Tariq, M., Rohith, A.N., Cibin, R., Aruffo, E., Abouzied, G.A.A., Carlo, P.D., 2024. Understanding future hydrologic challenges: Modelling the impact of climate change on river runoff in central Italy. Environ. Challenges 15, 100899. https://doi.org/10.1016/j.envc.2024.100899

The Guardian, 2021. Major climate changes inevitable and irreversible – IPCC’s starkest warning yet. https://www.theguardian.com/science/2021/aug/09/humans- have- caused- unprecedented- and- irreversible-change-to-climate-scientists-warn (accessed on 28-05-2024)

Tian, Y., Xu, Y.-P., Booij, M.J., Cao, L., 2016. Impact assessment of multiple uncertainty sources on high flows under climate change. Hydrol. Res. 47, 61–74. https://doi.org/10.2166/nh.2015.008

Vetter, T., Reinhardt, J., Flörke, M., Van Griensven, A., Hattermann, F., Huang, S., Koch, H., Pechlivanidis, I.G., Plötner, S., Seidou, O., Su, B., Vervoort, R.W., Krysanova, V., 2017. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim. Change 141, 419–433. https://doi.org/10.1007/s10584-016-1794-y

Wei, L., Xin, X., Li, Q., Wu, Y., Tang, H., Li, Y., Yang, B., 2023. Simulation and projection of climate extremes in China by multiple Coupled Model Intercomparison Project Phase 6 models. Int. J. Climatol. 43, 219–239. https://doi.org/10.1002/joc.7751

Wen, K., Gao, B., Li, M., 2021. Quantifying the Impact of Future Climate Change on Runoff in the Amur River Basin Using a Distributed Hydrological Model and CMIP6 GCM Projections. Atmosphere 12, 1560. https://doi.org/10.3390/atmos12121560

Woodward, G., Perkins, D.M., Brown, L.E., 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil. Trans. R. Soc. B 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055 Xin, X., Wu, T., Zhang, J., Yao, J., Fang, Y., 2020. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 40, 6423–6440. https://doi.org/10.1002/joc.6590

Xiong, J., Guo, S., Abhishek, Chen, J., Yin, J., 2022. Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective. Hydrol. Earth Syst. Sci. 26, 6457–6476. https://doi.org/10.5194/hess-26-6457-2022

Yang, H., Zhou, F., Piao, S., Huang, M., Chen, A., Ciais, P., Li, Y., Lian, X., Peng, S., Zeng, Z., 2017. Regional patterns of future runoff changes from Earth system models constrained by observation. Geophys. Res. Lett. 44, 5540–5549. https://doi.org/10.1002/2017GL073454

Yang, T., Ding, J., Liu, D., Wang, X., Wang, T., 2019. Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm. J. Climate 32, 737–748. https://doi.org/10.1175/JCLI-D-18-0261.1

full, complete article - PDF


Chlorophyll a distribution in the Arabian Gulf: climate, trends, and global teleconnections
Oceanologia, 68 (1)/2026, 68104, 20 pp.
https://doi.org/10.5697/FIXM1200

Cheriyeri Poyil Abdulla1, Valliyil Mohammed Aboobacker1,*, Muhammad Shafeeque2, Ponnumony Vethamony1
1Environmental Science Center, Qatar University, P.O. Box. 2713, Doha, Qatar;
e-mail: vmaboobacker@qu.edu.qa (V. M. Aboobacker)
2Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
*corresponding author

Keywords: Arabian Gulf; GlobColour; Chlorophyll a; Primary productivity; Gulf circulation; Climatic indices

Received: 20 March 2025; revised: 9 November 2025; accepted: 17 November 2025

Highlights

Abstract

The study examined the climatology, trends, and variability of chlorophyll a (hereafter referred to as ‘Chl a’) concentration in the Arabian Gulf (hereafter referred to as ‘Gulf’), utilizing merged satellite datasets for the period 1998–2022. Distinct spatial and temporal variabilities were identified, which are linked to climatic features, inflow from the Arabian Sea, freshwater discharge into the Gulf, and the Gulf circulation. The study identified an opposing phase in the dominance of Chl a between the southern Iranian coast and the Arabian coast. Among wind speed, sea level anomaly, and sea surface temperature (SST), multiple linear regression analysis revealed SST as the strongest predictor of phytoplankton growth. The La Niña and positive Indian Ocean dipole (IOD) phases enhanced the Chl a, while El Niño and negative IOD phases caused its decline. The Chl a increased in the northern coast and southern shelf of the Gulf, of the order of 0.017–0.031 mg/m3/y, while the southern Iranian coast exhibited weaker negative trends.

  References   ref

Abish, B., Cherchi, A., Ratna, S.B., 2018. ENSO and the recent warming of the Indian Ocean. Int. J. Climatol. 38 (1), 203–214. https://doi.org/10.1002/joc.5170

Aboobacker, V.M., Abdulla, C.P., Al-Ansari, E.M.A.S., Vethamony, P., 2024a. Impacts of Shamal and Nashi winds on the hydrodynamics along the northeast coast of Qatar, central Arabian Gulf. J. Coastal Res. 113, 609–613. https://doi.org/10.2112/JCR-SI113-120.1

Aboobacker, V.M., Hasna, V.M., Al-Ansari, E.M.A.S., Vethamony, P., 2024b. Nearshore Hydrography along the Coast of Doha, Central Arabian Gulf. J. Coastal Res. 113, 422–426. https://doi.org/10.2112/JCR-SI113-083.1

Aboobacker, V.M., Samiksha, S.V., Veerasingam, S., Al-Ansari, E.M.A.S., Vethamony, P., 2021a. Role of shamal and easterly winds on the wave characteristics off Qatar, central Arabian Gulf. Ocean Eng. 236, 109457. https://doi.org/10.1016/j.oceaneng.2021.109457

Aboobacker, V.M., Shanas, P.R., Veerasingam, S., Al-Ansari, E.M.A.S., Sadooni, F.N., Vethamony, P., 2021b. Longterm assessment of onshore and offshore wind energy potentials of Qatar. Energies 14 (4), 1178. https://doi.org/10.3390/en14041178

Ahmad, F., Sultan, S., 1991. Annual mean surface heat fluxes in the Arabian Gulf and the net heat transport through the Strait of Hormuz. Atmos. Ocean 29 (1), 54–61. https://doi.org/10.1080/07055900.1991.9649392

Al Senafi, F., 2022. Atmosphere-ocean coupled variability in the Arabian/Persian Gulf. Front. Marine Sci. 9, 809355. https://doi.org/10.3389/fmars.2022.809355

Al Shehhi, M.R., Gherboudj, I., Ghedira, H., 2014. An overview of historical harmful algae blooms outbreaks in the Arabian Seas. Mar. Pollut. Bull. 86 (1–2), 314–324. https://doi.org/10.1016/j.marpolbul.2014.06.048

Al-Ansari, E.M.A.S., Husrevoglu, Y.S., Yigiterhan, O., Youssef, N., Al-Maslamani, I.A., Abdel-Moati, M.A., Al-Mohamedi, A.J., Aboobacker, V.M., Vethamony, P., 2022. Seasonal variability of hydrography off the east coast of Qatar, central Arabian Gulf. Arab. J. Geosci. 15 (22), 1659. https://doi.org/10.1007/s12517-022-10927-4

Al-Mudaffar Fawzi, N., Mahdi, B.A., 2014. Iraq’s inland Water quality and its impact on the North-Western Arabian Gulf. Marsh Bull. 9 (1).

Al-Naimi, N., Raitsos, D.E., Ben-Hamadou, R., Soliman, Y., 2017. Evaluation of satellite retrievals of chlorophyll a in the Arabian Gulf. Remote Sens-Basel. 9 (3), 301. https://doi.org/10.3390/rs9030301

Alosairi, Y., Alsulaiman, N., Petrov, P., Karam, Q., 2019. Responses of salinity and chlorophyll a to extreme rainfall events in the northwest Arabian Gulf: Emphasis on Shatt Al-Arab. Mar. Pollut. Bull. 149, 110564. https://doi.org/10.1016/j.marpolbul.2019.110564

Alosairi, Y., Imberger, J., Falconer, R.A., 2011. Mixing and flushing in the Persian Gulf (Arabian Gulf ). J. Geophys. Res.-Oceans 116 (C3). https://doi.org/10.1029/2010JC006769

Alosairi, Y., Pokavanich, T., 2017. Residence and transport time scales associated with Shatt Al-Arab discharges under various hydrological conditions were estimated using a numerical model. Mar. Pollut. Bull. 118 (1–2), 85–92. https://doi.org/10.1016/j.marpolbul.2017.02.039

Al-Said, T., Al-Ghunaim, A., Subba Rao, D., Al-Yamani, F., Al-Rifaie, K., Al-Baz, A., 2017. Salinity-driven decadal changes in phytoplankton community in the NW Arabian Gulf of Kuwait. Environ. Monit. Assess. 189, 1–17. https://doi.org/10.1007/s10661-017-5969-4

Al-Subhi, A.M., Abdulla, C.P., 2021. Sea-level variability in the Arabian gulf in comparison with global oceans. Remote Sens-Basel. 13 (22), 4524. https://doi.org/10.3390/rs13224524

Al-Thani, J.A., Soliman, Y., Al-Maslamani, I.A., Yigiterhan, O., Al-Ansari, E.M.A.S., 2023. Physical drivers of chlorophyll and nutrients variability in the Southern-Central Arabian Gulf. Estuar. Coast. Shelf Sci. 283, 108260. https://doi.org/10.1016/j.ecss.2023.108260

Al-Yamani, F.Y., Polikarpov, I., Saburova, M., 2020. Marine life mortalities and harmful algal blooms in the Northern Arabian Gulf. Aquat. Ecosyst. Health 23 (2), 196–209. https://doi.org/10.1080/14634988.2020.1798157

Amorim, F.L.L., Balkoni, A., Sidorenko, V, Wiltshire, K.H., 2024. Analyses of sea surface chlorophyll a trends and variability from 1998 to 2020 in the German Bight (North Sea). Ocean Sci. 20 (5), 1247–1265. https://doi.org/10.5194/os-20-1247-2024

Anjaneyan, P., Kuttippurath, J., Kumar, P.H., Ali, S., Raman, M., 2023. Spatio-temporal changes of winter and spring phytoplankton blooms in the Arabian Sea during the period 1997–2020. J. Environ. Manage. 332, 117435. https://doi.org/10.1016/j.jenvman.2023.117435

Asharaf, M., Aboobacker, V.M., Abdulla, C.P., Joydas, T.V., Manikandan, K.P., Rafeeq, M., Al-Suwailem, A., Vethamony, P., 2025. Perspectives of seasonal hydrography and water masses in Saudi waters of the Arabian Gulf. Oceanologia 67 (4), 67407. https://doi.org/10.5697/KPCV6249

Asgari, H.M., Soleimany, A., 2023. Long-term study of desert dust deposition effects on phytoplankton biomass in the Persian Gulf using Google Earth Engine. Mar. Pollut. Bull. 195, 115564. https://doi.org/10.1016/j.marpolbul.2023.115564

Barimalala, R., Bracco, A., Kucharski, F., McCreary, J.P., Crise, A., 2013. Arabian Sea ecosystem responses to the South Tropical Atlantic teleconnection. J. Mar. Syst. 117, 14–30. https://doi.org/10.1016/j.jmarsys.2013.03.002

Behrenfeld, M.J., Falkowski, P.G., 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42 (1), 1–20. https://doi.org/10.4319/lo.1997.42.1.0001

Bordbar, M.H., Nasrolahi, A., Lorenz, M., Moghaddam, S., Burchard, H., 2024. The Persian Gulf and Oman Sea: climate variability and trends inferred from satellite observations. Estuar. Coast. Shelf S. 296, 108588. https://doi.org/10.1016/j.ecss.2023.108588

