Oceanologia No. 68 (1) / 26
Original Research Articles
-
High vertical resolution measurements of pH, pCO2, Total Alkalinity and Dissolved Inorganic Carbon using a new approach: the carbonate profile: Fernando Aguado Gonzalo, Katarzyna Koziorowska, Laura Bromboszcz-Szczypior, Alexandra Loginova, Karol Kuliński
-
Determination of biometric and somatic parameters of Rhyssoplax olivacea (Polyplacophora: Chitonidae) on the Algerian west coast, Mediterranean Sea: Implication for management and conservation: Nacima Mesli, Yassine Guendouzi, Zoheir Bouchikhi-Tani
-
Lowland catchment runoff response to climate change under CMIP6 in the Baltic region: Darius Jakimavičius, Diana Šarauskienė, Jūratė Kriaučiūnienė, Aldona Jurgelėnaitė
-
Chlorophyll a distribution in the Arabian Gulf: climate, trends, and global teleconnections: Cheriyeri Poyil Abdulla, Valliyil Mohammed Aboobacker, Muhammad Shafeeque, Ponnumony Vethamony
-
Women are successful in marine science, but not in its narrative. A case study from Poland: Paulina Pakszys, Jan Marcin Węsławski, Sławomir Sagan, Agnieszka Skorupa
-
Climate change mitigation and adaptation measures for the Gulf of Gdańsk region in relation to sea threats: Aleksandra Koroza, Joanna Piwowarczyk, Tymon Zieliński
-
Geohazards and coastal Dynamic: a geo-engineering assessment of the southern Iraqi shore (Ras al-Bisha zone): Hiba Ahmed Mahdi, Wisam R. Muttashar, Raid Aziz Mahmood
-
Trapped contaminants in the coastal waters of the southern Caspian Sea: off Sefidrud River: Jafar Azizpour, Reza Rahnama, Ali Hamzepoor, Seyed Masoud Mahmoudof
Short communications
-
New records of non-indigenous polychaeta Boccardiella ligerica (Ferronnière, 1898) (Spionidae) in the southern Baltic Sea: Bartosz Witalis, Joanna Hegele-Drywa, Sławomira Gromisz, Piotr Gruszka, Wojciech Kraśniewski, Lena Szymanek, Piotr Kukliński
-
Spread of the warm-water clam Rangia cuneata in the temperate coastal waters of the Gulf of Gdańsk (southern Baltic Sea): Halina Kendzierska, Zuzanna Czenczek, Anna Dziubińska, Kamila Styrcz-Olesiak, Agata Rychter, Michał Gintowt, Urszula Janas
Original Research Articles
High vertical resolution measurements of pH, pCO2, Total Alkalinity and Dissolved Inorganic Carbon using a new approach: the carbonate profile
Oceanologia, 68 (1)/2026, 68101, 14 pp.
https://doi.org/10.5697/VMDA8631
Fernando Aguado Gonzalo*, Katarzyna Koziorowska, Laura Bromboszcz-Szczypior, Alexandra Loginova, Karol Kuliński
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: aguadof@iopan.pl (F. Aguado Gonzalo)
*corresponding author
Keywords:
Ocean acidification; pH; Total alkalinity; pCO2; Land ocean continuum; Arctic; Baltic Sea
Received: 26 June 2025; revised: 4 November 2025; accepted: 12 November 2025
Highlights
- A new approach to obtain simultaneous measurements of pCO2, pH, total alkalinity and dissolved inorganic carbon in the water column with high vertical resolution.
- Low-cost, easy-to-set-up upper water column sampler.
- The system provides faster and more accurate measurements of pCO2 in the upper water column than any other commercially available system.
- Accurate estimations of the freshwater end-member’s properties from coastal water column measurements.
Abstract
The equilibrium between the different parameters of the marine carbonate system – dissolved inorganic carbon (DIC),
total alkalinity (TA), partial pressure of CO2, and pH – is the core of ocean acidification studies, evaluation of
inorganic carbon inventory, and air-sea CO2 fluxes. To date, it has been challenging to simultaneously measure all
those components in the water column due to different sampling methodologies, and especially in stratified waters,
where sharp vertical biogeochemical gradients may occur. In this study, we designed a low-cost and easy-to-assemble
pumping system, which, combined with a CTD profiler, makes a PUMP-CTD system that can efficiently serve as
a precise water column sampler, allowing for simultaneous measurements and sampling of dissolved inorganic carbon,
total alkalinity, partial pressure of CO2, and pH with high vertical resolution. Importantly, this water sampler (denoted
as the carbonate profiler) can be easily integrated with equilibrator-based continuous pCO2 measurement systems,
which are routinely used for underway data acquisition, making them suitable for water column sampling as well.
We tested the carbonate profiler in the open ocean water column, where we obtained excellent consistency between
measured pCO2 and calculated values based on pH and DIC. Afterwards, we tested the operability of the system by
measuring the vertical variability of all the components of the marine carbonate system in the Vistula River estuarine
waters (southern Baltic Sea) and within the Arctic fjords affected by continental freshwater runoff. Overall, this system
performed outstandingly, with a vertical resolution of half a meter, proving its utility in accurately measuring steep
biogeochemical changes in the water column regardless of the analytical method used.
References
Aguado Gonzalo, F., Koziorowska, K., Szymczycha, B., Kuliński, K., 2025.
The Consistency between Calculated and Measured Variables of the Marine
Carbonate System in Arctic Open and Coastal Waters. Mar. Chem.
(pre-print).
https://doi.org/10.2139/ssrn.5205880
Aguado Gonzalo, F., Koziorowska, K., Bromboszcz-Szczypior, L., Kulinski, K.,
2025b.
High resolution, vertical distribution of the marine carbonate
system in estuarine waters of the Baltic Sea and Arctic fjords (Svalbard
Archipelago). [Dataset]. Geonetwork.
https://doi.org/10.48457/IOPAN.2025.515
Aguado Gonzalo, F., Stokowski, M., Koziorowska-Makuch, K., Makuch, P.,
Beszczyńska-Möller, A., Kukliński, P., Kuliński, K., 2024.
Key
processes controlling the variability of the summer marine CO2 system in Fram
Strait surface waters. Front. Mar. Sci. 11, 1–19.
https://doi.org/10.3389/fmars.2024.1464653
Ahmed, M.M.M., Else, B.G.T., Capelle, D., Miller, L.A., Papakyriakou, T., 2020.
Underestimation of surface pCO2 and air-sea CO2 fluxes due to freshwater
stratification in an Arctic shelf sea, Hudson Bay. Elementa 8.
https://doi.org/10.1525/elementa.084
Arruda, R., Atamanchuk, D., Cronin, M., Steinhoff, T., Wallace, D.W.R., 2020.
At-sea intercomparison of three underway pCO2 systems. Limnol.
Oceanogr. Methods 18, 63–76.
https://doi.org/10.1002/lom3.10346
Azevedo, C.C., González-Dávila, M., Santana-Casiano, J.M.,
González-Santana, D., Caldeira, R.M.A., 202
4. Impact of sampling depth on
CO2 flux estimates. Sci. Rep. 14, 1–9.
https://doi.org/10.1038/s41598-024-69177-x
Bauer, J.E., Cai, W.J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S., Regnier,
P.A.G., 2013.
The changing carbon cycle of the coastal ocean. Nature
504, 61–70.
https://doi.org/10.1038/nature12857
Bresnahan, P.J., Martz, T.R., Takeshita, Y., Johnson, K.S., LaShomb, M., 2014.
Best practices for autonomous measurement of seawater pH with the Honeywell
Durafet. Methods Oceanogr. 9, 44–60.
https://doi.org/10.1016/j.mio.2014.08.003
Cai, W.J., 2011.
Estuarine and coastal ocean carbon paradox: CO2 sinks or
sites of terrestrial carbon incineration? Ann. Rev. Mar. Sci. 3,
123–145.
https://doi.org/10.1146/annurev-marine-120709-142723
Carter, B.R., Radich, J.A., Doyle, H.L., Dickson, A.G., 2013.
An automated
system for spectrophotometric seawater pH measurements. Limnol. Oceanogr.
Methods 11, 16–27.
https://doi.org/10.4319/lom.2013.11.16
Carter, B.R., Sharp, J.D., Garcı́a-ib, M.I., Woosley, R.J., Fong, M.B.,
Alvarez, M., Barbero, L., Clegg, S.L., Easley, R., Fassbender, A.J., Li, X.,
Schockman, K.M., Wang, Z.A., 2024.,
Review Random and systematic
uncertainty in ship-based seawater carbonate chemistry observations,
1–16. https://doi.org/10.1002/lno.12674
Chen, B., Cai, W.J., Chen, L., 2015.
The marine carbonate system of the
Arctic Ocean: Assessment of internal consistency and sampling considerations,
summer 2010. Mar. Chem. 176, 174–188.
https://doi.org/10.1016/j.marchem.2015.09.007
Clarke, J.S., Achterberg, E.P., Connelly, D.P., Schuster, U., Mowlem, M., 2017.
Developments in marine pCO2 measurement technology; towards sustained in
situ observations. TrAC – Trends Anal. Chem. 88, 53–61. h
ttps://doi.org/10.1016/j.trac.2016.12.008
Clayton, T.D., Byrne, R.H., 1993.
Spectrophotometric seawater pH
measurements: total hydrogen ion concentration scale calibration of m-cresol
purple and at-sea results. Deep. Res. Pt. I 40, 2115–2129.
https://doi.org/10.1016/0967-0637(93)90048-8
Cross, J.N., Mathis, J.T., Pickart, R.S., Bates, N.R., 2018.
Formation and
transport of corrosive water in the Pacific Arctic region. Deep. Res. Pt.
II Top. Stud. Oceanogr. 152, 67–81.
https://doi.org/10.1016/j.dsr2.2018.05.020
Dai, M., Su, J., Zhao, Y., Hofmann, E.E., Cao, Z., Cai, W.J., Gan, J., Lacroix,
F., Laruelle, G.G., Meng, F., Mudieller, J.D., Regnier, P.A.G., Wang, G., Wang,
Z., 2022.
Carbon Fluxes in the Coastal Ocean: Synthesis, Boundary
Processes, and Future Trends. Annu. Rev. Earth Planet. Sci. 50, 593–626.
https://doi.org/10.1146/annurev-earth-032320-090746
Dickson, A.G.; Sabine, C.L. and Christian, J.R., 2007.
Guide to best
practices for ocean CO2 measurement. Sidney, British Columbia, North
Pacific Marine Science Organization, 191 pp. (PICES Special Publication 3;
IOCCP Report 8).
https://doi.org/10.25607/OBP-1342
Dickson, A.G., 1981.
An exact definition of total alkalinity and a
procedure for the estimation of alkalinity and total inorganic carbon from
titration data. Deep Sea Res. Pt. A, Oceanogr. Res. Pap. 28, 609–623.
https://doi.org/10.1016/0198-0149(81)90121-7
Dickson, A.G., Afghan, J.D., Anderson, G.C., 2003.
Reference materials for
oceanic CO2 analysis: A method for the certification of total alkalinity.
Mar. Chem. 80, 185–197.
https://doi.org/10.1016/S0304-4203(02)00133-0
Dickson, A.G., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E., 1990.
Dissociation constant of bisulfate ion in aqueous sodium chloride solutions
to 250°C. J. Phys. Chem. 94, 7978–7985.
https://doi.org/10.1021/j100383a042
Ericson, Y., Falck, E., Chierici, M., Fransson, A., Kristiansen, S., Platt,
S.M., Hermansen, O., Myhre, C.L., 2018.
Temporal Variability in Surface
Water pCO2 in Adventfjorden (West Spitsbergen) With Emphasis on Physical and
Biogeochemical Drivers. J. Geophys. Res. Ocean. 123, 4888–4905.
https://doi.org/10.1029/2018JC014073
Fietzek, P., Fiedler, B., Steinhoff, T., Körtzinger, A., 2014.
In situ
quality assessment of a novel underwater pCO2 sensor based on membrane
equilibration and NDIR spectrometry. J. Atmos. Ocean. Technol. 31,
181–196.
https://doi.org/10.1175/JTECH-D-13-00083.1
Fransson, A., Chierici, M., Nomura, D., Granskog, M.A., Kristiansen, S.,
Martma, T., Nehrke, G., 2015.
Effect of glacial drainage water on the CO2
system and ocean acidification state in an Arctic tidewater-glacier fjord
during two contrasting years. J. Geophys. Res. Ocean.
https://doi.org/10.1002/2014JC010320
Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J.,
Landschützer, P., Le Quéré, C., Li, H., Luijkx, I.T., Olsen, A., Peters,
G.P., 2025.
Global carbon budget. Earth Syst. Sci. Data 17,
965–1039.
https://doi.org/10.5194/essd-17-965-2025
Humphreys, M. P. and Matthews, R. S. 2024.
Calkulate: total alkalinity from
titration data in Python. Zenodo.
https://doi.org/10.5281/zenodo.2634304
Jiang, Z.P., Hydes, D.J., Hartman, S.E., Hartman, M.C., Campbell, J.M.,
Johnson, B.D., Schofield, B., Turk, D., Wallace, D., Burt, W.J., Thomas, H.,
Cosca, C., Feely, R., 2014.
Application and assessment of a membrane-based
pCO2 sensor under field and laboratory conditions. Limnol. Oceanogr.
Methods 12, 264–280.
https://doi.org/10.4319/lom.2014.12.264
Johengen, T., Smith, G.J., Schar, D., Atkinson, M., Purcell, H., Loewensteiner,
D., Epperson, Z., Tamburri, M., 2015.
Performance Verification Statement
for the Sunburst SAMI-pH Sensor. Solomons, MD, Alliance for Coastal
Technologies, 63 pp. (ACTVS15-06).
http://doi.org/10.25607/OBP-306
Kerr, D.E., Turner, C., Grey, A., Keogh, J., Brown, P.J., Kelleher, B.P., 2023.
OrgAlkCalc: Estimation of organic alkalinity quantities and acid-base
properties with proof of concept in Dublin Bay. Mar. Chem. 251, 104234.
https://doi.org/10.1016/j.marchem.2023.104234
Koziorowska-Makuch, K., Szymczycha, B., Thomas, H., Kuliński, K., 2023.
The marine carbonate system variability in high meltwater season
(Spitsbergen Fjords, Svalbard). Prog. Oceanogr. 211.
https://doi.org/10.1016/j.pocean.2023.102977
Kuliński, K., Hammer, K., Schneider, B., Schulz-Bull, D., 2016.
Remineralization of terrestrial dissolved organic carbon in the Baltic
Sea. Mar. Chem. 181, 10–17.
https://doi.org/10.1016/j.marchem.2016.03.002
Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J.,
Gustafsson, B., Hall, P.O.J., Humborg, C., Jilbert, T., Jürgens, K., Meier,
H.E.M., Müller-Karulis, B., Naumann, M., Olesen, J.E., Savchuk, O., Schramm,
A., Slomp, C.P., Sofiev, M., Sobek, A., Szymczycha, B., Undeman, E., 2022.
Biogeochemical functioning of the Baltic Sea. Earth Syst. Dynam. 13,
633–685.
https://doi.org/10.5194/esd-13-633-2022
Kuliński, K., Schneider, B., Szymczycha, B., Stokowski, M., 2017.
Structure and functioning of the acid-base system in the Baltic Sea.
Earth Syst. Dynam. 8, 1107–1120.
https://doi.org/10.5194/esd-8-1107-2017
Lai, C.Z., DeGrandpre, M.D., Darlington, R.C., 2018.