Chinta, V., Kalhoro, M.A., Liang, Z., Tahir, M., Song, G., Zhang, W., 2024. Decadal climate variability of chlorophyll a in response to different oceanic factors in the Western Indian ocean: the Sea of Oman. Clim. Dynam. 62 (9), 8675–8690. https://doi.org/10.1007/s00382-024-07354-4

Cianca, A., Godoy, J., Martin, J., Perez-Marrero, J., Rueda, M., Llinás, O., Neuer, S., 2012. Interannual variability of chlorophyll and the influence of low-frequency climate modes in the North Atlantic subtropical gyre. Global Biogeochem. Cy. 26 (2). https://doi.org/10.1029/2010GB004022

Currie, J.C., Lengaigne, M., Vialard, J., Kaplan, D.M., Aumont, O, Naqvi, S., Maury, O., 2013. Indian Ocean dipole and El Nino/southern oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences 10 (10), 6677–6698. https://doi.org/10.5194/bg-10-6677-2013

Dai, Y., Yang, S., Zhao, D., Hu, C., Xu, W., Anderson, D.M., Li, Y., Song, X.P., Boyce, D.G., Gibson, L., Zheng, C., 2023. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 615 (7951), 280–284. https://doi.org/10.1038/s41586-023-05760-y

Dasari, H.P., Ashok, K., Saharwardi, M.S., Luong, T.M., Masabathini, S., Vankayalapati, K., Gandham, H., Thiruridathil, R., Zamreeq, A., Ghulam, A., Abulnaja, Y., 2025. Understanding and Predicting the November 24, 2022, Record-Breaking Jeddah Extreme Rainfall Event. Meteorol. Applicat. 32 (5), p.e70100. https://doi.org/10.1002/met.70100

Devlin, M., Massoud, M., Hamid, S., Al-Zaidan, A., Al-Sarawi, H., Al-Enezi, M., Al-Ghofran, L., Smith, A.J., Barry, J., Stentiford, G.D., Morris, S., 2015. Changes in the water quality conditions of Kuwait’s marine waters: long-term impacts of nutrient enrichment. Mar. Pollut. Bull. 100 (2), 607–620. https://doi.org/10.1016/j.marpolbul.2015.10.022

Devlin, M.J., Breckels, M., Graves, C.A., Barry, J., Capuzzo, E., Huerta, F.P., Al Ajmi, F., Al-Hussain, M.M., LeQuesne, W.J., Lyons, B.P., 2019. Seasonal and temporal drivers influencing phytoplankton community in Kuwait marine waters: documenting a changing landscape in the Gulf. Front. Marine Sci. 6, 141. https://doi.org/10.3389/fmars.2019.00141

Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4 (2012), 11–37. https://doi.org/10.1146/annurev-marine-041911-111611

El Hourany, R., Abboud-Abi Saab, M., Faour, G., Mejia, C., Crépon, M., Thiria, S., 2019. Phytoplankton diversity in the Mediterranean Sea from satellite data using self-organizing maps. J. Geophys. Res.-Oceans 124 (8), 5827–5843. https://doi.org/10.1029/2019JC015131

Elobaid, E.A., Al-Ansari, E.M.A.S., Yigiterhan, O., Aboobacker, V.M., Vethamony, P., 2022. Spatial variability of summer hydrography in the central Arabian Gulf. Oceanologia 64 (1), 75-87. https://doi.org/10.1016/j.oceano.2021.09.003

Ershadifar, H., Saleh, A., Kor, K., Ghazilou, A., Baskaleh, G., Hamzei, S., 2023. Nutrients and chlorophyll a in the Gulf of Oman: high seasonal variability in nitrate distribution. Deep-Sea Res. Pt. II 208, 105250. https://doi.org/10.1016/j.dsr2.2022.105250

Ford, D., Barciela, R., 2017. Global marine biogeochemical reanalyses assimilating two different sets of merged ocean colour products. Remote Sens. Environ. 203, 40–54. https://doi.org/10.1016/j.rse.2017.03.040

Ford, D.A., Edwards, K.P., Lea, D., Barciela, R.M., Martin, M.J., Demaria, J., 2012. Assimilating GlobColour ocean colour data into a pre-operational physical-biogeochemical model. Ocean Sci. 8 (5), 751–771. https://doi.org/10.5194/os-8-751-2012

Gao, K., Zhang, Y., Häder, D.P., 2018. Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J. Appl. Phycol. 30, 743–759. https://doi.org/10.1007/s10811-017-1329-6

Garnesson, P., Mangin, A., Bretagnon, M., Jutard, Q., 2025. Quality information document. Ocean Colour Production Centre. https://documentation.marine.copernicus.eu/QUID/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf

Garnesson, P., Mangin, A., Fanton d’Andon, O., Demaria, J., Bretagnon, M., 2019. The CMEMS GlobColour chlorophyll a product based on satellite observation: multisensor merging and flagging strategies. Ocean Sci. 15 (3), 819–830. https://doi.org/10.5194/os-15-819-2019

Grunseich, G., Subrahmanyam, B., Murty, V.S.N., Giese, B.S., 2011. Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean. J. Geophys. Res.-Oceans 116 (C11). https://doi.org/10.1029/2011JC007456

Hankin, S., Harrison, D.E., Osborne, J., Davison, J., O’Brien, K., 1996. A strategy and a tool, Ferret, for closely integrated visualization and analysis. J. Visualizat. Computer Animat.7 (3), 149–157. https://doi.org/10.1002/(SICI)1099-1778(199607)7:3<149::AID-VIS148>3.0.CO;2-X

Heil, C.A., Glibert, P.M., Al-Sarawi, M.A., Faraj, M., Behbehani, M., Husain, M., 2001. First record of a fish-killing Gymnodinium sp. bloom in Kuwait Bay, Arabian Sea: chronology and potential causes. Mar. Ecol. Prog. Ser. 214, 15–23. https://doi.org/10.3354/meps

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., 2020. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 146 (730), 1999–2049. https://doi.org/10.1002/qj.3803

Hussein, K.A., Al Abdouli, K., Ghebreyesus, D.T., Petchprayoon, P., Al Hosani, N., O. Sharif, H., 2021. Spatiotemporal variability of chlorophyll a and sea surface temperature, and their relationship with bathymetry over the coasts of the UAE. Remote Sens-Basel. 13 (13), 2447. https://doi.org/10.3390/rs13132447

Ismail, K.A., Al Shehhi, M.R., 2022. Upwelling and nutrient dynamics in the Arabian Gulf and Sea of Oman. Plos One 17 (10), e0276260. https://doi.org/10.1371/journal.pone.0276260

Jensen, T.G., 2007. Wind-driven response of the northern Indian Ocean to climate extremes. J. Clim.20 (13), 2978–2993. https://doi.org/10.1175/JCLI4150.1

Johns, W., Yao, F., Olson, D., Josey, S., Grist, J., Smeed, D., 2003. Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. J. Geophys. Res.-Oceans 108 (C12). https://doi.org/10.1029/2003JC001881

Kämpf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf: a numerical study. Ocean Sci. 2 (1), 27–41. https://doi.org/10.5194/os-2-27-2006

Kendall, M., 1975. Rank Correlation Methods, 4th edn., Charles Griffin, London, 202 pp.

Keshavarzifard, M., Vazirzadeh, A., Sharifinia, M., 2021. Occurrence and characterization of microplastics in white shrimp, Metapenaeus affinis, living in a habitat highly affected by anthropogenic pressures, northwest Persian Gulf. Mar. Pollut. Bull. 169, 112581. https://doi.org/10.1016/j.marpolbul.2021.112581

Kim, H-J, Miller, A.J, McGowan, J., Carter, M.L., 2009. Coastal phytoplankton blooms in the Southern California Bight. Prog. Oceanogr. 82 (2), 137–147. https://doi.org/10.1016/j.pocean.2009.05.002

Lachkar, Z., Pauluis, O., Paparella, F., Khan, B., Burt, J. A., 2025. Local and remote Climatic drivers of extreme summer temperatures in the Arabian Gulf. EGUsphere, 2025, 1–30. https://doi.org/10.5194/egusphere-2025-2948

Mahmoodi, K., Ghassemi, H., Razminia, A., 2019. Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset. Energy 187, 115991. https://doi.org/10.1016/j.energy.2019.115991

Maritorena, S., d’Andon, O.H.F., Mangin, A., Siegel, D.A., 2010. Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits, and issues. Remote Sens. Environ. 114 (8), 1791–1804. https://doi.org/10.1016/j.rse.2010.04.002

Moradi, M., 2020. Trend analysis and variations of sea surface temperature and chlorophyll a in the Persian Gulf. Mar. Pollut. Bull. 156, 111267. https://doi.org/10.1016/j.marpolbul.2020.111267

Moradi, M., 2021. Evaluation of merged multi-sensor oceancolor chlorophyll products in the Northern Persian Gulf. Cont. Shelf Res. 221, 104415. https://doi.org/10.1016/j.csr.2021.104415

Moradi, M., Kabiri, K., 2015. Spatio-temporal variability of SST and Chlorophyll a from MODIS data in the Persian Gulf. Mar. Pollut. Bull. 98 (1–2), 14–25. https://doi.org/10.1016/j.marpolbul.2015.07.018

Moradi, M., Moradi, N., 2020. Correlation between concentrations of chlorophyll a and satellite derived climatic factors in the Persian Gulf. Mar. Pollut. Bull. 161, 111728. https://doi.org/10.1016/j.marpolbul.2020.111728

Mussa, A.A., Aboobacker, V.M., Abdulla, C.P., Hasna, V.M., Al-Ansari, E.M.A.S., Vethamony, P., 2024. A climatological overview of surface currents in the Arabian Gulf with special reference to the Exclusive Economic Zone of Qatar. Int. J. Climatol. 44(13), 4677–4693. https://doi.org/10.1002/joc.8603

Nelli, N., Francis, D., Fonseca, R., Bosc, E., Addad, Y., Temimi, M., Abida, R., Weston, M., Cherif, C., 2022. Characterization of the atmospheric circulation near the Empty Quarter Desert during major weather events. Front. Environ. Sci. 10, p. 972380. https://doi.org/10.3389/fenvs.2022.972380

Nezlin, N.P., Polikarpov, I.G., Al-Yamani, F.Y., Rao, D.S., Ignatov, A.M., 2010. Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. J. Mar. Syst. 82 (1–2), 47–60. https://doi.org/10.1016/j.jmarsys.2010.03.003

Niranjan Kumar, K., Ouarda, T., 2014. Precipitation variability over the UAE and global SST teleconnections. J. Geophys. Res.-Atmos. 119 (17), 10,313–10,322. https://doi.org/10.1002/2014JD021724

Pitarch, J., Volpe, G., Colella, S., Krasemann, H., Santoleri, R., 2016. Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multisensor data. Ocean Sci. 12 (2), 379–389. https://doi.org/10.5194/os-12-379-2016

Polikarpov, I., Saburova, M., Al-Yamani, F., 2016. Diversity and distribution of winter phytoplankton in the Arabian Gulf and the Sea of Oman. Cont. Shelf Res. 119, 85–99. https://doi.org/10.1016/j.csr.2016.03.009

Pous, S., Lazure, P., Carton, X., 2015. A model of the general circulation in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual variability. Cont. Shelf Res. 94, 55–70. https://doi.org/10.1016/j.csr.2014.12.008

Pramlall, S., Jackson, J. M., Konik, M., Costa, M., 2023. Merged multi-sensor ocean colour chlorophyll product evaluation for the British Columbia coast. Remote Sens-Basel. 15 (3), 687. https://doi.org/10.3390/rs15030687