Autonomous optofluidic
chemical analyzers for marine applications: Insights from the Submersible
Autonomous Moored Instruments (SAMI) for pH and pCO2. Front. Mar. Sci. 4,
1–11.
https://doi.org/10.3389/fmars.2017.00438
Lee, K., Kim, T.W., Byrne, R.H., Millero, F.J., Feely, R.A., Liu, Y.M., 2010.
The universal ratio of boron to chlorinity for the North Pacific and North
Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811.
https://doi.org/10.1016/j.gca.2009.12.027
Lewis, E., Wallace, D., and Allison, L. J., 1998.
Program developed for CO2
system calculations (TN (United States: Brookhaven Natl. Lab., Dept. Appl.
Sci., Upton, NY; Oak Ridge Natl. Lab., Carbon Dioxide Information Analysis
Center). No. ORNL/CDIAC-105).
Liu, P., He, S., Wei, H., Wang, J., Sun, C., 2015.
Characterization of
α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of
m-Cresol. Ind. Eng. Chem. Res. 54, 130–136.
https://doi.org/10.1021/ie5037897
Lueker, T.J., Dickson, A.G., Keeling, C.D., 2000.
Ocean pCO2 calculated
from dissolved inorganic carbon, alkalinity, and equations for K1 and K2:
validation based on laboratory measurements of CO2 in gas and seawater at
equilibrium. Marine Chem. 70(1–3), 105–119.
McGovern, M., Pavlov, A.K., Deininger, A., Granskog, M.A., Leu, E., Søreide,
J.E., Poste, A.E., 2020.
Terrestrial Inputs Drive Seasonality in Organic
Matter and Nutrient Biogeochemistry in a High Arctic Fjord System (Isfjorden,
Svalbard). Front. Mar. Sci. 7, 1–15.
https://doi.org/10.3389/fmars.2020.542563
Meslard, F., Bourrin, F., Many, G., Kerhervé, P., 2018.
Suspended
particle dynamics and fluxes in an Arctic fjord (Kongsfjorden, Svalbard).
Estuar. Coast. Shelf Sci. 204, 212–224.
https://doi.org/10.1016/j.ecss.2018.02.020
Millero, F.J., 2007.
The marine inorganic carbon cycle. Chem. Rev.
107, 308–341.
https://doi.org/10.1021/cr0503557
Mosley, L.M., Husheer, S.L.G., Hunter, K.A., 2004.
Spectrophotometric pH
measurement in estuaries using thymol blue and m-cresol purple. Mar. Chem.
91, 175–186.
https://doi.org/10.1016/j.marchem.2004.06.008
Mosley, L.M., Liss, P.S., 2020.
Particle aggregation, pH changes and metal
behaviour during estuarine mixing: Review and integration. Mar. Freshw.
Res. 71, 300–310.
https://doi.org/10.1071/MF19195
Orr, J.C., Epitalon, J.M., Dickson, A.G., Gattuso, J.P., 2018.
Routine
uncertainty propagation for the marine carbon dioxide system. Mar. Chem.
207, 84–107.
https://doi.org/10.1016/j.marchem.2018.10.006
Perez, F.F., Fraga, F., 1987.
Association constant of fluoride and hydrogen
ions in seawater. Mar. Chem. 21, 161–168.
https://doi.org/10.1016/0304-4203(87)90036-3
Pierrot, D., Lewis, E., Wallace, D.W.R., 2006.
MS Excel Program Developed
for CO2 System Calculations. Tech. Rep. Carbon Dioxide Inf. Anal. Cent.
Oak Ridge Natl. Lab., U.S. DOE, Oak Ridge, Tenn.
Regnier, P., Resplandy, L., Najjar, R.G., Ciais, P., 2022.
The
land-to-ocean loops of the global carbon cycle. Nature 603, 401–410.
https://doi.org/10.1038/s41586-021-04339-9
Resplandy, L., Keeling, R.F., Rödenbeck, C., Stephens, B.B., Khatiwala, S.,
Rodgers, K.B., Long, M.C., Bopp, L., Tans, P.P., 2018.
Revision of global
carbon fluxes based on a reassessment of oceanic and riverine carbon
transport. Nat. Geosci. 11, 504–509.
https://doi.org/10.1038/s41561-018-0151-3
Schar, D., Atkinson, M., Johengen, T., Pinchuk, A., Purcell, H., Robertson, C.,
Smith, G.J., 2010a. Pro-Oceanus Systems Inc. PSI CO2-Pro TM. Situ 1–24.
Schar, D., Atkinson, M., Johengen, T., Pinchuk, A., Purcell, H., Robertson, C.,
Smith, G.J., Tamburri, M., 2010b.
Performance Demonstration Statement
Sunburst Sensors SAMI-CO sub(2). ACT Technol. Eval. Reports DS10-04,
1–23.
Signori, R.T., de Souza, S.A., Ferreira, R.B., da Silva, J.T., de Andrade,
A.M.D., dos Reis, G.C.G., 2021.
Data acquisiton and transmission system for
carbon dioxide analysis. Rev. Bras. Meteorol. 36, 115–123.
https://doi.org/10.1590/0102-77863610003
Stokowski, M., Makuch, P., Rutkowski, K., Wichorowski, M., Kuliński, K.,
2021a.
A system for the determination of surface water pCO2 in a highly
variable environment, exemplified in the southern Baltic Sea. Oceanologia
63(2), 276–282.
https://doi.org/10.1016/j.oceano.2021.01.001
Stokowski, M., Winogradow, A., Szymczycha, B., Carstensen, J., Kuliński, K.,
2021b.
The CO2 system dynamics in the vicinity of the Vistula River mouth
(the southern Baltic Sea): A baseline investigation. Estuar. Coast. Shelf
Sci. 258, 2–11.
https://doi.org/10.1016/j.ecss.2021.107444
Strady, E., Pohl, C., Yakushev, E. V., Krüger, S., Hennings, U., 2008.
PUMP-CTD-System for trace metal sampling with a high vertical resolution. A
test in the Gotland Basin, Baltic Sea. Chemosphere 70, 1309–1319.
https://doi.org/10.1016/j.chemosphere.2007.07.051
Szeligowska, M., Trudnowska, E., Boehnke, R., Dąbrowska, A.M., Wiktor, J.M.,
Sagan, S., Błachowiak-Samołyk, K., 2020.
Spatial Patterns of Particles
and Plankton in the Warming Arctic Fjord (Isfjorden, West Spitsbergen) in Seven
Consecutive Mid-Summers (2013–2019). Front. Mar. Sci. 7, 1–18.
https://doi.org/10.3389/fmars.2020.00584
Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C.,
1993.
Seasonal variation of CO2 and nutrients in the high-latitude oceans:
A comparative study. Global Biogeochem. Cycles 7, 843–878.
Ulfsbo, A., Kuliński, K., Anderson, L.G., Turner, D.R., 2015.
Modelling
organic alkalinity in the Baltic Sea using a Humic-Pitzer approach. Mar.
Chem. 168, 18–26.
https://doi.org/10.1016/j.marchem.2014.10.013
Woosley, R.J., Millero, F.J., Takahashi, T., 2017.
Internal consistency of
the inorganic carbon system in the Arctic Ocean. Limnol. Oceanogr. Methods
15, 887–896.
https://doi.org/10.1002/lom3.10208
Determination of biometric and somatic parameters of Rhyssoplax olivacea (Polyplacophora: Chitonidae) on the Algerian west coast, Mediterranean Sea: Implication for management and conservation
Oceanologia, 68 (1)/2026, 68102, 17 pp.
https://doi.org/10.5697/EQNS8658
Nacima Mesli1,*, Yassine Guendouzi2, Zoheir Bouchikhi-Tani1
1Laboratoire Valorisation des actions de l’Homme pour la protection de l’environnement et application en santé publique (VAHPEASP), Department of Biology, University of Tlemcen Abou Bekr Belkaid, BP 119, 13000 Tlemcen, Algeria;
e-mail: meslinacima74@gmail.com (N. Mesli)
2Laboratory Management and Valorization of Agricultural and Aquatic Ecosystems, Science Institute, University Center of Tipaza Morsli Abdallah, Oued Merzoug, 42200 Tipaza, Algeria
*corresponding author
Keywords:
Chiton; Rhyssoplax olivacea; Ecophysiology; Condition Index; Body Shape Indices; Body Mass Indices
Received: 23 January 2025; revised: 12 May 2025; accepted: 28 October 2025
Highlights
- An R. olivacea morphometry database in the available literature was compiled.
- Sites and/or seasons influence on the growth and reproductive performance of R. olivacea.
- Body shape and body mass indices calculated using different approaches.
- R. olivacea adaptation to its environment, the availability and allocation of nutritional resources.
- The high correlation between the indices supports these hypotheses.
Abstract
A detailed description of Rhyssoplax olivacea biometry, sampled over two seasons in 2019 at five sites on the Algerian west coast, was provided for the first time: total and shell length, total and shell width, total animal weight, soft tissue
and shell weight. With a total length ranging from 15.09 mm in the cold season to 14.23 mm in the hot season and a total weight varying from 0.45 g in the cold season to 0.42 g in the hot season, the chiton of the Algerian west coast is intermediate between the larger chiton of the western Mediterranean and the smaller one of the eastern regions. The relationship between the parameters studied highlighted the effects of site and season on growth performance. Several somatic indices (i.e. condition index, body shape and body mass indices) were used to assess the chiton’s overall health and physiological status, highlighting its adaptability to its environment, as well as the quality, and availability of nutritional resources and its reproductive performance.
References
Abadia-Chanona, Q.Y., Avila-Poveda, O.H., Arellano-Martı́nez, M.,
Ceballos-Vázquez, B.P., 2016
. Observation and establishment of gonad
development stages in polyplacophorans (Mollusca): Chiton articulatus a case
study, Acta Zool. – Stockholm, 97 (4), 506–521.
https://doi.org/10.1111/azo.12165
Abadia-Chanona, Q.Y., Avila-Poveda, O.H., Arellano-Martı́- nez, M.,
Ceballos-Vazquez, B.P., Benitez-Villalobos, F., Parker, G.A.,
Rodriguez-Dominguez, G., Garcia-Ibañez, S., 2018.
Reproductive traits and
relative gonad expenditure of the sexes of the free spawning Chiton articulatus
(Mollusca : Polyplacophora). Invertebr Reprod Dev., 62 (4), 268–289.
https://doi.org/10.1080/07924259.2018.1514670
AFNOR, 1985,
Norme Française. Huitres creuses. Dénominations et
classification, NF V 45-056. Publication de l’association française de
normalisation (AFNOR), 5.
Aguilera, M.A., Navarrete, S.A., 2007.
Effects of Chiton granosus (Frembly,
1827) and other molluscan grazers on algal succession in wave exposed
mid-intertidal rocky shores of central Chile. J. Exp. Mar. Biol. Ecol. 349
(1), 84–98.
https://doi.org/10.1016/j.jembe.2007.05.002
Aguilera, M.A., Navarrete, S.A., 2012.
Interspecific Competition for
Shelters in Territorial and Gregarious Intertidal Grazers: Consequences for
Individual Behaviour. PLoS ONE 7 (9).
https://doi.org/10.1371/journal.pone.0046205
Aguilera, M., Navarrete, S., Broitman, B., 2013.
Differential effects of
grazer species on periphyton of a temperate rocky shore. Mar. Ecol.-Prog.
Ser. 484, 63–78.
https://doi.org/10.3354/meps10297
Amara, R., Paul, C., 2003.
Seasonal patterns in the fish and epibenthic
crustaceans community of an intertidal zone with particular reference to the
population dynamics of plaice and brown shrimp. Estuar. Coast. Shelf S. 56
(3–4), 807–818.
https://doi.org/10.1016/S0272-7714(02)00315-3
Amara, R., 2010.
Impact de l’anthropisation sur la biodiversité et le
fonctionnement des écosystèmes marins. Exemple de la Manche-mer du nord.
VertigO (Horssérie 8).
https://doi.org/10.4000/vertigo.10129
Amara, R., 2011.
L’homme et la biodiversité marine: les liaisons
dangereuses. Revue Synthèse 23, 6–21.
Amiard, J.C., Amiard-Triquet, C., Berthet, B., Métayer, C., 1986.
Contribution to the ecotoxicological study of cadmium, lead, copper and
zinc in the mussel Mytilus edulis. Mar. Biol. 90 (3), 425–431.
https://doi.org/10.1007/BF00428566
Amiard, J. c., Caquet, T., Agadic, L., 1998.
Les biomarqueurs parmi les
méthodes d’évaluation de la qualité de l’environnement [In:]
Lagadic, L., Caquet, T., Amiard, J. c., Ramade, F. (Eds.), Utilisation de
biomarqueurs pour la surveillance de la qualité de l’environnement.
Lavoisier. Paris, XXI–XXXr.
Amini, S., Miserez, A., 2013.
Wear and abrasion resistance selection maps
of biological materials. Acta Biomater. 9 (8), 7895–7907.
https://doi.org/10.1016/j.actbio.2013.04.042
Avila-Poveda, O.H., 2013.
Annual Change in Morphometry and in Somatic and
Reproductive Indices of Chiton articulatus Adults (Polyplacophora: Chitonidae)
from Oaxaca, Mexican Pacific. Am. Malacol. Bull. 31 (1), 65–74.
https://doi.org/10.4003/006.031.0118
Avila-Poveda, O.H., 2020.
Large-scale project “Chiton of the Mexican
Tropical Pacific”: Chiton articulatus (Mollusca: Polyplacophora).
Research Ideas and Outcomes 6.
https://doi.org/10.3897/rio.6.e60446
Avila-Poveda, O-H., Abadia-Chanona, Q-Y., 2013.
Emergence, Development, and
Maturity of the Gonad of Two Species of Chitons “Sea Cockroach” (Mollusca:
Polyplacophora) through the Early Life Stages. PLoS ONE 8 (8), e69785.
https://doi.org/10.1371/journal.pone.0069785
Avila-Poveda, O.H., Abadia-Chanona, Q.Y., Alvarez-Garcia, I.L.,
Arellano-Martı́nez, M., 2021.
Plasticity in reproductive traits of an
intertidal rocky shore chiton (Polyplacophora: Chitonida) under pre-ENSO and
ENSO events. J. Mollusc. Stud. 87 (1).
https://doi.org/10.1093/mollus/eyaa033
Bakalem A., Romano J.C., 1989.
Les peuplements benthiques des fonds meubles
du port de Béjaia. Bull. Centre. Océano. Pêche. PELAGOS VII (1),
41–48.
Barbosa, S.S., Byrne, M., Kelaher, B.P., 2008.
Bioerosion caused by
foraging of the tropical chiton Acanthopleura gemmata at One Tree Reef,
southern Great Barrier Reef. Coral Reefs 27, 635–639.
https://doi.org/10.1007/s00338-008-0369-4
Baxter, J.M., Jones, A.M. 1986.
Allometric and morphological
characteristics of Tonicella marmorea (Fabricius, 1780) populations (Mollusca:
Polyplacophora: Ischnochitonidae). Zool. J. Linn. Soc.-Lond. 88 (2),
167–177.
https://doi.org/10.1111/j.1096-3642.1986.tb01185.x
Berg, S. Christianou, M., Jonsson, T., et al., 2011.
Using sensitivity
analysis to identify keystone species and keystone links in size-based food
webs. Oikos 120 (4), 510–519.
https://doi.org/10.1111/j.1600-0706.2010.18864.x
Bergenhayn, J.R.M., 1930.
Die Loricaten von Dr. Sixten Bocks
Pazifik-Expedition 1917–1918, mit spezieller Berücksichtigung der
Perinotumbildungen und der Schalenstruktur. Göteborgs Kungliga
Vetenskaps-och Vitterhets-Samhälles Handlingar, Ser. B, 12 (1), 1–52, pls
1–3.
Blackburn, T.M., Gaston, K.J., Loder, N., 1999.
Geographic gradients in
body size: a clarification of Bergmann’s rule. Divers. Distrib. 5 (4),
165–174.
https://doi.org/10.1046/j.1472-4642.1999.00046.x
Bodoy, A., Prou, J., Berthome, J.-P. 1986.
Étude comparative de
différents indices de condition chez l’huitre creuse (Crassostrea
gigas). Haliotis (Société Française de Malacololgie), 15, 173–182.
Bonner, N., Peters, R.H., 1985.
The Ecological Implications of Body
Size. J. Appl. Ecol. 22 (1) p. 291.
https://doi.org/10.2307/2403351
Bouiba Yahiaoui, S., El Amine Bendimerad, M., Richir, J., 2024.
Morphological and physiological characterization of the regular sea urchin
Paracentrotus lividus in Algeria, with recommendations for the sustainable
fishing of the resource. Reg. Stud. Mar. Sci. 74, 103490.
https://doi.org/10.1016/j.rsma.2024.103490
Boyden, C.R., 1974.
Trace element content and body size in molluscs.
Nature 251 (5473), 311–314.
https://doi.org/10.1038/251311a0
Brito, M.J., Camus, P.A., Torres, F., Sellanes, J., et al., 2020.
First
comparative assessment of the reproductive cycle of three species of Chiton on
a temperate rocky shore of the southeastern Pacific. Invertebr. Biol. 139
(4).
https://doi.org/10.1111/ivb.12302
Bruet, B.J.F., Song, J., Boyce, M.C., Ortiz, Ch., 2008.
Materials design
principles of ancient fish armour. Nat. Mater. 7 (9), 748–756.
https://doi.org/10.1038/nmat2231
Bryan, G.W., 1973.
The occurrence and seasonal variation of trace metals in
the scallops Pecten maximus (L.) and Chlamys opercularis (L.). J. Mar.
Biol. Assoc. UK 53 (1), 145–166.
https://doi.org/10.1017/S0025315400056691
Collareta, A., Merella, M., Casati, S., Di Cencio, A., Tinelli, C., Bianucci,
G., 2023.
Polyplacophoran Feeding Traces on Mediterranean Pliocene Sirenian
Bones: Insights on the Role of Grazing Bioeroders in Shallow-Marine Vertebrate
Falls. Life, 13, 327.
https://doi.org/10.3390/life13020327
Connors, M.J., Ehrlich, H., Hog, M., Godeffroy, C., Araya, S., Kallai, I.,
Gazit, D., Boyce, M., Ortiz, Ch., 2012.
Threedimensional structure of the
shell plate assembly of the chiton Tonicella marmorea and its biomechanical
consequences. J. Struct. Biol. 177 (2), 314–328.
https://doi.org/10.1016/j.jsb.2011.12.019
Connors, M., Yang, T., Hosny, A. Deng, Z., Yazdandoost, F., Massaadi, H.,
Eernisse, D., Mirzaeifar, R., Dean, M.N., Weaver, J.C., Ortiz, Ch., Li, L.,
2019.
Bioinspired design of flexible armor based on chiton scales.
Nat. Commun. 10 (1), 5413.
https://doi.org/10.1038/s41467-019-13215-0
Córdoba, D., Serra, L., Belton, E., 2021.
Clasificación y
cuantificación de quitones (Mollusca : Polyplacophora) en cinco playas del
distrito de San Carlos, provincia de Panamá Oeste. Centros 6 (1),
12–30.
Cossa D., 1980.
Utilisation de la moule bleue comme indicateur du niveau de
pollution par les métaux lourds et les hydrocarbures dans l’estuaire et le
golfe du St Laurent. Rapport INRS Océanologie. Univ. Quebec.
NSI-43600/00, 74.
Costanza, R., D’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B.,
Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P.,
van den Belt, M., 1997.
The value of the world’s ecosystem services and
natural capital, Nature 387 (6630), 253–260.
https://doi.org/10.1038/387253a0
Crocetta, F., Bitar, G., Capua, D. et al. 2014.
Biogeographical homogeneity
in the eastern Mediterranean Sea – III. New records and a state of the art of
Polyplacophora, Scaphopoda and Cephalopoda from Lebanon, Spixiana,
Zeitschrift für Zoologie, 037 (2), 183–206.
Crosby, M.P., Gale, L.D., 1990.
A review and evaluation of bivalve
condition index methodologies with a suggested standard method. J.
Shellfish Res. 9 (1), 233–237.
http://www.biodiversitylibrary.org/item/48925
Crosby, M., Gale, L., 2010.
Indice de condiçao: métodos, 9
(January).
Dell’Angelo, B., 1982. Sui Casi di Anomalie nel Numero di Piastre dei
Polyplacophora. Boll. Malacol. 18 (9–12), 235–246.
Dell’Angelo, B., Schwabe, E., 2010. Teratology in chitons (Mollusca,
Polyplacophora): a brief summary. Boll. Malacologico 46, 9–15. http://www.chitons.it/pdf/87%20Teratology.pdf
DGF, 2005. Fiche descriptive sur les zones humides Ramsar. Direction
Générale des Forêts, Alger.
http://www.dgf.org.dz
Digel, C., Riede, J.O., Brose, U., 2011. Body sizes, cumulative and
allometric degree distributions across natural food webs. Oikos 120 (4),
503–509. https://doi.org/10.1111/j.1600-0706.2010.18862.x
Drobenko, B., 2010. Gestion intégrée des zones côtières et des
risques. VertigO – la revue électronique en sciences de
l’environnement, 8 (Hors-série). http://vertigo.revues.org/10297
Eernisse, D., Clark, R., Draeger, A. 2007. Polyplacophora. [In:]
Carlton, J.T. (ed.), Light and Smith Manual: The Intertidal Invertebrates of
Central California to Oregon, 4th Edn., Univ. California Press, Berkeley, CA.,
701–713. https://www.researchgate.net/publication/240610287
Eernisse, D.J., 2008. Introduction to the symposium “Advances in Chiton
Research”. AM Malacol. Bull. 25(1), 21–24. https://doi.org/10.4003/0740-2783-25.1.21
Elias, J.D., 2021. Effectiveness of Macroinvertebrate Species to Discern
Pollution Levels in Aquatic Environment. Open J. Ecol. 11 (04), 357–373.
https://doi.org/10.4236/oje.2021.114025
Elleboode, R., Mahe, K., 2024. Guide pratique pour la réalisation des
relations Taille-Poids, Poids-Poids et Taille-Taille en Halieutique à l’aide
des paramètres biologiques Ifremer. https://doi.org/https://doi.org/10.13155/101632
Emam, W.M., Ismail, N.S., 1993. Intraspecific variation in the
morphometrics of Acanthopleura haddoni (Mollusca: Polyplacophora) from the
Arabian Gulf and Gulf of Oman. Zool. Middle East 8 (1), 45–52. https://doi.org/10.1080/09397140.1993.10637636
EPA (United States Environmental Protection Agency), 2019. Application of
quality assurance and quality control principles to ecological restoration
project monitoring.
Fischer, F.P., Alger, M., Cieslar, D., et al. 1990. The Chiton Gill:
Ultrastructure in Chiton olivaceus (Mollusca, Polyplacophora). J. Morphol.
204, 75–87.
Ghodbani, T., Berrahi-Midoun, F., 2013. La littoralisation dans l’Ouest
algérien: analyse multiscalaire des interactions
hommes-espaces-écosystèmes. Espace populations sociétés 2013
(1–2), 231–243.
https://doi.org/10.4000/eps.5488
Ghodbani, T., Kansab, O., Kouti, A., 2016. Développement du tourisme
balnéaire en Algérie face à la problématique de protection des espaces
littoraux. Le cas des côtes mostaganemoises. Études caribéennes,
33–34. https://doi.org/10.4000/etudescaribeennes.9305
Ghodbani, T., Bougherira, A., 2019. Le littoral algérien entre protection
de l’environnement et impératifs du développement. Enjeux et
Perspectives, Geo-Eco-Trop, 43 (4), 559–568.
Glynn, P.W. 1970. On the ecology of the Caribbean chitons Acanthopleura
granulata Gmelin and Chiton tuberculatus Linné: density, mortality, feeding,
reproduction, and growth, Smithsonian Contributions to Zoology, 6(66), pp.
1–21. Available at: https://doi.org/10.5479/si.00810282.66
Gracia, A., Dı́az, J.M., Ardila, N.E., 2005. Quitones (Mollusca:
Polyplacophora) del mar Caribe colombiano. Biota Colombiana 6 (1),
117–125.Guendouzi, Y., Soualili, D.L., Boulahdid, M., Boudjellal, B., 2018.
Biological Indices and Monitoring of Trace Metals in the Mussel from the
Southwestern Mediterranean (Algeria): Seasonal and Geographical Variations.
Thalassas 34 (1), 103–112. https://doi.org/10.1007/s41208-017-0043-0
Guendouzi, Y., Soualili, D.L., Fowler, S.W., Boulahdid, M., 2020.
Environmental and human health risk assessment of trace metals in the
mussel ecosystem from the Southwestern Mediterranean. Mar. Pollut. Bull.
151, 110820. https://doi.org/10.1016/j.marpolbul.2019.110820
Halpern, B.S., Selkoe, K.A., Micheli, F., Kappel, C.V., 2007. Evaluating
and Ranking the Vulnerability of Global Marine Ecosystems to Anthropogenic
Threats. Conserv. Biol. 21 (5), 1301–1315. https://doi.org/10.1111/j.1523-1739.2007.00752.x
Halpern, B.S., Walbridge, S., Selkoe, K.A., et al., 2008. A Global Map of
Human Impact on Marine Ecosystems. Science 319 (5865), 948–952.
https://doi.org/10.1126/science.1149345
Hernández-P, R., Benı́tez, H.A., Ornelas-Garcı́a, C.P., Correa, M.,
Suazo, M.J., Piñero, D., 2023. Bergmann’s Rule under Rocks: Testing the
Influence of Latitude and Temperature on a Chiton from Mexican Marine
Ecoregions. Biology 12 (6), 766. https://doi.org/10.3390/biology12060766
Horn, P.L., 1982. Adaptations of the chiton Sypharochiton pelliserpentis to
rocky and estuarine habitats. New Zeal. J. Mar. Fresh. 16 (3–4),
253–261. https://doi.org/10.1080/00288330.1982.9515968
Ibáñez, C.M., Carter, M.J., Aguilera, M.A. et al. 2021. Body size
variation in polyplacophoran molluscs: Geographical clines and community
structure along the south-eastern Pacific. Global Ecol. Biogeogr. 30 (9),
1781–1795. https://doi.org/10.1111/geb.13341
Kaas, P., Knudsen, J., 1992. Lorentz Spengler’s descriptions of chitons
(Mollusca: Polyplacophora). Zool. Med. Leiden 66 (3), 49–90.
Kaiser, J., 2001. Bioindicators and Biomarkers of Environmental Pollution
and Risk Assessment. Science Publ. Inc.
Kéfi, S., Berlow, E.L., Wieters, E.A., Joppa, L.N., Wood, S.A., Brose, U.,
Navarrete, S.A., 2015. Network structure beyond food webs : mapping
non-trophic and trophic interactions on Chilean rocky shores. Ecology 96
(1), 291–303. https://doi.org/10.1890/13-1424.1
Koc-Bilican, B., Çakmak, E., 2024. Removing the uncertainty of chitin
structure in chitons (Mollusca: Polyplacophora: Chitonida). Zool. Anz.
310, 67–72. https://doi.org/10.1016/j.jcz.2024.05.002
Koukouras, A., Karachle, P., 2005. The polyplacophoran (Eumollusca,
Mollusca) fauna of the Aegean Sea with the description of a new species, and
comparison with those of the neighbouring seas. J. Biol. Res. 3, 23–38.
http://www.jbr.gr/
Kovačić, I., Žunec, A., Matešković, M., Burić, P., Iveša, N.,
Štifanić, M., Frece, J., 2023. Commercial Quality, Biological Indices
and Biochemical Composition of Queen Scallop Aequipecten opercularis in
Culture. Fishes 8 (1), 48. https://doi.org/10.3390/fishes8010048
Le Moullac, G., Vairuha-Lechat, I., Bianchini, J.P., et al. 2004.
Évaluation des besoins en acides gras et stérols au cours de
l’ovogenèse chez l’huître perlière Pinctada margaritifera. Ifremer.
Liversage, K., Kotta, J., 2018. Unveiling commonalities in understudied
habitats of boulder-reefs: life-history traits of the widespread invertebrate
and algal inhabitants. Mar. Biol. Res. 14 (7), 655–671. https://doi.org/10.1080/17451000.2018.1510180
Lora-Vilchis, M.C., Robles-Mungaray, M., Doktor, N., Voltolina, D., 2004.
Food Value of Four Microalgae for Juveniles of the Lion’s Paw Scallop
Lyropecten subnodosus (Sowerby, 1833). J. World Aquacult. Soc. 35 (2),
297–304. https://doi.org/10.1111/j.1749-7345.2004.tb01088.x
Lord, J.P., 2012. Longevity and Growth Rates of the Gumboot Chiton,
Cryptochiton stelleri, and the Black Leather Chiton, Katharina tunicata.
Malacologia 55 (1), 43–54. https://doi.org/10.4002/040.055.0104
Lord, J.P., Shanks, A.L., 2012. Continuous growth facilitates feeding and
reproduction: impact of size on energy allocation patterns for organisms with
indeterminate growth. Mar. Biol. 159 (7), 1417–1428. https://doi.org/10.1007/s00227-012-1918-5
Markert, B.A., Breure, A.M., Zechmeister, H.G., 2003. Definitions,
strategies and principles for bioindication/biomonitoring of the
environment. [In:] Trace Metals and Other Contaminants in the Environment,
3–39. https://doi.org/10.1016/S0927-5215(03)80131-5
Mygdalias, T., Varkoulis, A., Voulgaris, K., Zaoutsos, S., Vafidis, D., 2024.
Elemental Composition and Morphometry of Rhyssoplax olivacea
(Polyplacophora): Part I – Radula and Valves. J. Mar. Sci. Eng. 12 (12),
2186. https://doi.org/10.3390/jmse12122186
Mesli, N., Rouane-Hacene, O., Bouchikhi-Tani, Z., Richir, J., 2023. A first
study on the bioaccumulation of trace metals in Rhyssoplax olivacea
(Mediterranean Polyplacophora). Mar. Pollut. Bull. 194, 115202. https://doi.org/10.1016/j.marpolbul.2023.115202
Moore, P.J., Thompson, R.C., Hawkins, S.J., 2011. Phenological changes in
intertidal con-specific gastropods in response to climate warming. Glob.