Price, A.R.G., Sheppard, C.R.C., Roberts, C.M., 1993. The Gulf: its biological setting. Mar. Pollut. Bull. 27, 9–15. https://doi.org/10.1016/0025-326X(93)90004-4

Privett, D., 1959. Monthly charts of evaporation from the N. Indian Ocean (including the Red Sea and the Persian Gulf ). Q. J. Roy. Meteor. Soc. 85 (366), 424–428. https://doi.org/10.1002/qj.49708536614

R Core Team, 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Racault, M-F, Sathyendranath, S., Menon, N., Platt, T., 2017. Phenological responses to ENSO in the global oceans. Surv. Geophys. 38, 277–293. https://doi.org/10.1007/s10712-016-9391-1

Rafati, P. and Rezazadeh, M., 2020. Correlation of NAO, IOD, and ENSO with the sea surface temperature changes in the Persian Gulf. J. Earth Space Phys. 46 (2), 395–408. https://doi.org/10.22059/jesphys.2020.297756.1007198

Raitsos, D.E., Yi, X., Platt, T., Racault, M.F., Brewin, R.J., Pradhan, Y., Papadopoulos, V.P., Sathyendranath, S., Hoteit, I., 2015. Monsoon oscillations regulate the fertility of the Red Sea. Geophys. Res. Lett. 42 (3), 855–862. https://doi.org/10.1002/2014GL062882

Rajendran, S., Al-Naimi, N., Al Khayat, J.A., Sorino, C.F., Sadooni, F.N., Al Kuwari, H.A.,S., 2022. Chlorophyll a concentrations in the Arabian Gulf waters of the arid region: A case study from the northern coast of Qatar. Regional Stud. Marine Sci. 56, 102680. https://doi.org/10.1016/j.rsma.2022.102680

Rakib, F., Al-Ansari, E.M.A.S., Husrevoglu, Y.S., Yigiterhan, O., Al-Maslamani, I., Aboobacker, V.M., Vethamony, P., 2021. Observed variability in physical and biogeochemical parameters in the central Arabian Gulf. Oceanologia 63 (2), 227–237. https://doi.org/10.1016/j.oceano.2020.12.003

Rao, S., Al-Yamani, F., 1998. Phytoplankton ecology in the waters between Shatt Al-Arab and Straits of Hormuz, Arabian Gulf: A review. Plankton Biol. Ecol. 45 (2), 101–116.

Reynolds, R.M., 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35–59. https://doi.org/10.1016/0025-326X(93)90007-7

Ross, D.A., Uchupi, E., White, R.S., 1986. The geology of the Persian Gulf-Gulf of Oman region: A synthesis. Rev. Geophys. 24 (3), 537–556. https://doi.org/10.1029/RG024i003p00537

Roxy, M.K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., Ravichandran, M., Vichi, M., Lévy, M., 2016. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43 (2), 826–833. https://doi.org/10.1002/2015GL066979

Saad, M.A., 1978. Seasonal variations of some physicochemical conditions of Shatt al-Arab estuary, Iraq. Estuar. Coast. Mar. Sci. 6 (5), 503–513. https://doi.org/10.1016/0302-3524(78)90027-0

Saha, K., Zhao, X., Zhang, H., Casey, K.S., Zhang, D., Baker- Yeboah, S., Kilpatrick, K.A., Evans, R.H., Ryan, T., Relph, J.M., 2018. AVHRR Pathfinder version 5.3 level 3 collated (L3C) global 4km sea surface temperature for 1981 – Present. NOAA Nat. Center. Environ. Informat., Asheville, NC, USA. Schulzweida, U., 2023. CDO User Guide (2.3.0). Zenodo. https://doi.org/10.5281/zenodo.10020800

Seelanki, V., Nigam, T., Pant, V., 2022. Unravelling the roles of Indian Ocean Dipole and El-Niño on winter primary productivity over the Arabian Sea. Deep-Sea Res. Pt. I 190, 103913. https://doi.org/10.1016/j.dsr.2022.103913

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63 (324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Shafeeque, M., Balchand, A.N., Shah, P., George, G., Smitha, B.R, Varghese, E., Joseph, A.K., Sathyendranath, S., Platt, T., 2021a. Spatio-temporal variability of chlorophyll a in response to coastal upwelling and mesoscale eddies in the South Eastern Arabian Sea. Int. J. Remote Sens. 42 (13), 4836–4863. https://doi.org/10.1080/01431161.2021.1899329

Shafeeque, M., George, G., Akash, S., Smitha, B.R., Shah, P., Balchand, A.N., 2021b. Interannual variability of chlorophyll a and impact of extreme climatic events in the South Eastern Arabian Sea. Regional Stud. Marine Sci. 48, 101986. https://doi.org/10.1016/j.rsma.2021.101986

Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N.K., Durvasula, S.R.V., Jones, D.A., 2010. The Gulf: a young sea in decline. Mar. Pollut. Bull. 60 (1), 13–38. https://doi.org/10.1016/j.marpolbul.2009.10.017

The MathWorks Inc., 2024. MATLAB version: 24.2.0 (R2024b), The MathWorks Inc., Natick, Massachusetts, https://www.mathworks.com

Thoppil, P.G., Hogan, P.J., 2010. Persian Gulf response to a wintertime shamal wind event. Deep-Sea Res. Pt. I 57 (8), 946–955. https://doi.org/10.1016/j.dsr.2010.03.002

Tomlinson, M.C., Wynne, T.T., Stumpf, R.P., 2009. An evaluation of remote sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia brevis. Remote Sens. Environ. 113 (3), 598–609. https://doi.org/10.1016/j.rse.2008.11.003

Vantrepotte, V., Mélin, F., 2009. Temporal variability of 10-year global SeaWiFS time-series of phytoplankton chlorophyll a concentration. ICES J. Mar. Sci. 66 (7), 1547–1556. https://doi.org/10.1093/icesjms/fsp107

Vaughan, G.O., Al-Mansoori, N., Burt, J.A., 2019. The Arabian Gulf. World Seas: An Environmental Evaluation. Elsevier, 1–23. https://doi.org/10.1016/B978-0-08-100853-9.00001-4

Veny, M., Aguiar-González, B., Marrero-Dı́az, Á., Pereira- Vázquez, T., Rodrı́guez-Santana, Á., 2024. Biophysical coupling of seasonal chlorophyll a bloom variations and phytoplankton assemblages across the Peninsula Front in the Bransfield Strait. Ocean Sci. 20 (2), 389–415. https://doi.org/10.5194/os-20-389-2024

Volpe, G., Colella, S., Brando, V.E., Forneris, V., La Padula, F., Di Cicco, A., Sammartino, M., Bracaglia, M., Artuso, F., Santoleri, R., 2019. Mediterranean Ocean Colour Level 3 operational multi-sensor processing. Ocean Sci. 15 (1), 127–146. https://doi.org/10.5194/os-15-127-2019

Westberry, T.K., Silsbe, G.M., Behrenfeld, M.J., 2023. Gross and net primary production in the global ocean: An ocean color remote sensing perspective. Earth-Sci. Rev. 237, 104322. https://doi.org/10.1016/j.earscirev.2023.104322

Wiggert, J.D., Vialard, J., Behrenfeld, M.J., 2009. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. Indian Ocean biogeochemical processes and ecological variability, 185, 385–407. https://doi.org/10.1029/2008GM000776

Wright, J.L., 1974. A hydrographic and acoustic survey of the Persian Gulf. Part I. Naval Postgraduate School. https://doi.org/10.5962/bhl.title.60916

Xi, H., Losa, S.N., Mangin, A., Soppa, M.A., Garnesson, P., Demaria, J., Liu, Y., d’Andon, O.H., Bracher, A., 2020. Global retrieval of phytoplankton functional types based on empirical orthogonal functions using CMEMS GlobColour merged products and further extension to OLCI data. Remote Sens. Environ. 240, 111704. https://doi.org/10.1016/j.rse.2020.111704

Yu, S., Bai, Y., He, X., Gong, F., Li, T., 2023. A new merged dataset of global ocean chlorophyll a concentration for better trend detection. Front. Marine Sci. 10, 1051619. https://doi.org/10.3389/fmars.2023.1051619

full, complete article - PDF


Women are successful in marine science, but not in its narrative. A case study from Poland
Oceanologia, 68 (1)/2026, 68105, 9 pp.
https://doi.org/10.5697/JFIR5225

Paulina Pakszys1, Jan Marcin Węsławski1,*, Sławomir Sagan1, Agnieszka Skorupa2
1Institute of Oceanology, Polish Academy of Science, Powstańców Warszawy 55, Sopot 81–712, Poland
e-mail: weslaw@iopan.pl (J.M. Węsławski)
2Institute of Psychology, Silesian University, Grażyńskiego Street 53, Katowice 40–126, Poland
*corresponding author

Keywords: Women; Marine science; Gender equality; Media

Received: 23 September 2025; revised: 19 November 2025; accepted: 3 December 2025

Highlights

Abstract

Active participation of women in marine field work (research cruises) was almost nonexistent before the mid-1970s, and slowly increased to a present day 50:50 share in Poland. The detailed analysis is presented for the largest marine research institute in Poland with 200 employees and regular (over 240 days per year) in the sea presence onboard r/v Oceania. The overall share of women in the scientific activities (research papers) is almost 50%, with higher share in chemistry (60%) and lower in marine physics (40%). The share of women as leaders in external projects is equal to men and the scientific performance (measured as Hirsch index) is statistically the same as men researchers, however men researchers present both highest and lowest scores, contrary to more equal distribution of results among women. The striking difference is visible in the outreach activity – mainstream media releases, where men are responsible for nearly 90% of events for adult audience. The issue is presented in the context of international research on women presence in the science (STEM) and similar patterns around the globe.

  References   ref

AbiGhannam, N., 2016. Madam science communicator: A typology of women’s experiences in online science communication. Sci. Comm. 38 (4), 468–494. https://doi.org/10.1177/1075547016655545

Benson-Greenwald, T.M., Joshi, M.P., Diekman, A.B., 2021. Out of the lab and into the world: Analyses of social roles and gender in profiles of scientists in The New York Times and The Scientist. Front. Psych. 12, 684777. https://doi.org/10.3389/fpsyg.2021.684777

Burdett, H.L., Kelling, I., Carrigan, M., 2022. TimesUp: Tackling gender inequities in marine and fisheries science. J. Fish Biol. 100 (1), 4–9. https://doi.org/10.1111/jfb.14936

Carli, L.L., Alawa, L., Lee, Y., Zhao, B., Kim, E., 2016. Stereotypes about gender and science: Women ≠ scientists. Psych. Women Quart. 40 (2), 244–260. https://doi.org/10.1177/0361684315622645

Chambers, A.C., Thompson, S., 2020. Women, science and the media. [In:] Ross K. (Ed.), The International Encyclopedia of Gender, Media, and Communication Vol. 3, Wiley, 1532–1569. https://doi.org/10.1002/9781119429128.iegmc304

Chimba, M., Kitzinger, J., 2010. Bimbo or boffin? Women in science: An analysis of media representations and how female scientists negotiate cultural contradictions. Publ. Underst. Sci. 19 (5), 609–624. https://doi.org/10.1177/0963662508098580

Clark, L., Yoder, J., McNutt, M., Colton, M. C., 2008. Women in oceanography: 20 years of progress, change, and challenge. Oceanography 21 (3), 38–43. https://doi.org/10.5670/oceanog.2008.33

Corsbie-Massay, C.L., Wheatly, M. G., 2022. The role of media professionals in perpetuating and disrupting stereotypes of women in STEM fields. Front. Comm. 7, 1027502. https://doi.org/10.3389/fcomm.2022.1027502

Giakoumi, S., Pita, C., Coll, M., Fraschetti, S., et al., 2021. Persistent gender bias in marine science and conservation calls for action to achieve equity. Biol. Conserv. 257, 109134. https://doi.org/10.1016/j.biocon.2021.109134

Gissi, E., Portman, M.E., Hornidge, A.K., 2018. Un-gendering the ocean: Why women matter in ocean governance for sustainability. Mar. Policy 94, 215–219. https://doi.org/10.1016/j.marpol.2018.05.020

Hill C., Corbett C., Rose A., 2010. Why so few Woman in STEM. AAUW, Washington DC, 134 pp. HUB Ocean, 2023, https://www.hubocean.earth/about

Johnson, D.R., Ecklund, E. H., Lincoln, A. E., 2014. Narratives of science outreach in elite contexts of academic science. Sci. Commun. 36 (1), 81–105. https://doi.org/10.1177/1075547013499142

LaFollette, M.C., 1988. Eyes on the stars: Images of women scientists in popular magazines. Sci. Technol. Hum. Val. 13 (3–4), 262–275. https://doi.org/10.1177/016224398801300307

Legg, S., Wang, C., Kappel, E., Thompson, L., 2023. Gender equity in oceanography. Annual Review of Marine Science, 15 (1), 15–39. https://doi.org/10.1146/annurev-marine-032122-012349

Mamzer, H., 2025. Who cares about environment. Zoophilologica, in press.