Change Biol. 17 (2), 709–719. https://doi.org/10.1111/j.1365-2486.2010.02270.x
Mourgaud, Y., Martinez, É., Geffard, A., Andral, B., Stanisiere, J.-Y.,
Amiard, J.-C., 2002. Metallothionein concentrationin the mussel Mytilus
galloprovincialis as a biomarker of response to metal contamination: validation
in the field. Biomarkers 7 (6), 479–490. https://doi.org/10.1080/1354750021000034528
Mulder, C., Vonk, J.A., Den Hollander, H.A., Hendriks, A.J., Breure, A.M.,
2011. How allometric scaling relates to soil abiotics, Oikos 120 (4),
529–536. https://doi.org/10.1111/j.1600-0706.2011.18869.x
Nieto, C., Ovando, X.M.C., Loyola, R., et al., 2017. The role of
macroinvertebrates for conservation of freshwater systems. Ecol. Evol. 7,
5502–5513. https://doi.org/10.1002/ece3.3101
Oehlmann, J., Schulte-Oehlmann, U., 2003. Chapter 17. Molluscs as
bioindicators. [In:] Markert, B.A., Breure, A.M., Zechmeister, H.G.,
(Eds.), Bioindicators and Biomonitors.. Vol. 6, Elsevier, 577–635. https://doi.org/10.1016/S0927-5215(03)80147-9
Otaı́za, R.D., Santelices, B., 1985. Vertical distribution of chitons
(Mollusca: Polyplacophora) in the rocky intertidal zone of central Chile.
J. Exp. Mar. Biol. Ecol. 86 (3), 229–240. https://doi.org/10.1016/0022-0981(85)90105-4
Otchere, F., 2003. Heavy metals concentrations and burden in the bivalves
(Anadara (Senilia) senilis, Crassostrea tulipa and Perna perna) from lagoons in
Ghana: Model to describe mechanism of accumulation/excretion. Afr. J.
Biotechnol. 2 (9), 280–287. https://doi.org/10.5897/AJB2003.000-1057
Pérez-Matus, A., Ospina-Alvarez, A., Camus, P.A., Carrasco, S.A.,
Fernández, M., Gelcich, S., Godoy, N., Ojeda, F.P., Pardo, L.M., Rozbaczylo,
N., Dulce Subida, M., Thiel, M., Wieters, E.A., Navarrete, S.A., 2017.
Temperate rocky subtidal reef community reveals human impacts across the
entire food web. Mar. Ecol. Prog. Ser. 567, 1–16. https://doi.org/10.3354/meps12057
Phillips, D.J.H., Rainbow, P.S., 1994. Biomonitoring of Trace Aquatic
Contaminants. 2nd edn. Ponka, P., Tenenbein, M., Eaton, J.W., 2015. Iron.
[In:] Handbook on the Toxicology of Metals. Elsevier, 879–902. https://doi.org/10.1016/B978-0-444-59453-2.00041-X
Quintana, H.L., Hernández, J., 2021. Abundancia y morfometría de los
quitones (Mollusca : Polyplacophora) asociados a rompeolas en Coveñas,
Sucre-Colombia. Intropica, 55–65. https://doi.org/10.21676/23897864.3788
Radenac, G., Miramand, P., Tardy, J., 1997. Search for impact of a dredged
material disposal site on growth and metal contamination of Mytilus edulis (L.)
in charentemaritime (France). Mar. Pollut. Bull. 34 (9), 721–729.
https://doi.org/10.1016/S0025-326X(97)00011-8
Raffaelli, D., Hawkins, S., 1996. Intertidal Ecology. Springer,
Dordrecht. https://doi.org/10.1007/978-94-009-1489-6
Rall, B.C., Kalinkat, G., Ott, D., Vucic-Pestic, O., Brose, U., 2011.
Taxonomic versus allometric constraints on non-linear interaction
strengths Oikos 120 (4), 483–492. https://doi.org/10.1111/j.1600-0706.2010.18860.x
Ramirez-Santana, B.P., Rodriguez-Dominguez, G., Avila-Poveda, O.H., 2019.
De herbívoro a detritivoro: evidencia anatómica del tipo de alimentación
en Chiton articulatus (Mollusca: Polyplacophora). RENAMAC, Reunion
Nacional Malacologica, Congress. October 8–11, 2019, Merida, Yucatan, Mexico.
https://smmac.org.mx/renamac-2019/
Ramirez-Santana, B.P., Ospina-Garcés, S.M., Ramirez-Perez, J.S.,
Avila-Poveda, O.H., 2023. A landmark-based geometric morphometric approach
to quantify deviations from bilateral symmetry in polyplacophorans. Zool.
Anz. 306, 37–50. https://doi.org/10.1016/j.jcz.2023.06.008
Richir, J., Gobert, S., 2014. The effect of size, weight, body compartment,
sex and reproductive status on the bioaccumulation of 19 trace elements in
rope-grown Mytilus galloprovincialis. Ecol. Indic. 36, 33–47. https://doi.org/10.1016/j.ecolind.2013.06.021
Rivero-Rodrı́guez, S., Beaumont, A.R., Lora-Vilchis, M.C., 2007. The
effect of microalgal diets on growth, biochemical composition, and fatty acid
profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 263
(1–4), 199–210. https://doi.org/10.1016/j.aquaculture.2006.09.038
Rouane-Hacene, O., Boutiba, Z., Belhaouari, B., Guibbolini- Sabatier, M.E.,
Francour, P., Risso-de Faverney, Ch., 2015. Seasonal assessment of
biological indices, bioaccumulation and bioavailability of heavy metals in
mussels Mytilus galloprovincialis from Algerian west coast, applied to
environmental monitoring. Oceanologia 57 (4), 362–374. https://doi.org/10.1016/j.oceano.2015.07.004
Rouane-Hacene, O., Boutiba, Z., Benaissa, M., Belhaouari, B., Francour, P.,
Guibbolini-Sabatier, M.E., Risso-De Faverney, Ch., 2018. Seasonal
assessment of biological indices, bioaccumulation, and bioavailability of heavy
metals in sea urchins Paracentrotus lividus from Algerian west coast, applied
to environmental monitoring. Environ. Sci. Pollut. R. 25 (12),
11238–11251. https://doi.org/10.1007/s11356-017-8946-0
Sahnoun, F., Bendraoua, A., Hadjel, M., 2010. Controle De La Pollution
Marine Du Littoral Oranais. Comm. Sci. Tech. No. 8, Oran. https://www.researchgate.net/publication/271485657
Saier, B. 2000. Age-dependent zonation of the periwinkle Littorina littorea
(L.) in the Wadden Sea. Helgoland Mar. Res. 54 (4), 224–229. https://doi.org/10.1007/s101520000054
Salloum, M.P., Lavery, D.S., de Villemereuil, P., Santure, W.A., 2023.
Local adaptation in shell shape traits of a brooding chiton with strong
population genomic differentiation. Evolution 77 (1), 210–220. https://doi.org/10.1093/evolut/qpac011
Salomidi, M., Katsanevakis, S., Borja, A., Braeckman, U., Damalas, D.,
Galparsoro, I., Mifsud, R., Mirto, S., Pascual, M., Pipitone, C., Rabaut, M.,
Todorova, V., Vassilopoulou, V., Vega Fernandez, T., 2012. Assessment of
goods and services, vulnerability, and conservation status of European seabed
biotopes: a stepping stone towards ecosystem-based marine spatial
management. Mediterr. Mar. Sci. 13 (1), 49. https://doi.org/10.12681/mms.23
Schönberg, C.H.L., Wisshak, M., 2014. Marine Bioerosion. [In:] Goffredo, S.,
Dubinsky, Z. (Eds), The Mediterranean Sea, Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6704-1_26
Schwabe, E., 2010. Illustrated summary of chiton terminology (Mollusca,
Polyplacophora). Spixiana, Zeitschrift für Zoologie, 33 (2), 171–194.
Selleslagh, J., Amara, R., Laffargue, P., Lesourd, S., Lepage, M., Girardin,M.,
2009. Fish composition and assemblage structure in three Eastern English
Channel macrotidal estuaries : A comparison with other French estuaries.
Estuar. Coast. Shelf S. 81 (2), 149–159. https://doi.org/10.1016/j.ecss.2008.10.008
Sebens, K.P., 2002. Energetic constraints, size gradients, and size limits
in benthic marine invertebrates. Integr. Comp. Biol. 42 (4), 853–861. https://doi.org/10.1093/icb/42.4.853
Shaw, J.A., Clode, P., Brooker, L.R., Maker, G., 2009. The chiton fauna of
the Swan River Estuary and their potential role as indicators of environmental
contamination. Report, University of the Sunshine Coast, Queensland, Swan
River Trust Publ.
Shaw, J.A., Macey, D.J., Brooker, L.R., Clode, P., 2010. Tooth Use and Wear
in Three Iron-Biomineralizing Mollusc Species. Biol. Bull. 218 (2),
132–144. https://doi.org/10.1086/BBLv218n2p132
Sigwart, J.D., Stoeger, I., Knebelsberger, T., Schwabe, E., 2013. Chiton
phylogeny (Mollusca: Polyplacophora) and the placement of the enigmatic species
Choriplax grayi (H. Adams & Angas). Invertebr. Syst. 27 (6), 603. https://doi.org/10.1071/IS13013
Sigwart, J.D., Green, P.A., Crofts, S.B., 2015. Functional morphology in
chitons (Mollusca, Polyplacophora): influences of environment and ocean
acidification. Mar. Biol. 162 (11), 2257–2264. https://doi.org/10.1007/s00227-015-2761-2
Silva-Cavalcanti, J.S., Costa, M.F., Alves, L.H.B., 2018. Seasonal
variation in the abundance and distribution of Anomalocardia flexuosa
(Mollusca, Bivalvia, Veneridae) in an estuarine intertidal plain. PeerJ.
6, e4332. https://doi.org/10.7717/peerj.4332
Soliman, F.E., Hussein, M.A., Elmaraghji, A.H., Yousif, T.N., 1996.
Reproductive ecology of the common rock chiton Acanthopleura gemmata
(Mollusca: Polyplacophora) in the northwestern coast of the red sea. Qatar
Univ. Sci. J. 16 (1), 95–102. http://qspace.qu.edu.qa/handle/10576/9664
Soto, M., Ireland, M.P., Marigómez, I., 2000. Changes in mussel biometry
on exposure to metals: Implications in estimation of metal bioavailability in
“Mussel-Watch” programmes. Sci. Total Environ. 247 (2–3), 175–187.
https://doi.org/10.1016/S0048-9697(99)00489-1
Stevenson, R.D., Woods, W.A., 2006. Condition indices for conservation: new
uses for evolving tools. Integr. Comp. Biol. 46 (6), 1169–1190. https://doi.org/10.1093/icb/icl052
Taleb, M., Tahraoui, F., Kerfouf, A., 2015. Impact of Anthropic Activity on
a Coastal Environment of Ecological Interest: Stidia (Mostaganem – Algerian
West). Int. J. Sci.: Basic Appl. Res. (IJSBAR), 21 (1), 254–260. https://www.gssrr.org/JournalOfBasicAndApplied/article/view/3467
Taibi, N., 2016. Conflict between coastal tourism development and
sustainability: case of Mostaganem, Western Algeria. Eur. J. Sustain.
Develop. 5 (4), 13–24. https://doi.org/10.14207/ejsd.2016.v5n4p13
Tokeshi, M., Ota, N., Kawai, T., 2000. A comparative study of morphometry
in shell-bearing molluscs. J. Zool. 251 (1), 31–38 https://doi.org/10.1017/S0952836900005057
Varkoulis, A., Voulgaris, K., Zachos, D.S., Vafidis, D., 2023. Population
Dynamics of Three Polyplacophora Species from the Aegean Sea (Eastern
Mediterranean). Diversity, 15, 867. https://doi.org/10.3390/d15070867
Von Middendorff, A.T., 1847. Beiträge zu einer Malakozoologia
Rossica. Mémoires Sciences Naturelles de l’Académie Impériale des
Sciences St. Petersburg. 6 (1), 69–215.
Wang, W., Fisher, N., 1997. Modeling the influence of body size on trace
element accumulation in the mussel Mytilus edulis. Mar. Ecol.-Prog. Ser.
161, 103–115. https://doi.org/10.3354/meps161103
Watters, G.T., 1991. Utilization of a simple morphospace by
polyplacophorans and its evolutionary implications. Malacologia 33(1–2),
221–240.
Webb, T.J., Dulvy, N.K., Jennings, S., Polunin, N.V.C., 2011. The birds and
the seas: body size reconciles differences in the abundance–occupancy
relationship across marine and terrestrial vertebrates. Oikos 120 (4),
537–549. https://doi.org/10.1111/j.1600-0706.2011.18870.x
Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesenf, J.M., Validog,
A., Warren, Ph.H., 2005. Body size in ecological networks. Trends
Ecol. Evol. 20 (7), 402–409. https://doi.org/10.1016/j.tree.2005.04.005
Zorita, I., Apraiz, I., Ortiz-Zarragoitia, M., Orbea, A., Cancio, I., Soto, M.,
Marigómez, I., Cajaraville, M.P., 2007. Assessment of biological effects
of environmental pollution along the NW Mediterranean Sea using mussels as
sentinel organisms. Environ. Pollut. 148 (1), 236–250. https://doi.org/10.1016/j.envpol.2006.10.022
Lowland catchment runoff response to climate change under CMIP6 in the Baltic region
Oceanologia, 68 (1)/2026, 68103, 17 pp.
https://doi.org/10.5697/PORP9186
Darius Jakimavičius*, Diana Šarauskienė, Jūratė Kriaučiūnienė, Aldona Jurgelėnaitė
Laboratory of Hydrology, Lithuanian Energy Institute, Breslaujos St. 3, LT–44403 Kaunas, Lithuania;
e-mail: darius.jakimavicius@lei.lt (D. Jakimavičius)
*corresponding author
Keywords:
River runoff; Climate change; CMIP6; HBV
Received: 10 April 2025; revised: 8 November 2025; accepted: 12 November 2025
Highlights
- A ranking procedure was developed to select the ensemble of the best-performing global climate models (GCMs) that could be used to determine river runoff projections.
- The impact of climate change on lowland rivers‘ runoff was assessed using the ensemble of best-performing GCMs.
- An uncertainty analysis of the runoff projections revealed that GCMs and emission scenarios contributed up to 2/3 and 1/3 of the total uncertainty, respectively.
Abstract
Record or near-record high or low river flows are more often observed in different regions of the world. A thriving society
must understand the magnitude of these changes in the future, mitigate their negative impacts, and be prepared to
live in a different world. That is why qualified, constantly updated scientific projections of future changes are essential.
Neither Lithuania nor the other Baltic countries have yet assessed runoff changes according to the latest climate change
projection tools outlined in the IPCC 6th AR on climate change. In this study, the HBV model was used to project
potential changes in river runoff. The ranking procedure was developed and used to select the best-fit GCMs that most
accurately reproduced the climate conditions of Lithuania. Due to the anticipated changes in climatic factors affecting
the studied rivers, the average annual discharge is projected to decrease by 12 to 42%, depending on the hydrological
region (i.e., the conditions of river runoff formation) and the selected future period. High flows (Q5) are likely to
decline very similarly to the annual ones, while low flows (Q95) are expected to decrease by approximately two-thirds
compared to the reference period. An uncertainty analysis of the projections revealed that GCMs contributed up to
two-thirds of the total uncertainty in the final results.
References
Afzal, M., Vavlas, N., Ragab, R., 2021.
Modelling study to quantify the
impact of future climate and land use changes on water resources availability
at catchment scale. J. Water Clim. Change 12, 339–361.
https://doi.org/10.2166/wcc.2020.117
Akstinas, V., Jakimavičius, D., Meilutytė-Lukauskienė, D.,
Kriaučiūnienė, J., Šarauskienė, D., 2
020. Uncertainty of annual
runoff projections in Lithuanian rivers under a future climate. Hydrol.
Res. 51, 257–271.
https://doi.org/10.2166/nh.2019.004
Akstinas, V., Šarauskienė, D., Kriaučiūnienė, J., Nazarenko, S.,
Jakimavičius, D., 20
22. Spatial and Temporal Changes in Hydrological
Regionalization of Lowland Rivers. Int. J. Environ. Res. 16, 1.
https://doi.org/10.1007/s41742-021-00380-8
Alan Yeakley, J., Ervin, D., Chang, H., Granek, E.F., Dujon, V., Shandas, V.,
Brown, D., 2016.
Ecosystem services of streams and rivers. [In:]
Gilvear, D.J., Greenwood,M.T., Thoms, M.C., Wood, P.J. (Eds.), River Science,
Wiley, 335–352.
https://doi.org/10.1002/9781118643525.ch17
Anil, S., P, A.R., Vema, V.K., 2024.
Catchment response to climate change
under CMIP6 scenarios: a case study of the Krishna River Basin. J. Water
Clim. Change 15, 476–498.
https://doi.org/10.2166/wcc.2024.442
Bergström, S., 1992. The HBV model – its structure and applications. SMHI
RH No 4. Norrköping, 32. Bhanage, V., Lee, H.S., Cabrera, J.S., Kubota, T.,
Pradana, R.P., Fajary, F.R., Nimiya, H., 2024.
Identification of optimal
CMIP6 GCMs for future typical meteorological year in major cities of Indonesia
using multi-criteria decision analysis. Front. Environ. Sci. 12, 1341807.
https://doi.org/10.3389/fenvs.2024.1341807
Bian, G., Zhang, J., Chen, J., Song, M., He, R., Liu, C., Liu, Y., Bao, Z.,
Lin, Q., Wang, G., 2021.
Projecting Hydrological Responses to Climate
Change Using CMIP6 Climate Scenarios for the Upper Huai River Basin,
China. Front. Environ. Sci. 9, 759547.
https://doi.org/10.3389/fenvs.2021.759547
Bongaarts, J., 2019. IPBES, 2019.
Summary for policymakers of the global
assessment report on biodiversity and ecosystem services of the
Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem
Services. Popul. Dev. Rev. 45, 6800–681.
https://doi.org/10.1111/padr.12283
Brêda, J.P.L.F., De Paiva, R.C.D., Collischon, W., Bravo, J.M., Siqueira,
V.A., Steinke, E.B., 2020.
Climate change impacts on South American water
balance from a continentalscale hydrological model driven by CMIP5
projections. Clim. Change 159, 503–522.
https://doi.org/10.1007/s10584-020-02667-9
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C.,
Romero, J., et al., 2023.
Climate Change 2023: Synthesis Report.
Contribution of Working Groups I, II and III to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change First Intergovernmental Panel on
Climate Change, IPCC, Geneva, Switzerland.
https://10.59327/IPCC/AR6-9789291691647
Chen, H., Sun, J., Lin, W., Xu, H., 2020.
Comparison of CMIP6 and CMIP5
models in simulating climate extremes. Science Bull. 65, 1415–1418.
https://doi.org/10.1016/j.scib.2020.05.015
Clark, M.P., Bierkens, M.F.P., Samaniego, L., Woods, R.A., Uijenhoet, R.,
Bennet, K.E., Pauwels, V.R.N., Cai, X., Wood, A.W., Peters-Lidard, C.D., 2017.
The evolution of processbased hydrologic models: Historical challenges and
the collective quest for physical realism. https://doi.org/10.5194/hess-2016-693
Copernicus Climate Change Service (C3S), 2024.
European State of the
Climate 2023. Copernicus Climate Change Service (C3S).
https://doi.org/10.24381/BS9V-8C66
Dallison, R.J.H., Williams, A.P., Harris, I.M., Patil, S.D., 2022.
Modelling the impact of future climate change on streamflow and water
quality in Wales, UK. Hydrol. Sci. J. 67, 939–962.
https://doi.org/10.1080/02626667.2022.2044045
Dialogue Earth, 2022.
Irreversible climate impacts already here: IPCC.
https://dialogue.earth/en/climate/ipcc-sixth-assessment-stark-warning/
(accessed on 04-06-2024)
Döll, P., Jiménez-Cisneros, B., Oki, T., Arnell, N.W., Benito, G., Cogley,
J.G., Jiang, T., Kundzewicz, Z.W., Mwakalila, S., Nishijima, A., 2015.
Integrating risks of climate change into water management. Hydrol.
Sci. J. 60, 4–13.
https://doi.org/10.1080/02626667.2014.967250
Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier,
P., Ludwig, F., 2017.
Impacts of climate change on European hydrology at
1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim.
Change 143, 13–26.
https://doi.org/10.1007/s10584-017-1971-7
Duan, K., Sun, G., McNulty, S.G., Caldwell, P.V., Cohen, E.C., Sun, S.,
Aldridge, H.D., Zhou, D., Zhang, L., Zhang, Y., 2017.
Future shift of the
relative roles of precipitation and temperature in controlling annual runoff in
the conterminous United States. Hydrol. Earth Syst. Sci. 21, 5517–5529.
https://doi.org/10.5194/hess-21-5517-2017
Etukudoh, E.,A., Ilojianya, V. I., Ayorinde, O., B., Daudu, C. D. , Adefemi,
A., Hamdan, A., 2024.
Review of climate change impact on water availability
in the USA and Africa. Int. J. Sci. Res. Arch. 11, 942–951.
https://doi.org/10.30574/ijsra.2024.11.1.0169
Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J.,
Taylor, K.E., 2016.
Overview of the Coupled Model Intercomparison Project
Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev.
9, 1937–1958.
https://doi.org/10.5194/gmd-9-1937-2016
European Environment Agency (EEA), 2023.
Economic losses from weather- and
climate-related extremes in Europe. https://www.eea.europa.eu/en/analysis/indicators/economic-losses-from-climate-related
(accessed on 02-06-2024)
Gailiušis, B., Jablonskis, J., Kovalenkoviene, M., 2001.
Lithuanian
rivers: hydrography and runoff. Lithuanian Energy Inst., Kaunas,
Lithuanuia. 792 pp.
Gebrechorkos, S., Leyland, J., Slater, L., Wortmann, M., Ashworth, P.J.,
Bennett, G.L., Boothroyd, R., Cloke, H., Delorme, P., Griffith, H., Hardy, R.,
Hawker, L., McLelland, S., Neal, J., Nicholas, A., Tatem, A.J., Vahidi, E.,
Parsons, D.R., Darby, S.E., 2023.
A high-resolution daily global dataset of
statistically downscaled CMIP6 models for climate impact analyses. Sci.
Data 10, 611.
https://doi.org/10.1038/s41597-023-02528-x
Gebresellase, S.H., Wu, Z., Xu, H., Muhammad, W.I., 2022.
Evaluation and
selection of CMIP6 climate models in Upper Awash Basin (UBA), Ethiopia:
Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA),
Ethiopia. Theor. Appl. Climatol. 149, 1521–1547.
https://doi.org/10.1007/s00704-022-04056-x
Grose, M.R., Narsey, S., Delage, F.P., Dowdy, A.J., Bador, M., Boschat, G.,
Chung, C., Kajtar, J.B., Rauniyar, S., Freund, M.B., Lyu, K., Rashid, H.,
Zhang, X., Wales, S., Trenham, C., Holbrook, N.J., Cowan, T., Alexander, L.,
Arblaster, J.M., Power, S., 2020.
Insights From CMIP6 for Australia’s
Future Climate. Earth’s Futur. 8, e2019EF001469.
https://doi.org/10.1029/2019EF001469
Guan, X., Zhang, J., Bao, Z., Liu, C., Jin, J., Wang, G., 2021.
Past
variations and future projection of runoff in typical basins in 10 water zones,
China. Sci. Total Environ. 798, 149277.
https://doi.org/10.1016/j.scitotenv.2021.149277
Gusain, A., Ghosh, S., Karmakar, S., 2020.
Added value of CMIP6 over CMIP5
models in simulating Indian summer monsoon rainfall. Atmos. Res. 232,
104680.
https://doi.org/10.1016/j.atmosres.2019.104680
Haider, S., Masood, M.U., Rashid, M., Alshehri, F., Pande, C.B., Katipoğlu,
O.M., Costache, R., 2023.
Simulation of the Potential Impacts of Projected
Climate and Land Use Change on Runoff under CMIP6 Scenarios. Water 15,
3421.
https://doi.org/10.3390/w15193421
Hattermann, F.F., Vetter, T., Breuer, L., Su, B., Daggupati, P., Donnelly, C.,
Fekete, B., Flörke, F., Gosling, S.N., Hoffmann, P., Liersch, S., Masaki, Y.,
Motovilov, Y., Müller, C., Samaniego, L., Stacke, T., Wada, Y., Yang, T.,
Krysnaova, V., 2018.
Sources of uncertainty in hydrological climate impact
assessment: a cross-scale study. Environ. Res. Lett. 13, 015006.
https://doi.org/10.1088/1748-9326/aa9938
Held, I.M., Soden, B.J., 2006.
Robust Responses of the Hydrological Cycle
to Global Warming. J. Clim. 19, 5686–5699.
https://doi.org/10.1175/JCLI3990.1
Integrated Hydrological Modelling System (IHMS), 2005.
Manual. Version
5.8. Swedish Meteorol. Hydrol.Inst., 115 pp.
Intergovernmental Panel On Climate Change (IPCC), 2023a.
Climate Change
2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution
to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change. 1st edn., Cambridge Univ. Press.
https://doi.org/10.1017/9781009325844
Intergovernmental Panel On Climate Change (IPCC), 2023b.
Climate Change
2021 – The Physical Science Basis: Working Group I Contribution to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change. 1st
edn., Cambridge Univ. Press.
https://doi.org/10.1017/9781009157896
Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., Ziarh, G.F., Chung, E.-S., Wang,
X., 2021.
Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia.
Atmos. Res. 254, 105525.
https://doi.org/10.1016/j.atmosres.2021.105525
Jakimavičius, D., Adžgauskas, G., Šarauskienė, D., Kriaučiūnienė,
J., 2020.
Climate Change Impact on Hydropower Resources in Gauged and
Ungauged Lithuanian River Catchments. Water 12, 3265.
https://doi.org/10.3390/w12113265
Jakimavičius, D., Kriaučiūnienė, J., Šarauskienė, D., 2018.
Impact of climate change on the Curonian Lagoon water balance components,
salinity and water temperature in the 21st century. Oceanologia 60 (3),
378–389.
https://doi.org/10.1016/j.oceano.2018.02.003
Jeantet, A., Thirel, G., Lemaitre-Basset, T., Tournebize, J., 2023.
Uncertainty propagation in a modelling chain of climate change impact for a
representative French drainage site. Hydrol. Sci. J. 68, 1426–1442.
https://doi.org/10.1080/02626667.2023.2203322
Jiang, T., Su, B., Huang, J., Zhai, J., Xia, J., Tao, H., Wang, Y., Sun, H.,
Luo, Y., Zhang, L., Wang, G., Zhan, C., Xiong, M., Kundzewicz, Z.W., 2020.
Each 0.5°C of Warming Increases Annual Flood Losses in China by More than
US$60 Billion. Bull. Am. Meteorol. Soc. 101, E1464–E1474.
https://doi.org/10.1175/BAMS-D-19-0182.1
Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J., Sandstad, M., 2020.
Evaluation of the CMIP6 multi-model ensemble for climate extreme
indices. Weather Clim. Extremes 29, 100269.
https://doi.org/10.1016/j.wace.2020.100269
Kis, A., Pongrácz, R., 2024.
The projected changes of hydrological
indicators in European catchments with different climatic conditions.
Hydrol. Sci. J. 69, 1797–1812.
https://doi.org/10.1080/02626667.2024.2390908
Kriauciuniene, J., Jakimavicius, D., Sarauskiene, D., Kaliatka, T., 2013.
Estimation of uncertainty sources in the projections of Lithuanian river
runoff. Stoch. Environ. Res. Risk. Assess. 27, 769–784.
https://doi.org/10.1007/s00477-012-0608-7
Kriaučiūnienė, J., Meilutytė-Barauskienė, D., Rimkus, E., Kažys,
J., Vincevičius, A., 2
008. Climate change impact on hydrological
processes in Lithuanian Nemunas river basin. Baltica 21, 51–61.
Kriaučiūnienė, J., Virbickas, T., Šarauskienė, D., Jakimavičius,
D., Kažys, J., Bukantis, A., Kesminas, V., Povilaitis, A., Dainys, J.,
Akstinas, V., Jurgelėnaitė, A., Meilutytė-Lukauskienė, D.,
Tomkevičienė, A., 20
19. Fish assemblages under climate change in
Lithuanian rivers. Sci. Total Environ. 661, 563–574.
https://doi.org/10.1016/j.scitotenv.2019.01.142
Kundzewicz, Z.W., Krysanova, V., Benestad, R.E., Hov, Ø., Piniewski, M., Otto,
I.M., 2018.
Uncertainty in climate change impacts on water resources.
Environ. Sci. Policy 79, 1–8.
https://doi.org/10.1016/j.envsci.2017.10.008
Kurniadi, A., Weller, E., Kim, Y., Min, S., 2023.
Evaluation of Coupled
Model Intercomparison Project Phase 6 model-simulated extreme precipitation
over Indonesia. Int. J. Climatol. 43, 174–196.
https://doi.org/10.1002/joc.7744
Lane, R.A., Kay, A.L., 2021.
Climate Change Impact on the Magnitude and
Timing of Hydrological Extremes Across Great Britain. Front. Water 3,
684982. https://doi.org/10.3389/frwa.2021.684982 Lennox, R.J., Crook, D.A.,
Moyle, P.B., Struthers, D.P., Cooke, S.J., 2019. Toward a better understanding
of freshwater fish responses to an increasingly drought-stricken world. Rev.
Fish. Biol. Fisheries 29, 71–92.
https://doi.org/10.1007/s11160-018-09545-9
Martel, J.-L., Brissette, F., Troin, M., Arsenault, R., Chen, J., Su, T.,
Lucas-Picher, P., 2022.
CMIP5 and CMIP6 Model Projection Comparison for
Hydrological Impacts Over North America. Geophys. Res. Lett. 49,
e2022GL098364.
https://doi.org/10.1029/2022GL098364
Meinshausen, M., Nicholls, Z.R.J., Lewis, J., Gidden, M.J., Vogel, E., Freund,
M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel,
J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A.,
Rayner, P.J., Reimann, S., Smith, S.J., Van Den Berg, M., Velders, G.J.M.,
Vollmer, M.K., Wang, R.H.J., 2020.
The shared socio-economic pathway (SSP)
greenhouse gas concentrations and their extensions to 2500. Geosci. Model
Dev. 13, 3571–3605.
https://doi.org/10.5194/gmd-13-3571-2020
Muelchi, R., Rössler, O., Schwanbeck, J., Weingartner, R., Martius, O., 2021.
River runoff in Switzerland in a changing climate – runoff regime changes
and their time of emergence. Hydrol. Earth Syst. Sci. 25, 3071–3086.
https://doi.org/10.5194/hess-25-3071-2021
Murphy, C., Kettle, A., Meresa, H., Golian, S., Bruen, M., O’Loughlin, F.,
Mellander, P.-E., 2023.