Mendick, H., Moreau, M.-P., 2013. New media, old images: Constructing online representations of women and men in science, engineering and technology. Gender Educ. 25 (3), 325–339. https://doi.org/10.1080/09540253.2012.740447

Mitchell, M., McKinnon, M., 2019. “Human” or “objective” faces of science? Gender stereotypes and the representation of scientists in the media. Public Underst. Sci. 28 (2), 177–190. https://doi.org/10.1177/0963662518771081

Murphy, K.M., Kelp, N.C., 2023. Undergraduate STEM students’ science communication skills, science identity, and science self-efficacy influence their motivations and behaviors in STEM community engagement. J. Microbiol. Biol. Educ. 24 (1), e00182-22. https://doi.org/10.1128/jmbe.00182-22

Nelkin, D., 1995. Selling science: How the press covers science and technology. W. H. Freeman & Co, 217 pp.

Perrin, S., Siriwardane-De Zoysa, R., 2017. Women in marine science: The efficacy of ecofeminist theory in the wake of historical critique. ZMT Working Paper Ser. 3. https://doi.org/10.21244/zmt.2017.004

Previs, K.K., 2016. Gender and race representations of scientists in Highlights for Children: A content analysis. Scie. Comm. 38 (3), 303–327. https://doi.org/10.1177/1075547016642248

Robertson Evia, J., Petermen, K., Cloyd, E., Besley, J., 2018. Validating a scale that measures scientists’ self-efficacy for public engagement with science. Int. J. Sci. Educ. Pt. B, 8 (1), 40–52. https://doi.org/10.1080/21548455.2017.1371356

Thébaud, S., Charles, M., 2018. Segregation, stereotypes, and STEM. Social Sci. 7 (7), 111. https://doi.org/10.3390/socsci7070111

UNESCO, 2021. Global Ocean Science Report 2020: Charting Capacity for Ocean Sustainability. UN. https://doi.org/10.18356/9789216040048

UNESCO, 2023. UNESCO in action for gender equality: 2022–2023. No. GEN/2023/AR/3 Rev.

UIS 2024. The Gender Gap in Science. Status and Trends. February 2024. UNESCO Institute of Statistics. SC-PBSSTIP/2024/FWIS/2, 8 pp.

Vagni, D., Tartarisco, G., Campisi, S., Cerbara, L., Dedola, M., Pedranghelu, A., Cerasa, A., 2025. Psychophysiological correlates of science communicators. PLOS ONE, 20 (3), e0320160. https://doi.org/10.1371/journal.pone.0320160

Women View of the Sea, 2025. Art exhibition catalogue. IO PAN, Sopot, 110 pp.

full, complete article - PDF


Climate change mitigation and adaptation measures for the Gulf of Gdańsk region in relation to sea threats
Oceanologia, 68 (1)/2026, 68106, 11 pp.
https://doi.org/10.5697/JDXM8520

Aleksandra Koroza*, Joanna Piwowarczyk, Tymon Zieliński
1Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: akoroza@iopan.pl (A. Koroza)
*corresponding author

Keywords: Climate change; Ocean threats; Climate adaptation and mitigation; Development strategy; Gulf of Gdańsk

Received: 19 February 2025; revised: 27 November 2025; accepted: 8 December 2025

Highlights

Abstract

The impacts of climate change are increasingly evident, with many societies affected annually. Coastal areas inhabited by c. 60% of the world’s population, are especially vulnerable due to a large number of impacts, including real sea related threats. Implementation of mitigation and adaptation measures as well as challenging climate change threats must be among the top priority issues for decision makers of all levels. This study presents the results of the critical analyses of environment and climate related change in publicly available documents in the key economic and touristic region of Poland, the Gulf of Gdańsk. The authors have evaluated the detailed points in the process of identifying the awareness of climate change and implemented measures. The results show relatively high awareness of climate change related threats, however, insufficient information and planning regarding ocean-related threats and hazards. Few mitigation and adaptation measures addressing sea-based threats were identified. The authors compare the findings with available knowledge of climate change, measures undertaken in some ports and port cities and reflect on the urgent need of implementing multidisciplinary efforts to foster the effective management of coastal areas for the sustainable and safe future.

  References   ref

Boero, F., Cummins, V., Gault, J., Huse, G., Philippart, C.J.M., Schneider, R., Treguier, A.M., Besiktepe, S., Boeuf, G., Garcia-Soto, C., Horsburgh, K., Kopp, H., Malfatti, F., Mariani, P., Matz-Lück, N., Mees, J., Menezes Pinheiro, L., Lacroix, D., Le Tissier, M., Paterson, D.M., Schernewski, G., Thebaud, O., Vandegehuchte, M.B., Visbeck, M., Weslawski, J.M., 2019. Navigating the Future V: Marine Science for a Sustainable Future. European Marine Board. Position Paper 24, Ostend, 200 pp. https://doi.org/10.5281/zenodo.2809392

Bossier, S., Nielsen, J.R., Almroth-Rosell, E., Höglund, A., Bastardie, F., Neuenfeldt, S., Christensen, A., 2021. Integrated ecosystem impacts of climate change and eutrophication on main Baltic fishery resources. Ecol. Model. 453, 109609. https://doi.org/10.1016/j.ecolmodel.2021.109609

C40 Cities, 2016. Rotterdam Climate Change Adaptation Strategy. https://www.c40.org/case-studies/c40-good-practice-guides-rotterdam-climate-change-adaptation-strategy/.Lastaccessed19.11.2025

Cabana, D., Rofler, L., Evadzi, P., Celliers, L., 2023. Enabling climate change adaptation in coastal systems: A systematic literature review. Earth’s Future 11 (8). https://doi.org/10.1029/2023EF003713.

City of Gothenburg, 2023. Climate City Contract 2030. https://netzerocities.app/_content/files/knowledge/4455/2030_ccc_gothenburg.pdf

Dumała, H., Łuszczuk, M., Piwowarczyk, J., Zieliński, T., 2021. Transnational municipal networks as a mechanism for marine governance toward climate change adaptation and mitigation: Between potential and practice. Front. Mar. Sci. 8, 644. https://doi.org/10.3389/fmars.2021.626119

EEA, 2018. CICES Towards a common classification of ecosystem services. https://cices.eu/resources/,lastaccessed27thApril2024

Evans, K., Zielinski, T., Chiba, S., Garcia-Soto, C., Ojaveer, H., Park, C., Ruva, R., Schmidt, J.O., Simcock, A., Strati, A., Vu, C.T., 2021. Transferring complex scientific knowledge to usable products for society: The role of the Global Integrated Ocean Assessment. Front. Environ. Sci. 9, 626532. https://doi.org/10.3389/fenvs.2021.626532

Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E.B., Cheripka, A., Rigor, I., Caballero, A., Chiba, S., Báez, J.C., Zielinski, T., Abraham, J.P., 2021b. An overview of ocean climate-change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen, Arctic sea ice, sea level, and AMOC strength. Front. Mar. Sci. 8, 642372. https://doi.org/10.3389/fmars.2021.642372

Garcia-Soto, C., Seys, J.J.C., Zielinski, O., Busch, J.A., Luna, S.I., Baez, J.C., Domegan, C., Dubsky, K., Kotynska-Zielinska, I., Loubat, P., Malfatti, F., Mannaerts, G., McHugh, P., Monestiez, P., van der Meeren, G.I., Gorsky, G., 2021a. Marine citizen science: Current state in Europe and new technological developments. Front. Mar. Sci. 8, 621472. https://doi.org/10.3389/fmars.2021.621472

Gargiulo, C., Battarra, R., Tremiterra, M.R., 2020. Coastal areas and climate change: A decision-support tool for implementing adaptation measures. Land Use Policy 91, 104413. https://doi.org/10.1016/j.landusepol.2019.104413

HELCOM, 2021. Climate Change in the Baltic Sea: 2021 Fact Sheet. Baltic Sea Environ. Proc. No. 180. HELCOM/Baltic Earth, Helsinki, 37 pp. https://helcom.fi/wp-content/uploads/2021/09/Baltic-Sea-Climate-Change-Fact-Sheet-2021.pdf

Interreg South Baltic Programme, 2021. Programme area description: socio-economic context and cooperation potential. Interreg South Baltic Programme 2021–2027, 1–50. https://southbaltic.eu/wp-content/uploads/2024/10/2021-09-08_Interreg-South-Baltic-Programme-2021-2027_draft_readers-friendly-version_accessible-version.pdf

IPCC, 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press. https://www.ipcc.ch/report/ar6/wg2/

Krippendorff, K., 2004. Content Analysis: An Introduction to Its Methodology. 2nd edn., Sage Publ., Thousand Oaks, CA, 413 pp.

Le, T.D.N., 2020. Climate-change adaptation in coastal cities of developing countries: Vulnerability types and adaptation options. Mitig. Adapt. Strat. Gl. 25, 739–761. https://doi.org/10.1007/s11027-019-09888-z

Piwowarczyk, J., Hansson, A., Hjerpe, M., Chubarenko, B., Karmanov, K., 2012. Climate change in the Baltic Sea region: A cross-country analysis of institutional stakeholder perceptions. Ambio 41 (6), 645–655. https://doi.org/10.1007/s13280-012-0327-9.

Port of HaminaKotka Ltd., n.d. Environment. https://www.haminakotka.com/about-port/environment

Port of Rotterdam Authority, 2025. Climate Change Adaptation. https://www.portofrotterdam.com/en/building-port/sustainable-port/climate-adaptation

Port of Rotterdam Authority, n.d. Energy transition strategy: Towards a CO2-neutral port. https://www.portofrotterdam.com/en/energy-transition-strategy

PreventionWeb, 2019. Sweden: Gothenburg foresees impact of climate change-plans to build a barrier by 2070 to prevent flooding. https://www.preventionweb.net/news/sweden-gothenburg-foresees-impact-climate-change-plans-build-barrier-2070-prevent-flooding

Reimann, L., Vafeidis, A.T., Honsel, L.E., 2023. Population development as a driver of coastal risk: Current trends and future pathways. Cambridge Prisms: Coastal Futures 1. https://doi.org/10.1017/cft.2023.3

Sanders, F., Sanders, H., Jonkers, K., 2021. Cross-over analysis of the climate-change delta situation of Gdańsk and Rotterdam. Open Res. Europe 1 (9), 9. https://doi.org/10.12688/openreseurope.13125.2

Sharifi, A., 2021. Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review. Sci. Total Environ. 750, 141642. https://doi.org/10.1016/j.scitotenv.2020.141642.

Stoll-Kleemann, S., 2019. Feasible options for behavior change toward more effective ocean literacy: A systematic review. Front. Mar. Sci. 6, 273. https://doi.org/10.3389/fmars.2019.00273

Tittensor, D. P., Beger, M., Boerder, K., Boyce, D. G., Cavanagh, R. D., Cosandey-Godin, A., Crespo, G. O., Dunn, D. C., Ghiffary, W., Grant, S. M., Hannah, L., Halpin, P. N., Harfoot, M., Heaslip, S. G., Jeffery, N. W., Kingston, N., Lotze, H. K., McGowan, J., McLeod, E., McOwen C.J.,O’Leary B.C., Schiller L., Ryan R.E.Stanley, Westhead M., Wilson K.L., Worm, B., 2019. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Advanc. 5(11), eaay9969. https://doi.org/10.1126/sciadv.aay9969

Terorotua, H., Duvat, V.K., Maspataud, A., Ouriqua, J., 2020. Assessing perception of climate change by public authorities and designing coastal climate services: Lessons from French Polynesia. Front. Mar. Sci. 7, 160. https://doi.org/10.3389/fmars.2020.00160.

UBC, 2021. UBC Sustainability Action Programme 2020–2030. https://ubc.net/commissions/sustainable-cities/

UNEP (United Nations Environment Programme), 2017. Adaptation Gap Report 2017. Nairobi, UNEP. https://wedocs.unep.org/handle/20.500.11822/27114

UNEP (United Nations Environment Programme), 2019. Climate Change Adaptation: UNEP’s Approach. UNEP. https://www.unep.org/resources/factsheet/climate-change-adaptation-unep-approach

UNEP (United Nations Environment Programme), 2022.

UNEP and Climate Adaptation: What We Do. UNEP. https://wedocs.unep.org/20.500.11822/40977

UNEP (United Nations Environment Programme), 2023. Ecosystem-based adaptation. https://www.unep.org/topics/climate-action/adaptation/ecosystem-based-adaptation.

Vye, S.R., Dickens, S., Adams, L., Bohn, K., Chenery, J., Dobson, N., et al., 2020. Patterns of abundance across geographical ranges as predictors for climate-change responses: Evidence from UK rocky shores. Div. Dist. 26, 1357–1365. https://doi.org/10.1111/ddi.13118

Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021. Sea-level dynamics and coastal erosion in the Baltic Sea region. Earth Sys. Dynam. 12 (3), 871–898. https://doi.org/10.5194/esd-12-871-2021

Wisz, M.S., Satterthwaite, E.V., Fudge, M., Fischer, M., Polejack, A., St John, M., Fletcher, S., Rudd, M.A., 2020. 100 opportunities for more inclusive ocean research: Crossdisciplinary research questions. Front. Mar. Sci. 7, 576. https://doi.org/10.3389/fmars.2020.00576

World Economic Forum, 2019. The world’s coastal cities are going under-here is how some are fighting back. https://www.weforum.org/agenda/2019/01/the-world-s-coastal-cities-are-going-under-here-is-how-some-are-fighting-back/

Zielinski, T., Bolzacchini, E., Evans, K., Ferrero, L., Gregorczyk, K., Kijewski, T., Kotyńska-Zielińska, I., Mrowiec, P., Oleszczuk, B., Pakszys, P., Piechowska, E., Piwowarczyk, J., Sobieszczański, J., Wichorowski, M., 2021. Abundance of environmental data vs. low public interest in ocean and climate issues. Front. Mar. Sci. 8, 51. https://doi.org/10.3389/fmars.2021.619638

Zielinski, T., Kotynska-Zielinska, I., Garcia-Soto, C., 2022. A blueprint for ocean literacy: EU4. Ocean. Sustainability 14, 926. https://doi.org/10.3390/su14020926

Zimmerman, R., Faris, C., 2011. Climate change mitigation and adaptation in North American cities. Curr. Opin. Environ. Sust. 3 (3), 181–187. https://doi.org/10.1016/j.cosust.2010.12.004

full, complete article - PDF


Geohazards and coastal Dynamic: a geo-engineering assessment of the southern Iraqi shore (Ras al-Bisha zone)
Oceanologia, 68 (1)/2026, 68107, 12 pp.
https://doi.org/10.5697/ZZIM7445

Hiba Ahmed Mahdi1, Wisam R. Muttashar2,*, Raid Aziz Mahmood1
1Geology Department, College of Sciences, University of Basrah, Basra, Iraq;
2Marine Science Center, University of Basrah, Basra, Iraq
e-mail: wisam.muttashar@uobasrah.edu.iq (W.R. Muttashar)
*corresponding author

Keywords: Iraqi shore; Geohazard mapping; Ebb and flood tide dynamics; Sediment stability; Coastal erosion risk

Received: 8 July 2025; revised: 10 October 2025; accepted: 8 December 2025

Highlights

Abstract

The coastal zone of Ras al-Bisha, located between the mouth of the Shatt al-Arab River and the eastern breakwater of the Grand Faw Port, exhibits complex interactions of tidal forces, sediment transport, and anthropogenic modifications. This study develops an engineering geological framework to assess sediment stability and geohazard potential under semi-diurnal tidal conditions. Field measurements, including in situ vane shear tests at 41 stations, were used to determine undrained shear strength and derive critical shear stress for surface sediments. Hydrological data provided ebb and flood current velocities and water levels. A dual factor of safety (FS) approach was introduced to evaluate sediment stability separately for ebb and flood tides, producing spatially explicit maps of stable (FS > 1.5), critical (1.0 ≤ FS ≤ 1.5), and unstable (FS < 1.0) zones. The results reveal an inland-to-seaward gradient in sediment strength and resistance, with very soft to soft sediments dominating the nearshore environment. Flood tides generate higher applied shear stresses than ebb tides, leading to expanded unstable zones along the shoreline front. Erosion rate analyses confirm greater sediment displacement during flood conditions, while ebb tides partially mitigate instability. The dual-FS hazard maps offer a refined way for prioritizing monitoring and mitigation efforts, directly informing coastal management and infrastructure planning in estuarine settings affected by bidirectional tidal dynamics.

  References   ref

Aladwani, N.S., 2022. Shoreline change rate dynamics analysis and prediction of future positions using satellite imagery for the southern coast of Kuwait: A case study. Oceanologia 64 (3), 417–432. https://doi.org/10.1016/j.oceano.2022.02.002

Al-Aesawi, Q.M., Al-Nasrawi, A.K., Jones, B.G., 2020. Shortterm geoinformatics evaluation in the Shatt Al-Arab Delta (Northwestern Arabian/Persian Gulf ). J. Coast. Res. 36 (3), 498–505. https://doi.org/10.2112/JCOASTRES-D-19-00110.1

Al-Amery, A.A., Al-Saad, H.A., 2022. Mineralogical variation of the banks of Shatt Al-Arab and Shatt Al-Basrah River sediments in southern Iraq. Iraqi Geol. J. 55 (1A), 116–127.

Al-Asadi, S.A., Alhello, A.A., Ghalib, H.B., Muttashar, W.R., Al-Eydawi, H.T., 2023. Seawater intrusion into Shatt Al-Arab River, Northwest Arabian/Persian Gulf. J. Appl. Water Eng. Res. 11 (2), 289–302. https://doi.org/10.1080/23249676.2022.2113460

Albadran, B., 2004. Shatt al-Arab Delta, Southern Iraq, sedimentological study. Mar. Mesopotamia 1 (9), 311–322.

Albadran, B.N., Albadran, A., 1993. Sedimentological characteristics of the offshore sediments of the Khor Abdulla entrance NW Arabian Gulf. J. Water Resour. 2 (1), 17–34.

Albadran, N.B., Al-Manssory, F., Al-Bahily, N., 2002. Erosion and sedimentation processes in the Shatt al-Arab.

Alfaris, M.A., Alrubaye, A.A., Muttashar, W.R., Lo, E.L., 2024. The compression behavior of riverine fine-grained soils treated with organic matter. Soil Environ. 43 (2), 248–257. https://doi.org/10.25252/SE/2024/43214

Al-Fartusi, A.J., 2022. Tidal Range and Sea Level Changes at The Area in front of Umm Qasr Port South of Iraq. J. Univ. Anbar Pure Sci. 14 (2), 72–76. https://doi.org/10.37652/juaps.2022.172391

Al-Fartusi, A.J., Malik, M.I., Abduljabbar, H.M., 2023. November. Spatial-temporal of Iraqi coastline changes utilizing remote sensing. AIP Conf. Proc. 3018 (1), 020062. https://doi.org/10.1063/5.0172293

Alkhafaji, H., Muttashar, W.R., Al-Mosawi, W.M., 2023. Proposing an inflatable rubber dam on the tidal Shatt Al- Arab River, Southern Iraq. J. Mech. Behav. Mater. 32 (1), 20220201. https://doi.org/10.1515/jmbm-2022-0201

ASTM D2573-01, 2008. Standard test method for field vane shear test in cohesive soil.

ASTM D422. Standard test method for particle-size analysis of soils.

ASTM D4318-10, 2010. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. Darmoian, S.A., Lindqvist, K., 1988. Sediments in the estuarine environment of the Tigris/Euphrates delta, Iraq, Arabian Gulf. Geol. J. 23 (1), 15–37. https://doi.org/10.1002/gj.3350230102

Hadmoko, D.S., Lavigne, F., Sartohadi, J., Hadi, P., 2010. Landslide hazard and risk assessment and their application in risk management and land use planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Nat. Hazards 54 (3), 623–642. https://doi.org/10.1007/s11069-009-9490-7

Hashemi, M., Nikoudel, M.R., Khamehchiyan, M., Hafezi Moghadas, N., 2014. Engineering geology and geohazards of Sefidrud Delta, South Caspian Coast, North Iran, [In:] Lollino, G., Manconi, A., Locat, J., Huang, Y., Canals Artigas, M. (eds) Engineering Geology for Society and Territory. Springer, Cham, 77–83. https://doi.org/10.1007/978-3-319-08660-6_16

Lafta, A.A., 2021. Estimation of tidal excursion length along the Shatt Al-Arab estuary, southern Iraq. Viet. J. Sci. Technol. 59 (1), 79–89. https://doi.org/10.15625/2525-2518/59/1/15433

Lafta, A.A., 2022. Investigation of tidal asymmetry in the Shatt al-Arab river estuary, Northwest of Arabian Gulf. Oceanologia 64 (2), 376–386. https://doi.org/10.1016/j.oceano.2022.01.004

Lafta, A.A., 2023. General characteristics of tidal currents in the entrance of Khor Abdullah, northwest of Arabian Gulf. Oceanologia 65 (3), 494–502. https://doi.org/10.1016/j.oceano.2023.03.002

Léonard, J., Richard, G., 2004. Estimation of runoff critical shear stress for soil erosion from soil shear strength. Catena 57 (3), 233–249. https://doi.org/10.1016/j.catena.2003.11.007

Liu, X., Liu, J.P., Wang, Y.P., 2023. Sediment dynamics and geohazards in estuaries and deltas. Front. Earth Sci. 10, 1079804. https://doi.org/10.3389/feart.2022.1079804

Mahdi, H.A., Mahmood, R.A., Muttashar, W.R., 2025. Iraqi shoreline stability: A review of recent geological and engineering research. Arab. J. Geosci. 18 (6), 1–10. https://doi.org/10.1007/s12517-025-12273-7

Muttashar, W.R., Al-Aesawi, Q.M., Al-Nasrawi, A.K., Almayahi, D.S., Jones, B.G., 2024. Coastline instability evaluation: Multitemporal bathymetric mapping and sediment characteristics. Environ. Earth Sci. 83 (1), 43. https://doi.org/10.1007/s12665-023-11375-3