Climate Change Impacts on Irish River Flows: High
Resolution Scenarios and Comparison with CORDEX and CMIP6 Ensembles. Water
Resour. Manage. 37, 1841–1858.
https://doi.org/10.1007/s11269-023-03458-4
Nazarenko, S., Meilutytė-Lukauskienė, D., Šarauskienė, D.,
Kriaučiūnienė, J., 2
022. Spatial and Temporal Patterns of Low-Flow
Changes in Lowland Rivers. Water 14, 801.
https://doi.org/10.3390/w14050801
Nazarenko, S., Šarauskienė, D., Putrenko, V., Kriaučiūnienė, J.,
20
23. Evaluating Hydrological Drought Risk in Lithuania. Water 15,
2830.
https://doi.org/10.3390/w15152830
Nguyen-Duy, T., Ngo-Duc, T., Desmet, Q., 2023.
Performance evaluation and
ranking of CMIP6 global climate models over Vietnam. J. Water Clim. Change
14, 1831–1846.
https://doi.org/10.2166/wcc.2023.454
Núñez Mejı́a, S.X., Mendoza Paz, S., Tabari, H., Willems, P., 202
3.
Climate change impacts on hydrometeorological and river hydrological extremes
in Quito, Ecuador. J. Hydrol.: Reg. Stud. 49, 101522.
https://doi.org/10.1016/j.ejrh.2023.101522
Palmer, T.E., Booth, B.B.B., McSweeney, C.F., 2021.
How does the CMIP6
ensemble change the picture for European climate projections? Environ.
Res. Lett. 16, 094042.
https://doi.org/10.1088/1748-9326/ac1ed9
Pervin, L., Gan, T.Y., Scheepers, H., Islam, M.S., 2021.
Application of the
HBV model for the future projections of water levels using dynamically
downscaled global climate model data. J. Water Clim. Change 12,
2364–2377.
https://doi.org/10.2166/wcc.2021.302
Piniewski, M., Szcześniak, M., Huang, S., Kundzewicz, Z.W., 2018.
Projections of runoff in the Vistula and the Odra river basins with the
help of the SWAT model. Hydrol. Res. 49, 303–317.
https://doi.org/10.2166/nh.2017.280
Rahman, A., Pekkat, S., 2024.
Identifying and ranking of CMIP6-global
climate models for projected changes in temperature over Indian
subcontinent. Sci. Rep. 14, 3076.
https://doi.org/10.1038/s41598-024-52275-1
Raju, K.S., Kumar, D.N., 2020.
Review of approaches for selection and
ensembling of GCMs. J. Water Clim. Change 11, 577–599.
https://doi.org/10.2166/wcc.2020.128
Ritter, A., Muñoz-Carpena, R., 2013.
Performance evaluation of
hydrological models: Statistical significance for reducing subjectivity in
goodness-of-fit assessments. J. Hydrol. 480, 33–45.
https://doi.org/10.1016/j.jhydrol.2012.12.004
Rivera, P., 2024.
Climate change projections in Guatemala: temperature and
precipitation changes according to CMIP6 models. Model. Earth Syst.
Environ. 10, 2031–2049.
https://doi.org/10.1007/s40808-023-01881-5
Šarauskienė, D., Akstinas, V., Kriaučiūnienė, J., Jakimavičius, D.,
Bukantis, A., Kažys, J., Povilaitis, A., Ložys, L., Kesminas, V.,
Virbickas, T., Pliuraitė, V., 2018.
Projection of Lithuanian river
runoff, temperature and their extremes under climate change. Hydrol. Res.
49, 344–362.
https://doi.org/10.2166/nh.2017.007
Šarauskienė, D., Akstinas, V., Nazarenko, S., Kriaučiūnienė, J.,
Jurgelėnaitė, A., 2020.
Impact of physico-geographical factors and
climate variability on flow intermittency in the rivers of water surplus
zone. Hydrol. Proc. 34, 4727–4739.
https://doi.org/10.1002/hyp.13912
Senatore, A., Fuoco, D., Maiolo, M., Mendicino, G., Smiatek, G., Kunstmann, H.,
2022.
Evaluating the uncertainty of climate model structure and bias
correction on the hydrological impact of projected climate change in a
Mediterranean catchment. J. Hydrol.: Reg. Stud.42, 101120.
https://doi.org/10.1016/j.ejrh.2022.101120
Sleziak, P., Výleta, R., Hlavčová, K., Danáčová, M., Aleksić, M.,
Szolgay, J., Kohnová, S., 2021.
A Hydrological Modeling Approach for
Assessing the Impacts of Climate Change on Runoff Regimes in Slovakia.
Water 13, 3358. h
ttps://doi.org/10.3390/w13233358
Stonevičius, E., Rimkus, E., Štaras, A., Kažys, J., Valiuškevičius,
G., 20
17. Climate change impact on the Nemunas River basin hydrology in the
21st century. Boreal Environ. Res. 22, 49–65.
Su, B., Huang, J., Zeng, X., Gao, C., Jiang, T., 2017.
Impacts of climate
change on streamflow in the upper Yangtze River basin. Clim. Change 141,
533–546.
https://doi.org/10.1007/s10584-016-1852-5
Susnik, J., Masia, S., Teutschbein, C., 2023.
Water as a key enabler of
nexus systems (water-energy-food). Camb. Prisms Water 1–29.
https://doi.org/10.1017/wat.2023.1
Tariq, M., Rohith, A.N., Cibin, R., Aruffo, E., Abouzied, G.A.A., Carlo, P.D.,
2024.
Understanding future hydrologic challenges: Modelling the impact of
climate change on river runoff in central Italy. Environ. Challenges 15,
100899.
https://doi.org/10.1016/j.envc.2024.100899
The Guardian, 2021.
Major climate changes inevitable and irreversible –
IPCC’s starkest warning yet. https://www.theguardian.com/science/2021/aug/09/humans-
have- caused- unprecedented- and-
irreversible-change-to-climate-scientists-warn (accessed on 28-05-2024)
Tian, Y., Xu, Y.-P., Booij, M.J., Cao, L., 2016.
Impact assessment of
multiple uncertainty sources on high flows under climate change. Hydrol.
Res. 47, 61–74.
https://doi.org/10.2166/nh.2015.008
Vetter, T., Reinhardt, J., Flörke, M., Van Griensven, A., Hattermann, F.,
Huang, S., Koch, H., Pechlivanidis, I.G., Plötner, S., Seidou, O., Su, B.,
Vervoort, R.W., Krysanova, V., 2017.
Evaluation of sources of uncertainty
in projected hydrological changes under climate change in 12 large-scale river
basins. Clim. Change 141, 419–433.
https://doi.org/10.1007/s10584-016-1794-y
Wei, L., Xin, X., Li, Q., Wu, Y., Tang, H., Li, Y., Yang, B., 2023.
Simulation and projection of climate extremes in China by multiple Coupled
Model Intercomparison Project Phase 6 models. Int. J. Climatol. 43,
219–239.
https://doi.org/10.1002/joc.7751
Wen, K., Gao, B., Li, M., 2021.
Quantifying the Impact of Future Climate
Change on Runoff in the Amur River Basin Using a Distributed Hydrological Model
and CMIP6 GCM Projections. Atmosphere 12, 1560.
https://doi.org/10.3390/atmos12121560
Woodward, G., Perkins, D.M., Brown, L.E., 2010.
Climate change and
freshwater ecosystems: impacts across multiple levels of organization.
Phil. Trans. R. Soc. B 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055
Xin, X., Wu, T., Zhang, J., Yao, J., Fang, Y., 2020. Comparison of CMIP6 and
CMIP5 simulations of precipitation in China and the East Asian summer monsoon.
Int. J. Climatol. 40, 6423–6440.
https://doi.org/10.1002/joc.6590
Xiong, J., Guo, S., Abhishek, Chen, J., Yin, J., 2022.
Global evaluation of
the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water
storage change perspective. Hydrol. Earth Syst. Sci. 26, 6457–6476.
https://doi.org/10.5194/hess-26-6457-2022
Yang, H., Zhou, F., Piao, S., Huang, M., Chen, A., Ciais, P., Li, Y., Lian, X.,
Peng, S., Zeng, Z., 2017.
Regional patterns of future runoff changes from
Earth system models constrained by observation. Geophys. Res. Lett. 44,
5540–5549.
https://doi.org/10.1002/2017GL073454
Yang, T., Ding, J., Liu, D., Wang, X., Wang, T., 2019.
Combined Use of
Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets
Wetter Paradigm. J. Climate 32, 737–748.
https://doi.org/10.1175/JCLI-D-18-0261.1
Chlorophyll a distribution in the Arabian Gulf: climate, trends, and global teleconnections
Oceanologia, 68 (1)/2026, 68104, 20 pp.
https://doi.org/10.5697/FIXM1200
Cheriyeri Poyil Abdulla1, Valliyil Mohammed Aboobacker1,*, Muhammad Shafeeque2, Ponnumony Vethamony1
1Environmental Science Center, Qatar University, P.O. Box. 2713, Doha, Qatar;
e-mail: vmaboobacker@qu.edu.qa (V. M. Aboobacker)
2Applied Research Center for Environment and Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
*corresponding author
Keywords:
Arabian Gulf; GlobColour; Chlorophyll a; Primary productivity; Gulf circulation; Climatic indices
Received: 20 March 2025; revised: 9 November 2025; accepted: 17 November 2025
Highlights
- CMEMS Chl-a data are verified against in situ measurements in Qatar waters.
- Significant increasing trends in Chl-a in the northern and southern Gulf coasts.
- Opposing phase of Chl-a dominance between the Arabian and Iranian coasts of the Gulf.
- Contrasting trends along the Iranian coast due to differential nutrient supply.
- La Niña and +ve IOD enhance Chl-a, while El Niño and –ve IOD cause its decline.
Abstract
The study examined the climatology, trends, and variability of chlorophyll a (hereafter referred to as ‘Chl a’)
concentration in the Arabian Gulf (hereafter referred to as ‘Gulf’), utilizing merged satellite datasets for the period
1998–2022. Distinct spatial and temporal variabilities were identified, which are linked to climatic features, inflow from
the Arabian Sea, freshwater discharge into the Gulf, and the Gulf circulation. The study identified an opposing phase
in the dominance of Chl a between the southern Iranian coast and the Arabian coast. Among wind speed, sea level
anomaly, and sea surface temperature (SST), multiple linear regression analysis revealed SST as the strongest predictor
of phytoplankton growth. The La Niña and positive Indian Ocean dipole (IOD) phases enhanced the Chl a, while El
Niño and negative IOD phases caused its decline. The Chl a increased in the northern coast and southern shelf of the
Gulf, of the order of 0.017–0.031 mg/m3/y, while the southern Iranian coast exhibited weaker negative trends.
References
Abish, B., Cherchi, A., Ratna, S.B., 2018.
ENSO and the recent warming of
the Indian Ocean. Int. J. Climatol. 38 (1), 203–214.
https://doi.org/10.1002/joc.5170
Aboobacker, V.M., Abdulla, C.P., Al-Ansari, E.M.A.S., Vethamony, P., 2024a.
Impacts of Shamal and Nashi winds on the hydrodynamics along the northeast
coast of Qatar, central Arabian Gulf. J. Coastal Res. 113, 609–613.
https://doi.org/10.2112/JCR-SI113-120.1
Aboobacker, V.M., Hasna, V.M., Al-Ansari, E.M.A.S., Vethamony, P., 2024b.
Nearshore Hydrography along the Coast of Doha, Central Arabian Gulf.
J. Coastal Res. 113, 422–426.
https://doi.org/10.2112/JCR-SI113-083.1
Aboobacker, V.M., Samiksha, S.V., Veerasingam, S., Al-Ansari, E.M.A.S.,
Vethamony, P., 2021a.
Role of shamal and easterly winds on the wave
characteristics off Qatar, central Arabian Gulf. Ocean Eng. 236, 109457.
https://doi.org/10.1016/j.oceaneng.2021.109457
Aboobacker, V.M., Shanas, P.R., Veerasingam, S., Al-Ansari, E.M.A.S., Sadooni,
F.N., Vethamony, P., 2021b.
Longterm assessment of onshore and offshore
wind energy potentials of Qatar. Energies 14 (4), 1178.
https://doi.org/10.3390/en14041178
Ahmad, F., Sultan, S., 1991.
Annual mean surface heat fluxes in the Arabian
Gulf and the net heat transport through the Strait of Hormuz. Atmos. Ocean
29 (1), 54–61.
https://doi.org/10.1080/07055900.1991.9649392
Al Senafi, F., 2022.
Atmosphere-ocean coupled variability in the
Arabian/Persian Gulf. Front. Marine Sci. 9, 809355.
https://doi.org/10.3389/fmars.2022.809355
Al Shehhi, M.R., Gherboudj, I., Ghedira, H., 2014.
An overview of
historical harmful algae blooms outbreaks in the Arabian Seas. Mar.
Pollut. Bull. 86 (1–2), 314–324.
https://doi.org/10.1016/j.marpolbul.2014.06.048
Al-Ansari, E.M.A.S., Husrevoglu, Y.S., Yigiterhan, O., Youssef, N.,
Al-Maslamani, I.A., Abdel-Moati, M.A., Al-Mohamedi, A.J., Aboobacker, V.M.,
Vethamony, P., 2022.
Seasonal variability of hydrography off the east coast
of Qatar, central Arabian Gulf. Arab. J. Geosci. 15 (22), 1659.
https://doi.org/10.1007/s12517-022-10927-4
Al-Mudaffar Fawzi, N., Mahdi, B.A., 2014.
Iraq’s inland Water quality and
its impact on the North-Western Arabian Gulf. Marsh Bull. 9 (1).
Al-Naimi, N., Raitsos, D.E., Ben-Hamadou, R., Soliman, Y., 2017.
Evaluation
of satellite retrievals of chlorophyll a in the Arabian Gulf. Remote
Sens-Basel. 9 (3), 301.
https://doi.org/10.3390/rs9030301
Alosairi, Y., Alsulaiman, N., Petrov, P., Karam, Q., 2019.
Responses of
salinity and chlorophyll a to extreme rainfall events in the northwest Arabian
Gulf: Emphasis on Shatt Al-Arab. Mar. Pollut. Bull. 149, 110564.
https://doi.org/10.1016/j.marpolbul.2019.110564
Alosairi, Y., Imberger, J., Falconer, R.A., 2011.
Mixing and flushing in
the Persian Gulf (Arabian Gulf ). J. Geophys. Res.-Oceans 116 (C3).
https://doi.org/10.1029/2010JC006769
Alosairi, Y., Pokavanich, T., 2017.
Residence and transport time scales
associated with Shatt Al-Arab discharges under various hydrological conditions
were estimated using a numerical model. Mar. Pollut. Bull. 118 (1–2),
85–92.
https://doi.org/10.1016/j.marpolbul.2017.02.039
Al-Said, T., Al-Ghunaim, A., Subba Rao, D., Al-Yamani, F., Al-Rifaie, K.,
Al-Baz, A., 2017.
Salinity-driven decadal changes in phytoplankton
community in the NW Arabian Gulf of Kuwait. Environ. Monit. Assess. 189,
1–17.
https://doi.org/10.1007/s10661-017-5969-4
Al-Subhi, A.M., Abdulla, C.P., 2021.
Sea-level variability in the Arabian
gulf in comparison with global oceans. Remote Sens-Basel. 13 (22), 4524.
https://doi.org/10.3390/rs13224524
Al-Thani, J.A., Soliman, Y., Al-Maslamani, I.A., Yigiterhan, O., Al-Ansari,
E.M.A.S., 2023.