Muttashar, W.R., Al-Whaely, U.Q., Almayahi, D.S., Hussein, M.A., Al-Aesawi, Q.M., Lafta, A.A., Chassib, S.K., 2025. Quantifying the level of erosion-induced hazards on tidal riverbanks. Nat. Hazards Res. 5 (3), 678–688. https://doi.org/10.1016/j.nhres.2025.02.007

Muttashar, W.R., Bryson, L.S., Al-Humaidan, Z.A., 2021. The use of particle size distribution integrated with consistency limits for experimentally simulating fine-grained sedimentary units. Arab. J. Geosci. 14, 1–12. https://doi.org/10.1007/s12517-021-08812-7

Sun, H., Zhao, Z., Ruan, X., Chu, Y., Fan, C., 2025. Large-scale evaluation of beach morphodynamic evolution and environmental drivers along China’s eastern coast through long-term Landsat analysis. Earth’s Future 13 (9), e2025EF006058. https://doi.org/10.1029/2025EF006058

Terzaghi, K., Peck, R.B., Mesri, G., 1996. Soil mechanics in engineering practice, 3rd edn. Wiley, New York, 549 pp. van Rijn, L.C., 2016. Stability design of coastal structures (seadikes, revetments, break-waters and groins).

full, complete article - PDF


Trapped contaminants in the coastal waters of the southern Caspian Sea: off Sefidrud River
Oceanologia, 68 (1)/2026, 68108, 11 pp.
https://doi.org/10.5697/WPXV9307

Jafar Azizpour*, Reza Rahnama, Ali Hamzepoor, Seyed Masoud Mahmoudof
Iranian National for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran 1411813389, Iran;
e-mail: azizpour@inio.ac.ir (J. Azizpour)
*corresponding author

Keywords: Caspian Sea; Sub-mesoscale eddy; Contaminants; Nutrients; Field measurements

Received: 11 August 2024; revised: 1 December 2025; accepted: 8 December 2025

Highlights

Abstract

Identifying and collecting accumulated contaminants is crucial for environmental protection in enclosed bodies of water, such as the Caspian Sea. As the world’s largest landlocked water body, its limited exchange with open seas and oceans hinders self-purification. This research maps contaminant accumulation at the mouth of the Sefidrud River on the southern coast of the Caspian Sea using vessel-mounted ADCP, CTD, and water sampling data. Field measurements were conducted in two distinct seasons at different stations and transects ranging from 2–15 m in depth. The results show that the contaminants accumulated in the core of sub-mesoscale eddies. These surface sub-mesoscale eddies trap nutrient-rich freshwater discharging from the river, creating distinct hydrographic cores with significantly elevated nutrient levels, as well as different temperature and salinity compared to the surrounding waters.

  References   ref

Aladin, N., Plotnikov, I., 2004. The Caspian Sea. Lake Basin Manage. Initiative Thematic Paper.

Andi, S., Rashidi Ebrahim Hesari, A., Farjami, H., 2021. Detection of internal waves in the Persian Gulf. Remote Sens. Lett. 12, 190–198. https://doi.org/10.1080/2150704X.2020.1847349

Azizpour, J., Farjami, H., Ghaffari, P., 2021. Intrathermocline eddies in the Strait of Hormuz. Arabian J. Geosci. 14, 2118. https://doi.org/10.1007/s12517-021-08541-x

Azizpour, J., Ghaffari, P., 2023. Low-frequency sea level changes in the Caspian Sea: long-term and seasonal trends. Climate Dynam. 1–11. https://doi.org/10.1007/s00382-023-06715-9

Azizpour, J., Siadatmousavi, S.M., Chegini, V., 2016. Measurement of tidal and residual currents in the Strait of Hormuz. Estuar. Coast. Shelf Sci. 178, 101–109. https://doi.org/10.1016/j.ecss.2016.06.004

Bakhtiari, A., Shad, E., Siadatmousavi, S.M., 2024. Exploring submesoscale eddies in the southern Caspian Sea: A focus on rudsar Rudsar and Sefidrud regions. Deep Sea Res. Pt. I: Oceanograph. Res. Papers 208, 104316. https://doi.org/10.1016/j.dsr.2024.104316

Beni, A.N., Lahijani, H., Harami, R.M., Leroy, S., Shah-Hosseini, M., Kabiri, K., Tavakoli, V., 2013. Development of spit–lagoon complexes in response to Little Ice Age rapid sea-level changes in the central Guilan coast, South Caspian Sea, Iran. Geomorphology 187, 11–26. https://doi.org/10.1016/j.geomorph.2012.11.026

CEP, 1998. National Report, Russian Federation. Caspian Environment Programme, Baku, Azerbaijan.

CEP, 2011. Caspian Sea State of the Environment, 102 pp.

Costantini, M.L., Agah, H., Fiorentino, F., Irandoost, F., Trujillo, F.J.L., Careddu, G., Calizza, E., Rossi, L., 2021. Nitrogen and metal pollution in the southern Caspian Sea: a multiple approach to bioassessment. Environ. Sci. Pollut. Res. 28, 9898–9912. https://doi.org/10.1007/s11356-020-11243-8

Dyakonov, G.S., Ibrayev, R.A., 2020. High-resolution data on mesoscale dynamics of the Caspian Sea upper layer, obtained in a numerical reconstruction. Data In Brief 30, 105368. https://doi.org/10.1016/j.dib.2020.105368

Ehteshami, M., Dravishi, G., ShirAli, E., 2017. Caspian Sea, Leading Threats in terms of Pollution and Hydrological Crises.

Environment, R.O.f.t.P.o.t.M., 1999. Manual of oceanographic observations and pollutant analyses methods (MOOPAM), 3rd Edn., Kuwait.

Garcia, D., 2010. Robust smoothing of gridded data in one and or higher dimensions with missing values. Computat. Statistics Data Anal. 54, 1167–1178. https://doi.org/10.1016/j.csda.2009.09.020

Ghaffari, P., Chegini, V., 2010. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Feridoonkenar Bay, Iran. Ocean Sci. 6, 737–748. https://doi.org/10.5194/os-6-737-2010

Ghaffari, P., Lahijani, H., Azizpour, J., 2010. Snapshot observation of the physical structure and stratification in deep-water of the South Caspian Sea (western part). Ocean Sci. 6, 877–885. https://doi.org/10.5194/os-6-877-2010

Gilmet, 2022. https://gilmet.ir/

GLRW, 2025. www.glrw.ir/?l=EN [the site may be temporarily unavailable. Please refer to this alternative source https://www.glrw.ir/cs/RainStatistic/208 (in Persian)].

Hansen, H.P., Koroleff, F., 1999. Chapter 10 – Nutrients. Methods of seawater analysis. [In:] Grasshoff, K., Kremling, K., Ehrhardt, M. (Eds.) Methods of seawater analysis, 159–228. https://doi.org/10.1016/j.csda.2009.09.020

Ji, J., Dong, C., Zhang, B., Liu, Y., Zou, B., King, G.P., Xu, G., Chen, D., 2018. Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region. J. Geophys. Res.-Oceans 123, 8548–8567. https://doi.org/10.1029/2018JC014196DigitalObjectIdentifier(DOI)

Joyce, T.M., 1989. On in situ “calibration” of shipboard ADCPs. J. Atmos. Oceanic Tech. 6, 169–172. https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2

Khosravi, M., Siadatmousavi, S.M., Vennell, R., Chegini, V., 2018. The transverse dynamics of flow in a tidal channel within a greater strait. Ocean Dynami. 68(2), 239–254. https://doi.org/10.1007/s10236-017-1127-3

Komijani, F., Chegini, V., Siadatmousavi, S., 2019. Seasonal variability of circulation and air-sea interaction in the Caspian Sea based on a high resolution circulation model. J. Great Lakes Res. 45, 1113–1129. https://doi.org/10.1016/j.jglr.2019.09.026

Kouraev, A., Crétaux, J.-F., Lebedev, S., Kostianoy, A., Ginzburg, A., Sheremet, N., Mamedov, R., Zakharova, E., Roblou, L., Lyard, F., 2011. Satellite altimetry applications in the Caspian Sea, Coastal Altimetry Springer, 331–366.

Kubryakov, A., Aleskerova, A., Plotnikov, E., Mizyuk, A., Medvedeva, A., Stanichny, S., 2023. Accumulation and cross-shelf transport of coastal waters by submesoscale cyclones in the Black Sea. Remote Sens. 15(18), 4386. https://doi.org/10.3390/rs15184386

Laanemets, J., Zhurbas, V., Elken, J., Vahtera, E., 2009. Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments. Boreal Environ. Res. 14(1), p. 213.

Lass, H.U., Mohrholz, V., Nausch, G., Siegel, H., 2010. On phosphate pumping into the surface layer of the eastern Gotland Basin by upwelling. J. Marine Syst. 80(1–2), 71–89. https://doi.org/10.1016/j.jmarsys.2009.10.002

Manbohi, A. and Gholamipour, S., 2020. Utilizing chemometrics and geographical information systems to evaluate spatial and temporal variations of coastal water quality. Reg. Stud. Marine Sci. 34, 101077. https://doi.org/10.1016/j.rsma.2020.101077

Manbohi, A., Mehdinia, A., Rahnama, R., Dehbandi, R., 2021. Microplastic pollution in inshore and offshore surface waters of the southern Caspian Sea. Chemosphere 281, 130896. https://doi.org/10.1016/j.chemosphere.2021.130896

Mason, O.U., Canter, E.J., Gillies, L.E., Paisie, T.K., Roberts, B.J., 2016. Mississippi river plume enriches microbial diversity in the northern Gulf of Mexico. Frontiers Microbiol. 7, 1048. https://doi.org/10.3389/fmicb.2016.01048

Masoud, M., Pawlowicz, R., Namin, M.M., 2019. Low frequency variations in currents on the southern continental shelf of the Caspian Sea. Dynam. Atmos. Oceans 87, 101095. https://doi.org/10.1016/j.dynatmoce.2019.05.004

Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

Raeisi, A., Bidokhti, A., Nazemosadat, S.M.J., Lari, K., 2020. Mesoscale eddies and their dispersive environmental impacts in the Persian Gulf. Chinese Phys. B 29, 084701. https://doi.org/10.1088/1674-1056/ab96a3

Romero, E., Garnier, J., Lassaletta, L., Billen, G., Le Gendre, R., Riou, P., Cugier, P., 2013. Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry 113, 481–505. https://doi.org/10.1007/s10533-012-9778-0

Roshan, G., Moghbel, M., Grab, S., 2012. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations. Iranian J. Environ. Health Sci. Eng. 9, 24. https://doi.org/10.1186/1735-2746-9-24

Sabet, B.S., Barani, G.A., 2011. Field investigation of rip currents along the southern coast of the Caspian Sea. Scientia Iranica 18, 878–884. https://doi.org/10.1016/j.scient.2011.07.017

Safaian, N., Shokri, M., Jabbarian, B., 2004. Environmental Impact Assessment of Development in the Southern Coast of the Caspian Sea (Northern Iran). Polish J. Environ. Stud. 13.

Saleh, A., Hamzehpour, A., Mehdinia, A., Bastami, K.D., Mazaheri, S., 2018. Hydrochemistry and nutrient distribution in the southern deep-water basin of the Caspian Sea. Marine Pollut. Bull. 127, 406–411. https://doi.org/10.1016/j.marpolbul.2017.12.013

Teodoro, A.C., 2016. Optical satellite remote sensing of the coastal zone environment – An overview. Environ. Appl. Remote Sens., InTechOpen, London, UK, 165–196. https://doi.org/10.5772/61974

UNEP, 2006. Caspian Sea, (Stolberg, F., Borysova, O., Mitrofanov, I., Barannik, V. and Eghtesadi, P., eds.), GIWA Region. Assess. 23, p. 92.

Väli, G., Meier, H.M., Liblik, T., Radtke, H., Klingbeil, K., Gräwe, U., Lips, U., 2024. Submesoscale processes in the surface layer of the central Baltic Sea: A high-resolution modelling study. Oceanologia 66(1), 78–90. https://doi.org/10.1016/j.oceano.2023.11.002

Wood, E.D., Armstrong, F., Richards, F.A., 1967. Determination of nitrate in sea waterseawater by cadmium-copper reduction to nitrite. J. Mar. Biol. Assoc. UK 47, 23–31. https://doi.org/10.1017/S002531540003352X

Zaker, N., Ghaffari, P., Jamshidi, S., Nouranian, M., 2011. Currents on the southern continental shelf of the Caspian Sea off Babolsar, Mazandaran, Iran. J. Coast. Res. 64(SI), 1989–1997. https://www.jstor.org/stable/26482525

full, complete article - PDF


New records of non-indigenous polychaeta Boccardiella ligerica (Ferronnière, 1898) (Spionidae) in the southern Baltic Sea
Oceanologia, 68 (1)/2026, 68109, 6 pp.
https://doi.org/10.5697/XSXY8999

Bartosz Witalis1, Joanna Hegele-Drywa2,*, Sławomira Gromisz1, Piotr Gruszka3, Wojciech Kraśniewski4, Lena Szymanek1, Piotr Kukliński5
1Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland;
e-mail: joanna.hegele-drywa@ug.edu.pl (J. Hegele-Drywa)
2Laboratory of Ecophysiology and Bioenergetics, Department of Marine Ecology, Faculty of Oceanography and Geography, University of Gdańsk, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
3Gdynia Maritime University, Maritime Institute, Roberta de Plelo 20, 80-548 Gdańsk, Poland
4Institute of Meteorology and Water Management – National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland
5Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
*corresponding author

Keywords: Boccardiella ligerica; Non-indigenous species; Baltic Sea; Range expansion; Benthic communities

Received: 29 September 2025; revised: 1 December 2025; accepted: 8 December 2025

Highlights

Abstract

The non-indigenous Boccardiella ligerica is a polychaete introduced to the Baltic Sea. Although the species has been recorded in the Baltic Sea since the 1960s, this is the first time we have reported the repeated occurrence of B. ligerica in various new locations along the Polish coast. Between 2009 and 2018, the species was recorded in the Vistula Lagoon, the Gulf of Gdańsk and Puck Bay. Samples of the species were collected from hard substrates and bottom sediments at depths ranging from approximately 1.0 m to 13.3 m using a range of sampling gear, including van Veen and Ekman-Birge grab samplers, a HAPS corer and settlement plates, as well as by scraping vertical surfaces during diving. The highest densities, reaching up to 1689 ind. m−2 and 414 ind. m−2, were recorded in the Gulf of Gdańsk and the Vistula Lagoon, respectively. The lowest abundance (13 ind. m−2) of this polychaete was recorded in Puck Bay. The results obtained contribute to the understanding of the dynamics of this non-indigenous species in the brackish environments of the Baltic Sea. They provide a basis for further research on this species, considering that B. ligerica may play an important role in food webs, as it feeds on phytoplankton and detritus, and serves as food for small fish and invertebrates.

  References   ref

Blake, J.A., 1983. Polychaetes of the family Spionidae from South America, Antarctica, and adjacent seas and islands. [in:] Biology of the Antarctic Seas, XIV. 205–288. https://doi.org/10.1029/AR039p0205

Blake, J. A., Kudenov, J. D., 1978. Spionidae (Polychaeta) from southeastern Australia and adjacent areas with a revision of the genera. Memoirs Nat. Museum Victoria 39, 171–280.

Blake, J.A., Woodwick, K.H., 1971. A review of the genus Boccardia Carazzi (Polychaeta: Spionidae) with descriptions of two new species. South. Calif. Acad. Sci. 70 (1), 31–42.

Bonsdorff, E., 1981. Notes on the occurrence of Polychaeta (Annelida) in the archipelago of Åland, SW Finland. Mem. Soc. Fauna Fl. Fenn.57, 141–146.

Carlton, J.T., 1985. Transoceanic and interoceanic dispersal of coastal marine organisms: The biology of ballast water. Oceanogr. Mar. Biol. Ann. Rev. 23, 313–371.

Cohen, A.N., Carlton, J.T., 1995. Nonindigenous aquatic species in a United States estuary: a case study of the biological invasions of the San Francisco Bay and Delta. U.S., Fish and Wildlife Service and National Sea Grant College Program (Connecticut Sea Grant), Washington, DC., 218 pp.

Costello, K.E., Lynch, S.A., McAllen, R., O’Riordan, R.M., Culloty, S.C., 2022. Assessing the potential for invasive species introductions and secondary spread using vessel movements in maritime ports. Mar. Pollut. Bull. 177, 113496. https://doi.org/10.1016/j.marpolbul.2022.113496

Diagne, C., Leroy, B., Vaissière, A.C., Gozlan, R.E., Roiz, D., Jarić, I., Salles, J.M., Bradshaw C.J.A., Courchamp, F., 2021. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576. https://doi.org/10.1038/s41586-021-03405-6

Eliason, A., Haahtela, I., 1969. Polydora (Boccardia) redeki Horst from Finland, Annal. Zool. Fennici 6, 215–218. Ferronniére, G,. 1898. Contribution a l‘etude de la faune de la Loireinferieure (Polygordiens, Spionidiens, Nemertiens), Bull. Société Sci. Naturel. l’Ouest France 8, 101–115.

Gallardo, B., Bacher, S., Barbosa, A.M., Gallien, L., Gonzáles- Moreno, P., Martinez-Bolea, V., Sorte, C., Vimercati, G., Villá M., 2024. Risks posed by invasive species to the provision of ecosystem services in Europe. Nat. Comm. 15, 2631. https://doi.org/10.1038/s41467-024-46818-3

Garcı́a-Gómez, J.C., Garrigós, M., Garrigós, J., 2021. Plastic as a Vector of Dispersion for Marine Species With Invasive Potential. A Review. Front. Ecol. Evol. 9, https://doi.org/10.3389/fevo.2021.629756

Hartmann-Schröder, G., 1971. Annelida, Borstenwürmer, Polychaeta. Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise. Jena, 594 pp.

Hegele-Drywa, J., Normant-Saremba, M., Wójcik-Fudalewska, D., 2024. Small sea with high traffic – what is the biofouling potential of commercial ships in the Baltic Sea? Biofouling 40 (3–4), 280–289. https://doi.org/10.1080/08927014.2024.2353025

Heyer, K., 2015. BALSAM Project, WP4‚ Harmonized Criteria Final Rep., v1, 19 pp.

Horst, R., 1920. Polychaete Anneliden uit het Alkmaarder Meer. Zoologische Mededeelingen (Leiden) 5(3), 110–111.

Jaubet, M.L., Martinez, L.E., Bottero, M.A.S., Bazterrica, M.C., 2021. Boccardiella ligerica, an exotic polychaete in a Southwestern Atlantic coastal lagoon: Morphology and abundance variations. Ecol. Res. 36 (1), 57–69. https://doi.org/10.1111/1440-1703.12171

Kocheshkova, O., Ezhova, E., 2018. On alien polychaete species of the Russian part of the South-Eastern Baltic. Mar. Biol. J., 3(2), 53–63. https://doi.org/10.21072/mbj.2018.03.2.04

Kravitz, M.J., 1987. First record of Boccardiella ligerica (Ferronniere) (Polychaeta: Spionidae) from the east coast of North America. Northeast Gulf Sci. 9(1), 39–42.

Lecuyer, R., Brind’amour, A., Barille, A., Chouquet, B., Le Bris, H., 2024. Thriving life beneath: Biodiversity and functioning of macrobenthic communities within two human-shaped European estuaries. J. Sea Res. 202, 102545. https://doi.org/10.1016/j.seares.2024.102545

Lëppakoski, E,. Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S., Panov, V., 2002. The Baltic — a sea of invaders. Can. J. Fish. Aquat. Sci. 59, 1175–1188. https://doi.org/10.1139/f02-089

Lëppakoski, E., Olenin, S., 2000. Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biol. Inv. 2, 151–163. https://doi.org/10.1023/A:1010052809567

Llansó, R. J., Sillett, K., Scott, L., 2011. Biofouling survey of the Florikan in dry dock, Versar, Inc., Columbia, MD, 34 pp.

López Gappa, J., Tablado, A., Fonalleras, M.C., Adami, M.L., 2001. Temporal and spatial patterns of annelid populations in intertidal sediments of the Quequén Grande estuary (Argentina). Hydrobiologia, 455, 61–69. https://doi.org/10.1023/A:1011987301885

Orensantz, J.M., Schwindt, E., Pastorino, G., Bortolus, A., Casas, G., Darrigran, G., Elias, R., López Gappa, J.J., Obenat, S., Pascual, M., Penchaszadeh, P., Luz Piriz, M., Scarabino, F., Spivak, E.D., Vallarino, E.A., 2002. No Longer The Pristine Confines of the World Ocean: A Survey of Exotic Marine Species in the Southwestern Atlantic. Biol. Inv. 4, 115–143. https://doi.org/10.1023/A:1020596916153

Pagnier, J., Daraghmeh, N., Obst, M., 2025. Using the longterm genetic monitoring network ARMS-MBON to detect marine non-indigenous species along the European coasts. Biol. Inv. 27, 77. https://doi.org/10.1007/s10530-024-03503-2

Peterson, H. A., Vayssieres, M., 2010. Benthic assemblage variability in the upper San Francisco estuary: A 27- year retrospective. San Francisco Estuar. Watershed Sci. 8 (1), 1–27. https://doi.org/10.15447/sfews.2010v8iss1art2

Pratt, C.J., Ashworth, E.C., DiBacco, C., Kingsbury, S., 2025. Balancing efficiency and rigour in horizon scanning: an application to the management of invasive non-indigenous species in the marine waters of Eastern Canada. Manag. Biol. Inv. 16, 1–37. https://doi.org/10.3391/mbi.2025.16.3.09

Pyšek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton, J.T., Dawson, W., Essl, F., Foxcroft, L.C., Genovesi, P., Jeschke, J.M., Kühn, I., Liebhold, A.M., Mandrak, N.E., Meyerson, L.A., Pauchard, A., Pergl, J., Roy, H.E., Seebens, H., Kleunen, M., Vilà, M., Wingfield, M.J., Richardson, D.M., 2020. Scientists’ warning on invasive alien species. Biol. Rev., 95, 1511–15. https://doi.org/10.1111/brv.12627

Rullier, F., 1960. Morphologie et développement du Spionidae (Annelide Polychète) Polydora (Boccardia) redeki Horst-Cah. Biol. Mmar. 1, 231–244.