Physical drivers of chlorophyll and nutrients variability
in the Southern-Central Arabian Gulf. Estuar. Coast. Shelf Sci. 283,
108260.
https://doi.org/10.1016/j.ecss.2023.108260
Al-Yamani, F.Y., Polikarpov, I., Saburova, M., 2020.
Marine life
mortalities and harmful algal blooms in the Northern Arabian Gulf. Aquat.
Ecosyst. Health 23 (2), 196–209.
https://doi.org/10.1080/14634988.2020.1798157
Amorim, F.L.L., Balkoni, A., Sidorenko, V, Wiltshire, K.H., 2024.
Analyses
of sea surface chlorophyll a trends and variability from 1998 to 2020 in the
German Bight (North Sea). Ocean Sci. 20 (5), 1247–1265.
https://doi.org/10.5194/os-20-1247-2024
Anjaneyan, P., Kuttippurath, J., Kumar, P.H., Ali, S., Raman, M., 2023.
Spatio-temporal changes of winter and spring phytoplankton blooms in the
Arabian Sea during the period 1997–2020. J. Environ. Manage. 332,
117435. https://doi.org/10.1016/j.jenvman.2023.117435
Asharaf, M., Aboobacker, V.M., Abdulla, C.P., Joydas, T.V., Manikandan, K.P.,
Rafeeq, M., Al-Suwailem, A., Vethamony, P., 2025.
Perspectives of seasonal
hydrography and water masses in Saudi waters of the Arabian Gulf.
Oceanologia 67 (4), 67407.
https://doi.org/10.5697/KPCV6249
Asgari, H.M., Soleimany, A., 2023.
Long-term study of desert dust
deposition effects on phytoplankton biomass in the Persian Gulf using Google
Earth Engine. Mar. Pollut. Bull. 195, 115564.
https://doi.org/10.1016/j.marpolbul.2023.115564
Barimalala, R., Bracco, A., Kucharski, F., McCreary, J.P., Crise, A., 2013.
Arabian Sea ecosystem responses to the South Tropical Atlantic
teleconnection. J. Mar. Syst. 117, 14–30.
https://doi.org/10.1016/j.jmarsys.2013.03.002
Behrenfeld, M.J., Falkowski, P.G., 1997.
Photosynthetic rates derived from
satellite-based chlorophyll concentration. Limnol. Oceanogr. 42 (1),
1–20.
https://doi.org/10.4319/lo.1997.42.1.0001
Bordbar, M.H., Nasrolahi, A., Lorenz, M., Moghaddam, S., Burchard, H., 2024.
The Persian Gulf and Oman Sea: climate variability and trends inferred from
satellite observations. Estuar. Coast. Shelf S. 296, 108588.
https://doi.org/10.1016/j.ecss.2023.108588
Chinta, V., Kalhoro, M.A., Liang, Z., Tahir, M., Song, G., Zhang, W., 2024.
Decadal climate variability of chlorophyll a in response to different
oceanic factors in the Western Indian ocean: the Sea of Oman. Clim. Dynam.
62 (9), 8675–8690.
https://doi.org/10.1007/s00382-024-07354-4
Cianca, A., Godoy, J., Martin, J., Perez-Marrero, J., Rueda, M., Llinás, O.,
Neuer, S., 2012.
Interannual variability of chlorophyll and the influence
of low-frequency climate modes in the North Atlantic subtropical gyre.
Global Biogeochem. Cy. 26 (2).
https://doi.org/10.1029/2010GB004022
Currie, J.C., Lengaigne, M., Vialard, J., Kaplan, D.M., Aumont, O, Naqvi, S.,
Maury, O., 2013.
Indian Ocean dipole and El Nino/southern oscillation
impacts on regional chlorophyll anomalies in the Indian Ocean.
Biogeosciences 10 (10), 6677–6698.
https://doi.org/10.5194/bg-10-6677-2013
Dai, Y., Yang, S., Zhao, D., Hu, C., Xu, W., Anderson, D.M., Li, Y., Song,
X.P., Boyce, D.G., Gibson, L., Zheng, C., 2023.
Coastal phytoplankton
blooms expand and intensify in the 21st century. Nature 615 (7951),
280–284.
https://doi.org/10.1038/s41586-023-05760-y
Dasari, H.P., Ashok, K., Saharwardi, M.S., Luong, T.M., Masabathini, S.,
Vankayalapati, K., Gandham, H., Thiruridathil, R., Zamreeq, A., Ghulam, A.,
Abulnaja, Y., 2025.
Understanding and Predicting the November 24, 2022,
Record-Breaking Jeddah Extreme Rainfall Event. Meteorol. Applicat. 32 (5),
p.e70100.
https://doi.org/10.1002/met.70100
Devlin, M., Massoud, M., Hamid, S., Al-Zaidan, A., Al-Sarawi, H., Al-Enezi, M.,
Al-Ghofran, L., Smith, A.J., Barry, J., Stentiford, G.D., Morris, S., 2015.
Changes in the water quality conditions of Kuwait’s marine waters:
long-term impacts of nutrient enrichment. Mar. Pollut. Bull. 100 (2),
607–620.
https://doi.org/10.1016/j.marpolbul.2015.10.022
Devlin, M.J., Breckels, M., Graves, C.A., Barry, J., Capuzzo, E., Huerta, F.P.,
Al Ajmi, F., Al-Hussain, M.M., LeQuesne, W.J., Lyons, B.P., 2019.
Seasonal
and temporal drivers influencing phytoplankton community in Kuwait marine
waters: documenting a changing landscape in the Gulf. Front. Marine Sci.
6, 141.
https://doi.org/10.3389/fmars.2019.00141
Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English,
C.A., Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina,
J., 2012.
Climate change impacts on marine ecosystems. Annu. Rev. Mar.
Sci. 4 (2012), 11–37.
https://doi.org/10.1146/annurev-marine-041911-111611
El Hourany, R., Abboud-Abi Saab, M., Faour, G., Mejia, C., Crépon, M.,
Thiria, S., 2019.
Phytoplankton diversity in the Mediterranean Sea from
satellite data using self-organizing maps. J. Geophys. Res.-Oceans 124
(8), 5827–5843.
https://doi.org/10.1029/2019JC015131
Elobaid, E.A., Al-Ansari, E.M.A.S., Yigiterhan, O., Aboobacker, V.M.,
Vethamony, P., 2022.
Spatial variability of summer hydrography in the
central Arabian Gulf. Oceanologia 64 (1), 75-87.
https://doi.org/10.1016/j.oceano.2021.09.003
Ershadifar, H., Saleh, A., Kor, K., Ghazilou, A., Baskaleh, G., Hamzei, S.,
2023.
Nutrients and chlorophyll a in the Gulf of Oman: high seasonal
variability in nitrate distribution. Deep-Sea Res. Pt. II 208, 105250.
https://doi.org/10.1016/j.dsr2.2022.105250
Ford, D., Barciela, R., 2017.
Global marine biogeochemical reanalyses
assimilating two different sets of merged ocean colour products. Remote
Sens. Environ. 203, 40–54.
https://doi.org/10.1016/j.rse.2017.03.040
Ford, D.A., Edwards, K.P., Lea, D., Barciela, R.M., Martin, M.J., Demaria, J.,
2012.
Assimilating GlobColour ocean colour data into a pre-operational
physical-biogeochemical model. Ocean Sci. 8 (5), 751–771.
https://doi.org/10.5194/os-8-751-2012
Gao, K., Zhang, Y., Häder, D.P., 2018.
Individual and interactive effects
of ocean acidification, global warming, and UV radiation on phytoplankton.
J. Appl. Phycol. 30, 743–759.
https://doi.org/10.1007/s10811-017-1329-6
Garnesson, P., Mangin, A., Bretagnon, M., Jutard, Q., 2025.
Quality
information document. Ocean Colour Production Centre. https://documentation.marine.copernicus.eu/QUID/CMEMS-OC-QUID-009-101to104-111-113-116-118.pdf
Garnesson, P., Mangin, A., Fanton d’Andon, O., Demaria, J., Bretagnon, M.,
2019.
The CMEMS GlobColour chlorophyll a product based on satellite
observation: multisensor merging and flagging strategies. Ocean Sci. 15
(3), 819–830.
https://doi.org/10.5194/os-15-819-2019
Grunseich, G., Subrahmanyam, B., Murty, V.S.N., Giese, B.S., 2011.
Sea
surface salinity variability during the Indian Ocean Dipole and ENSO events in
the tropical Indian Ocean. J. Geophys. Res.-Oceans 116 (C11).
https://doi.org/10.1029/2011JC007456
Hankin, S., Harrison, D.E., Osborne, J., Davison, J., O’Brien, K., 1996.
A strategy and a tool, Ferret, for closely integrated visualization and
analysis. J. Visualizat. Computer Animat.7 (3), 149–157.
https://doi.org/10.1002/(SICI)1099-1778(199607)7:3<149::AID-VIS148>3.0.CO;2-X
Heil, C.A., Glibert, P.M., Al-Sarawi, M.A., Faraj, M., Behbehani, M., Husain,
M., 2001.
First record of a fish-killing Gymnodinium sp. bloom in Kuwait
Bay, Arabian Sea: chronology and potential causes. Mar. Ecol. Prog. Ser.
214, 15–23.
https://doi.org/10.3354/meps
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., 2020.
The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 146
(730), 1999–2049.
https://doi.org/10.1002/qj.3803
Hussein, K.A., Al Abdouli, K., Ghebreyesus, D.T., Petchprayoon, P., Al Hosani,
N., O. Sharif, H., 2021.
Spatiotemporal variability of chlorophyll a and
sea surface temperature, and their relationship with bathymetry over the coasts
of the UAE. Remote Sens-Basel. 13 (13), 2447.
https://doi.org/10.3390/rs13132447
Ismail, K.A., Al Shehhi, M.R., 2022.
Upwelling and nutrient dynamics in the
Arabian Gulf and Sea of Oman. Plos One 17 (10), e0276260.
https://doi.org/10.1371/journal.pone.0276260
Jensen, T.G., 2007.
Wind-driven response of the northern Indian Ocean to
climate extremes. J. Clim.20 (13), 2978–2993.
https://doi.org/10.1175/JCLI4150.1
Johns, W., Yao, F., Olson, D., Josey, S., Grist, J., Smeed, D., 2003.
Observations of seasonal exchange through the Straits of Hormuz and the
inferred heat and freshwater budgets of the Persian Gulf. J. Geophys.
Res.-Oceans 108 (C12).
https://doi.org/10.1029/2003JC001881
Kämpf, J., Sadrinasab, M., 2006.
The circulation of the Persian Gulf: a
numerical study. Ocean Sci. 2 (1), 27–41.
https://doi.org/10.5194/os-2-27-2006
Kendall, M., 1975.
Rank Correlation Methods, 4th edn., Charles
Griffin, London, 202 pp.
Keshavarzifard, M., Vazirzadeh, A., Sharifinia, M., 2021.
Occurrence and
characterization of microplastics in white shrimp, Metapenaeus affinis, living
in a habitat highly affected by anthropogenic pressures, northwest Persian
Gulf. Mar. Pollut. Bull. 169, 112581.
https://doi.org/10.1016/j.marpolbul.2021.112581
Kim, H-J, Miller, A.J, McGowan, J., Carter, M.L., 2009.
Coastal
phytoplankton blooms in the Southern California Bight. Prog. Oceanogr. 82
(2), 137–147.
https://doi.org/10.1016/j.pocean.2009.05.002
Lachkar, Z., Pauluis, O., Paparella, F., Khan, B., Burt, J. A., 2025.
Local
and remote Climatic drivers of extreme summer temperatures in the Arabian
Gulf. EGUsphere, 2025, 1–30.
https://doi.org/10.5194/egusphere-2025-2948
Mahmoodi, K., Ghassemi, H., Razminia, A., 2019.
Temporal and spatial
characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis
dataset. Energy 187, 115991.
https://doi.org/10.1016/j.energy.2019.115991
Maritorena, S., d’Andon, O.H.F., Mangin, A., Siegel, D.A., 2010.
Merged
satellite ocean color data products using a bio-optical model: Characteristics,
benefits, and issues. Remote Sens. Environ. 114 (8), 1791–1804.
https://doi.org/10.1016/j.rse.2010.04.002
Moradi, M., 2020.
Trend analysis and variations of sea surface temperature
and chlorophyll a in the Persian Gulf. Mar. Pollut. Bull. 156, 111267.
https://doi.org/10.1016/j.marpolbul.2020.111267
Moradi, M., 2021.
Evaluation of merged multi-sensor oceancolor chlorophyll
products in the Northern Persian Gulf. Cont. Shelf Res. 221, 104415.
https://doi.org/10.1016/j.csr.2021.104415
Moradi, M., Kabiri, K., 2015.
Spatio-temporal variability of SST and
Chlorophyll a from MODIS data in the Persian Gulf. Mar. Pollut. Bull. 98
(1–2), 14–25.
https://doi.org/10.1016/j.marpolbul.2015.07.018
Moradi, M., Moradi, N., 2020.
Correlation between concentrations of
chlorophyll a and satellite derived climatic factors in the Persian Gulf.
Mar. Pollut. Bull. 161, 111728.
https://doi.org/10.1016/j.marpolbul.2020.111728
Mussa, A.A., Aboobacker, V.M., Abdulla, C.P., Hasna, V.M., Al-Ansari, E.M.A.S.,
Vethamony, P., 2024.
A climatological overview of surface currents in the
Arabian Gulf with special reference to the Exclusive Economic Zone of
Qatar. Int. J. Climatol. 44(13), 4677–4693.
https://doi.org/10.1002/joc.8603
Nelli, N., Francis, D., Fonseca, R., Bosc, E., Addad, Y., Temimi, M., Abida,
R., Weston, M., Cherif, C., 2022.
Characterization of the atmospheric
circulation near the Empty Quarter Desert during major weather events.
Front. Environ. Sci. 10, p. 972380.
https://doi.org/10.3389/fenvs.2022.972380
Nezlin, N.P., Polikarpov, I.G., Al-Yamani, F.Y., Rao, D.S., Ignatov, A.M.,
2010.
Satellite monitoring of climatic factors regulating phytoplankton
variability in the Arabian (Persian) Gulf. J. Mar. Syst. 82 (1–2),
47–60.
https://doi.org/10.1016/j.jmarsys.2010.03.003
Niranjan Kumar, K., Ouarda, T., 2014.
Precipitation variability over the
UAE and global SST teleconnections. J. Geophys. Res.-Atmos. 119 (17),
10,313–10,322.
https://doi.org/10.1002/2014JD021724
Pitarch, J., Volpe, G., Colella, S., Krasemann, H., Santoleri, R., 2016.
Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to
2012 using merged multisensor data. Ocean Sci. 12 (2), 379–389.
https://doi.org/10.5194/os-12-379-2016
Polikarpov, I., Saburova, M., Al-Yamani, F., 2016.
Diversity and
distribution of winter phytoplankton in the Arabian Gulf and the Sea of
Oman. Cont. Shelf Res. 119, 85–99.
https://doi.org/10.1016/j.csr.2016.03.009
Pous, S., Lazure, P., Carton, X., 2015.
A model of the general circulation
in the Persian Gulf and in the Strait of Hormuz: Intraseasonal to interannual
variability. Cont. Shelf Res. 94, 55–70.
https://doi.org/10.1016/j.csr.2014.12.008
Pramlall, S., Jackson, J. M., Konik, M., Costa, M., 2023.