Tempesti, J., Mangano, M.C., Langeneck, J., Lardicc, C., Maltagliati, F., Castelli, A., 2020. Non-indigenous species in Mediterranean ports: a knowledge baseline. Mar. Environ. Res. 161, 105056. https://doi.org/10.1016/j.marenvres.2020.105056

Warzocha, J., Gromisz, S., Wodzinowski, T., Szymanek, L., 2018. The structure of macrozoobenthic communities as an environmental status indicator in the Gulf of Gdańsk (the Outer Puck Bay). Oceanologia 60(4), 553–559. https://doi.org/10.1016/j.oceano.2018.05.002

Wolff, W. J., 1973. The estuary as a habitat. An analysis of data on the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt. Zool. Verh., Leiden, 126, 1–242. https://doi.org/10.1017/S002531540000240X

Vivóo-Pons, A., Wallin-Kihlber, I., Olsson, J., Ljungberg, P., Behrens, J., Lindegren, M., 2023. The devil is in the details: exploring how functionally distinct the round goby is among native fish in the Baltic Sea. NB. 89, 161–186. https://doi.org/10.3897/neobiota.89.110203

Ysebaert, T., Neve, L.D., Meire, P., 2000. The subtidal macrobenthos in the mesohaline part of the Schelde Estuary (Belgium): influenced by man? J. Mar. Biol. Assoc. U. K.. 80 (4), 587–597. https://doi.org/10.1017/S002531540000240X

Zaiko, A., Cardeccia, A., Carlton, J. T., Clark, G. F., Creed, J. C., Davidson, I., Floerl, O., Galil, B., Grosholz, E., Hopkins, G. A., Johnston, E. L., Kotta, J., Marchini, A., Ojaveer, H., Ruiz, G., Therriaul, T. W., Inglis, G. J., 2024. Structural and functional effects of global invasion pressure on benthic marine communities—patterns, challenges and priorities. Divers. Distrib. 30, e138. https://doi.org/10.1111/ddi.13838

Zettler, M., 2025. Historical benthic data from the southern Baltic Sea (1839–2001). Ver. 1.0, Occurrence dataset, Flanders Marine Institute. https://doi.org/10.15468 /48gksf (accessed 2025-11-20 via via GBIF.org). https://www.gbif.org/occurrence/5763645785

full, complete article - PDF


Spread of the warm-water clam Rangia cuneata in the temperate coastal waters of the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia, 68 (1)/2026, 68110, 5 pp.
https://doi.org/10.5697/BFUP8645

Halina Kendzierska1,*, Zuzanna Czenczek1, Anna Dziubińska1, Kamila Styrcz-Olesiak1, Agata Rychter2, Michał Gintowt3, Urszula Janas1
1University of Gdańsk, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: halina.kendzierska@ug.edu.pl (H. Kendzierska)
2University of Applied Sciences in Elbląg, ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
3Institute of Oceanology, Polish Academy of Sciences, ul. Powstawńców Warszawy 55, 81-712 Sopot, Poland
*corresponding author

Keywords: Rangia cuneata; Baltic Sea; Gulf of Gdańsk

Received: 29 September 2025; revised: 1 December 2025; accepted: 8 December 2025

Highlights

Abstract

The Atlantic wedge clam or common rangia, Rangia cuneata, was reported in the Gdańsk Basin (southern Baltic Sea) around 2010. In the Gulf of Gdańsk, outside the Vistula Lagoon, specimens of the common rangia were collected for the first time in 2014. This paper reports on the spread of the species in the coastal waters of the Gulf of Gdańsk following its arrival.

  References   ref

Auil-Marshalleck, S., Robertson, C., Sunley, A., Robinson, L., 2000. Preliminary review of life history and abundance of the Atlantic Rangia (Rangia cuneata) with implications for management in Galveston Bay, Texas. Manage. Data Ser. 171(1), 1–31.

Cain, T. D., 1975. Reproduction and recruitment of the brackish water clam, Rangia cuneata in the James River, Virginia. Fish. Bull. 73(2), 412.

Cieśliński, R., Pietruszyński, Ł., Duda, F., 2017. Differentiation flow in the waters of the hydrographic systems of western part of the Martwa Wisła and Wisła Śmiała. Przegl. Geofiz. (3–4), 197–215.

Czerniejewski, P., Dąbrowski, J., Brysiewicz, A., Formicki, K., 2023. Population structure and density of a new invasive species Rangia cuneata in the Szczecin Lagoon (Odra/Oder estuary, Poland). Aquat. Invasions 18(3), 371–384. https://doi.org/10.3391/ai.2023.18.3.109673

Dąbrowski, J., Czerniejewski, P., Brysiewicz, A., Więcaszek, B., 2023. Morphometrics, growth and condition of the invasive bivalve Rangia cuneata during colonisation of the Oder Estuary (North-Western Poland). Water 15(19), 3331.

Ezhova, E.E., 2012. Novyjv selenets v Baltiyskye Morye–mollusc Rangia cuneata (Bivalvia: Mactridae). Marine. Ecol. J. 11, 29–32.

Florin, A. B., 2017. Rangia cuneata introduction to Sweden/ Baltic Sea. Information System on Aquatic Nonindigenous and Cryptogenic Species. World Wide Web Electronic Publ., www.corpi.ku.lt/databases/aquanis (Ver. 2 9; Accessed 2024-06).

Hopkins, S. H., 1970. Studies on brackish water clams of the genus Rangia in Texas. Proc. Nat. Shellfisheries Assoc. 60, 5–6.

Houziauks, J., Craeymeersch, J., Merckx, B., Kerckhof, F., an Lancker, V., Courtens, W., Stienen, E., Perdon, J., Goudswaard, P.C., Van Hoey, G., Vigin, L., Hostens, K., Vinckx, M., Degraer, S., 2011. Ecosystem sensitivity to invasive species, EnSIS. Final report. Belgian Sci. Policy Office, Brussels, 100 pp.

Janas, U., Kendzierska, H., Dąbrowska, A. H., Dziubińska, A., 2014. Non-indigenous bivalve the Atlantic rangia Rangia cuneata in the Wisła Śmiała River (coastal waters of the Gulf of Gdańsk, the southern Baltic Sea). Oceanol. Hydrobiol. Stud. 43, 427–430. https://doi.org/10.2478/s13545-014-0158-3

Janas, U., Kendzierska, H., 2022. Makrozoobentos Zatoki Puckiej. [In:] Bolałek, J., Burska, B., (Eds.), Zatoka Pucka Tom III. Aspekty świata ożywionego. Wyd. Uniw. Gda., Gdańsk, 183–200.

Jegliński, W., Kramarska, R., Uścinowicz, S., Zachowicz, J., 2009. Sediments. [In:] Gic-Grusza, G., Kryla-Straszewska, L., Urbański, J., Warzocha, J., Węsławski, J. M., (Eds.), Atlas of Polish marine areas bottom habitats. Broker Innowacji, Gdynia, 28–29.

Karlson, A. M., Kautsky, N., Granberg, M., Garbaras, A., Lim, H., Liénart, C., 2024. Resource partitioning of a Mexican clam in species-poor Baltic Sea sediments indicates the existence of a vacant trophic niche. Sci. Rep. 14(1), 12527. https://doi.org/10.1038/s41598-024-62832-3

Kornijów, R., Pawlikowski, K., Drgas, A., Rolbiecki, L., Rychter, A., 2018. Mortality of post-settlement clams Rangia cuneata (Mactridae, Bivalvia) at an early stage of invasion in the Vistula Lagoon (South Baltic) due to biotic and abiotic factors. Hydrobiologia 811, 207–219. https://doi.org/10.1007/s10750-017-3489-4

LaSalle, M. W., de la Cruz, A., 1985. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Common Rangia. US Fish Wildlife Service. Biol. Rep. 82 (11.31). US Army Corps Eng. TR EL–82–4, p. 16.

Miernik, N. A., Janas, U., Kendzierska, H., 2023. Role of macrofaunal communities in the Vistula River plume, the Baltic Sea—Bioturbation and bioirrigation potential. Biol. 12(2), 147. https://doi.org/10.3390/biology12020147

Möller, T., Kotta, J., 2017. Rangia cuneata (GB Sowerby I, 1831) continues its invasion in the Baltic Sea: the first record in Pärnu Bay, Estonia. Bioinvasions Rec. 6 (2), 167—172. https://doi.org/10.3391/bir.2017.6.2.13

Panicz, R., Eljasik, P., Wrzecionkowski, K., Śmietana, N., Biernaczyk, M., 2022. First report and molecular analysis of population stability of the invasive Gulf wedge clam, Rangia cuneata (GB Sowerby I, 1832) in the Pomeranian Bay (Southern Baltic Sea). Eur. Zool. J. 89(1), 568–578. https://doi.org/10.1080/24750263.2022.2061612

PROEKO, 2010. Modernizacja wejścia do portu wewnętrznego w Gdańsku. Etap II przebudowa szlaku wodnego na Martwej Wiśle i Motławie. Raport o oddziaływaniu na środowisko przedsięwzięcia pn. UM, Gdynia, 391 pp.

Rudinskaya, L. V., Gusev, A. A., 2012. Invasion of the North American wedge clam Rangia cuneata (GB Sowerby I, 1831) (Bivalvia: Mactridae) in the Vistula Lagoon of the Baltic Sea. Russ. J. Biol. Invasions 3(3), 220–229.

Skóra, K.E., 2015. Nowe muszelki w Zatoce Gdańskiej. https://hel.ug.edu.pl/2015/01/06/nowe-muszelki-w-zatoce-gdanskiej (Accessed 2024-06).

Solovjova, S., 2014. Rangia cuneata introduction to Lithuania/ Baltic Sea. AquaNIS. Information System on Aquatic Non-Indigenous and Cryptogenic Species. www.corpi.ku.lt/databases/aquanis, Ver. 2. (Accessed 2024-06).

Solovjova, S., Samuilovienė, A., Srėbalienė, G., Minchin, D., Olenin, S., 2019. Limited success of the non-indigenous bivalve clam Rangia cuneata in the Lithuanian coastal waters of the Baltic Sea and the Curonian Lagoon. Oceanologia 61(3), 341–349. https://doi.org/10.1016/j.oceano.2019.01.005

Świeżak, J., Smolarz, K., Michnowska, A., Świątalska, A., Sobczyk, A., Kornijów, R., 2021. Physiological and microbiological determinants of the subtropical nonindigenous Rangia cuneata health and condition in the cold coastal waters of the Baltic Sea: the Vistula Lagoon case study. Aquat. Invasions 16(4). https://doi.org/10.3391/ai.2021.16.4.05

Tuszer-Kunc, J., Normant-Saremba, M., Rychter, A., 2020. The combination of low salinity and low temperature can limit the colonisation success of the non-native bivalve Rangia cuneata in brackish Baltic waters. J. Exp. Mar. Biol. Ecol., 524, 151228. https://doi.org/10.1016/j.jembe.2019.151228

Warzocha, J., Drgas, A., 2013. The alien gulf wedge clam (Rangia cuneata GB Sowerby I, 1831) (Mollusca: Bivalvia: Mactridae) in the Polish part of the Vistula Lagoon (SE. Baltic). Folia Malacolog. 21(4), 291–292. https://doi.org/10.12657/folmal.021.030

Warzocha, J., Szymanek, L., Witalis, B., Wodzinowski, T., 2016. Seawater temperature changes in the southern Baltic Sea (1959–2019) forced by climate change. The first report on the establishment and spread of the alien clam Rangia cuneata (Mactridae) in the Polish part of the Vistula Lagoon (southern Baltic). Oceanologia 58(1), 54–58. https://doi.org/10.1016/j.oceano.2015.10.001

Wiese, L., Niehus, O., Faass, B., Wiese, V., 2016. Seawater temperature changes in the southern Baltic Sea (1959–2019) forced by climate change. Ein weiteres Vorkommen von Rangia cuneata in Deutschland (Bivalvia: Mactridae). Schriften zur Malakozool. 29, 53–60.

Wilman, B., Bełdowska, M., Rychter, A., Kornijów, R., 2023. Seawater temperature changes in the southern Baltic Sea (1959–2019) forced by climate change. Different pathways of accumulation and elimination of neurotoxicant Hg and its forms in the clam Atlantic rangia (Rangia cuneata). Sci. Total Environ. 858, 160018. https://doi.org/10.1016/j.scitotenv.2022.160018

Zalewska, T., Wilman, B., Łapeta, B., Marosz, M., Biernacik, D., Wochna, A., Saniewski, M., Grajewska, A., Iwaniak, M., 2024. Seawater temperature changes in the southern Baltic Sea (1959–2019) forced by climate change. Oceanologia 66(1), 37–55. https://doi.org/10.1016/j.oceano.2023.08.001

full, complete article - PDF