Merged
multi-sensor ocean colour chlorophyll product evaluation for the British
Columbia coast. Remote Sens-Basel. 15 (3), 687.
https://doi.org/10.3390/rs15030687
Price, A.R.G., Sheppard, C.R.C., Roberts, C.M., 1993.
The Gulf: its
biological setting. Mar. Pollut. Bull. 27, 9–15.
https://doi.org/10.1016/0025-326X(93)90004-4
Privett, D., 1959.
Monthly charts of evaporation from the N. Indian Ocean
(including the Red Sea and the Persian Gulf ). Q. J. Roy. Meteor. Soc. 85
(366), 424–428.
https://doi.org/10.1002/qj.49708536614
R Core Team, 2023.
R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/
Racault, M-F, Sathyendranath, S., Menon, N., Platt, T., 2017.
Phenological
responses to ENSO in the global oceans. Surv. Geophys. 38, 277–293.
https://doi.org/10.1007/s10712-016-9391-1
Rafati, P. and Rezazadeh, M., 2020.
Correlation of NAO, IOD, and ENSO with
the sea surface temperature changes in the Persian Gulf. J. Earth Space
Phys. 46 (2), 395–408.
https://doi.org/10.22059/jesphys.2020.297756.1007198
Raitsos, D.E., Yi, X., Platt, T., Racault, M.F., Brewin, R.J., Pradhan, Y.,
Papadopoulos, V.P., Sathyendranath, S., Hoteit, I., 2015.
Monsoon
oscillations regulate the fertility of the Red Sea. Geophys. Res. Lett. 42
(3), 855–862.
https://doi.org/10.1002/2014GL062882
Rajendran, S., Al-Naimi, N., Al Khayat, J.A., Sorino, C.F., Sadooni, F.N., Al
Kuwari, H.A.,S., 2022.
Chlorophyll a concentrations in the Arabian Gulf
waters of the arid region: A case study from the northern coast of Qatar.
Regional Stud. Marine Sci. 56, 102680.
https://doi.org/10.1016/j.rsma.2022.102680
Rakib, F., Al-Ansari, E.M.A.S., Husrevoglu, Y.S., Yigiterhan, O., Al-Maslamani,
I., Aboobacker, V.M., Vethamony, P., 2021.
Observed variability in physical
and biogeochemical parameters in the central Arabian Gulf. Oceanologia 63
(2), 227–237.
https://doi.org/10.1016/j.oceano.2020.12.003
Rao, S., Al-Yamani, F., 1998.
Phytoplankton ecology in the waters between
Shatt Al-Arab and Straits of Hormuz, Arabian Gulf: A review. Plankton
Biol. Ecol. 45 (2), 101–116.
Reynolds, R.M., 1993.
Physical oceanography of the Gulf, Strait of Hormuz,
and the Gulf of Oman—Results from the Mt Mitchell expedition. Mar.
Pollut. Bull. 27, 35–59.
https://doi.org/10.1016/0025-326X(93)90007-7
Ross, D.A., Uchupi, E., White, R.S., 1986.
The geology of the Persian
Gulf-Gulf of Oman region: A synthesis. Rev. Geophys. 24 (3), 537–556.
https://doi.org/10.1029/RG024i003p00537
Roxy, M.K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna
Kumar, S., Ravichandran, M., Vichi, M., Lévy, M., 2016.
A reduction in
marine primary productivity driven by rapid warming over the tropical Indian
Ocean. Geophys. Res. Lett. 43 (2), 826–833.
https://doi.org/10.1002/2015GL066979
Saad, M.A., 1978.
Seasonal variations of some physicochemical conditions of
Shatt al-Arab estuary, Iraq. Estuar. Coast. Mar. Sci. 6 (5), 503–513.
https://doi.org/10.1016/0302-3524(78)90027-0
Saha, K., Zhao, X., Zhang, H., Casey, K.S., Zhang, D., Baker- Yeboah, S.,
Kilpatrick, K.A., Evans, R.H., Ryan, T., Relph, J.M., 2018.
AVHRR
Pathfinder version 5.3 level 3 collated (L3C) global 4km sea surface
temperature for 1981 – Present. NOAA Nat. Center. Environ. Informat.,
Asheville, NC, USA. Schulzweida, U., 2023. CDO User Guide (2.3.0). Zenodo.
https://doi.org/10.5281/zenodo.10020800
Seelanki, V., Nigam, T., Pant, V., 2022.
Unravelling the roles of Indian
Ocean Dipole and El-Niño on winter primary productivity over the Arabian
Sea. Deep-Sea Res. Pt. I 190, 103913. h
ttps://doi.org/10.1016/j.dsr.2022.103913
Sen, P.K., 1968.
Estimates of the regression coefficient based on
Kendall’s tau. J. Am. Stat. Assoc. 63 (324), 1379–1389.
https://doi.org/10.1080/01621459.1968.10480934
Shafeeque, M., Balchand, A.N., Shah, P., George, G., Smitha, B.R, Varghese, E.,
Joseph, A.K., Sathyendranath, S., Platt, T., 2021a.
Spatio-temporal
variability of chlorophyll a in response to coastal upwelling and mesoscale
eddies in the South Eastern Arabian Sea. Int. J. Remote Sens. 42 (13),
4836–4863.
https://doi.org/10.1080/01431161.2021.1899329
Shafeeque, M., George, G., Akash, S., Smitha, B.R., Shah, P., Balchand, A.N.,
2021b.
Interannual variability of chlorophyll a and impact of extreme
climatic events in the South Eastern Arabian Sea. Regional Stud. Marine
Sci. 48, 101986.
https://doi.org/10.1016/j.rsma.2021.101986
Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R.,
Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N.K., Durvasula, S.R.V., Jones,
D.A., 2010.
The Gulf: a young sea in decline. Mar. Pollut. Bull. 60
(1), 13–38.
https://doi.org/10.1016/j.marpolbul.2009.10.017
The MathWorks Inc., 2024.
MATLAB version: 24.2.0 (R2024b), The
MathWorks Inc., Natick, Massachusetts,
https://www.mathworks.com
Thoppil, P.G., Hogan, P.J., 2010.
Persian Gulf response to a wintertime
shamal wind event. Deep-Sea Res. Pt. I 57 (8), 946–955.
https://doi.org/10.1016/j.dsr.2010.03.002
Tomlinson, M.C., Wynne, T.T., Stumpf, R.P., 2009.
An evaluation of remote
sensing techniques for enhanced detection of the toxic dinoflagellate, Karenia
brevis. Remote Sens. Environ. 113 (3), 598–609.
https://doi.org/10.1016/j.rse.2008.11.003
Vantrepotte, V., Mélin, F., 2009.
Temporal variability of 10-year global
SeaWiFS time-series of phytoplankton chlorophyll a concentration. ICES J.
Mar. Sci. 66 (7), 1547–1556.
https://doi.org/10.1093/icesjms/fsp107
Vaughan, G.O., Al-Mansoori, N., Burt, J.A., 2019.
The Arabian Gulf. World
Seas: An Environmental Evaluation. Elsevier, 1–23.
https://doi.org/10.1016/B978-0-08-100853-9.00001-4
Veny, M., Aguiar-González, B., Marrero-Dı́az, Á., Pereira- Vázquez, T.,
Rodrı́guez-Santana, Á., 2024.
Biophysical coupling of seasonal
chlorophyll a bloom variations and phytoplankton assemblages across the
Peninsula Front in the Bransfield Strait. Ocean Sci. 20 (2), 389–415.
https://doi.org/10.5194/os-20-389-2024
Volpe, G., Colella, S., Brando, V.E., Forneris, V., La Padula, F., Di Cicco,
A., Sammartino, M., Bracaglia, M., Artuso, F., Santoleri, R., 2019.
Mediterranean Ocean Colour Level 3 operational multi-sensor
processing. Ocean Sci. 15 (1), 127–146.
https://doi.org/10.5194/os-15-127-2019
Westberry, T.K., Silsbe, G.M., Behrenfeld, M.J., 2023.
Gross and net
primary production in the global ocean: An ocean color remote sensing
perspective. Earth-Sci. Rev. 237, 104322.
https://doi.org/10.1016/j.earscirev.2023.104322
Wiggert, J.D., Vialard, J., Behrenfeld, M.J., 2009.
Basin-wide modification
of dynamical and biogeochemical processes by the positive phase of the Indian
Ocean Dipole during the SeaWiFS era. Indian Ocean biogeochemical processes
and ecological variability, 185, 385–407.
https://doi.org/10.1029/2008GM000776
Wright, J.L., 1974. A hydrographic and acoustic survey of the Persian Gulf.
Part I. Naval Postgraduate School.
https://doi.org/10.5962/bhl.title.60916
Xi, H., Losa, S.N., Mangin, A., Soppa, M.A., Garnesson, P., Demaria, J., Liu,
Y., d’Andon, O.H., Bracher, A., 2020. Global retrieval of phytoplankton
functional types based on empirical orthogonal functions using CMEMS GlobColour
merged products and further extension to OLCI data. Remote Sens. Environ. 240,
111704.
https://doi.org/10.1016/j.rse.2020.111704
Yu, S., Bai, Y., He, X., Gong, F., Li, T., 2023. A new merged dataset of global
ocean chlorophyll a concentration for better trend detection. Front. Marine
Sci. 10, 1051619.
https://doi.org/10.3389/fmars.2023.1051619
Women are successful in marine science, but not in its narrative. A case study from Poland
Oceanologia, 68 (1)/2026, 68105, 9 pp.
https://doi.org/10.5697/JFIR5225
Paulina Pakszys1, Jan Marcin Węsławski1,*, Sławomir Sagan1, Agnieszka Skorupa2
1Institute of Oceanology, Polish Academy of Science, Powstańców Warszawy 55, Sopot 81–712, Poland
e-mail: weslaw@iopan.pl (J.M. Węsławski)
2Institute of Psychology, Silesian University, Grażyńskiego Street 53, Katowice 40–126, Poland
*corresponding author
Keywords:
Women; Marine science; Gender equality; Media
Received: 23 September 2025; revised: 19 November 2025; accepted: 3 December 2025
Highlights
- Since 2000, women have actively participated in marine research cruises on equal terms with men.
- The contribution of women to marine knowledge, measured in bibliometric terms, is equal to that of men.
- Women remain heavily underrepresented in the popularization of marine research and public communication.
Abstract
Active participation of women in marine field work (research cruises) was almost nonexistent before the mid-1970s,
and slowly increased to a present day 50:50 share in Poland. The detailed analysis is presented for the largest marine
research institute in Poland with 200 employees and regular (over 240 days per year) in the sea presence onboard r/v
Oceania. The overall share of women in the scientific activities (research papers) is almost 50%, with higher share in
chemistry (60%) and lower in marine physics (40%). The share of women as leaders in external projects is equal to
men and the scientific performance (measured as Hirsch index) is statistically the same as men researchers, however
men researchers present both highest and lowest scores, contrary to more equal distribution of results among women.
The striking difference is visible in the outreach activity – mainstream media releases, where men are responsible for
nearly 90% of events for adult audience. The issue is presented in the context of international research on women
presence in the science (STEM) and similar patterns around the globe.
References
AbiGhannam, N., 2016.
Madam science communicator: A typology of women’s
experiences in online science communication. Sci. Comm. 38 (4), 468–494.
https://doi.org/10.1177/1075547016655545
Benson-Greenwald, T.M., Joshi, M.P., Diekman, A.B., 2021.
Out of the lab
and into the world: Analyses of social roles and gender in profiles of
scientists in The New York Times and The Scientist. Front. Psych. 12,
684777.
https://doi.org/10.3389/fpsyg.2021.684777
Burdett, H.L., Kelling, I., Carrigan, M., 2022.
TimesUp: Tackling gender
inequities in marine and fisheries science. J. Fish Biol. 100 (1), 4–9.
https://doi.org/10.1111/jfb.14936
Carli, L.L., Alawa, L., Lee, Y., Zhao, B., Kim, E., 2016.
Stereotypes about
gender and science: Women ≠ scientists. Psych. Women Quart. 40 (2),
244–260.
https://doi.org/10.1177/0361684315622645
Chambers, A.C., Thompson, S., 2020.
Women, science and the media.
[In:] Ross K. (Ed.), The International Encyclopedia of Gender, Media, and
Communication Vol. 3, Wiley, 1532–1569.
https://doi.org/10.1002/9781119429128.iegmc304
Chimba, M., Kitzinger, J., 2010.
Bimbo or boffin? Women in science: An
analysis of media representations and how female scientists negotiate cultural
contradictions. Publ. Underst. Sci. 19 (5), 609–624.
https://doi.org/10.1177/0963662508098580
Clark, L., Yoder, J., McNutt, M., Colton, M. C., 2008.
Women in
oceanography: 20 years of progress, change, and challenge. Oceanography 21
(3), 38–43.
https://doi.org/10.5670/oceanog.2008.33
Corsbie-Massay, C.L., Wheatly, M. G., 2022.
The role of media professionals
in perpetuating and disrupting stereotypes of women in STEM fields. Front.
Comm. 7, 1027502.
https://doi.org/10.3389/fcomm.2022.1027502
Giakoumi, S., Pita, C., Coll, M., Fraschetti, S., et al., 2021.
Persistent
gender bias in marine science and conservation calls for action to achieve
equity. Biol. Conserv. 257, 109134.
https://doi.org/10.1016/j.biocon.2021.109134
Gissi, E., Portman, M.E., Hornidge, A.K., 2018.
Un-gendering the ocean: Why
women matter in ocean governance for sustainability. Mar. Policy 94,
215–219.
https://doi.org/10.1016/j.marpol.2018.05.020
Hill C., Corbett C., Rose A., 2010.
Why so few Woman in STEM. AAUW,
Washington DC, 134 pp. HUB Ocean, 2023,
https://www.hubocean.earth/about
Johnson, D.R., Ecklund, E. H., Lincoln, A. E., 2014.
Narratives of science
outreach in elite contexts of academic science. Sci. Commun. 36 (1),
81–105.
https://doi.org/10.1177/1075547013499142
LaFollette, M.C., 1988.
Eyes on the stars: Images of women scientists in
popular magazines. Sci. Technol. Hum. Val. 13 (3–4), 262–275.
https://doi.org/10.1177/016224398801300307
Legg, S., Wang, C., Kappel, E., Thompson, L., 2023.
Gender equity in
oceanography. Annual Review of Marine Science, 15 (1), 15–39.
https://doi.org/10.1146/annurev-marine-032122-012349
Mamzer, H., 2025.
Who cares about environment. Zoophilologica, in
press.
Mendick, H., Moreau, M.-P., 2013.
New media, old images: Constructing
online representations of women and men in science, engineering and
technology. Gender Educ. 25 (3), 325–339.
https://doi.org/10.1080/09540253.2012.740447
Mitchell, M., McKinnon, M., 2019.
“Human” or “objective” faces of
science? Gender stereotypes and the representation of scientists in the
media. Public Underst. Sci. 28 (2), 177–190.
https://doi.org/10.1177/0963662518771081
Murphy, K.M., Kelp, N.C., 2023.
Undergraduate STEM students’ science
communication skills, science identity, and science self-efficacy influence
their motivations and behaviors in STEM community engagement. J.
Microbiol. Biol. Educ. 24 (1), e00182-22.
https://doi.org/10.1128/jmbe.00182-22
Nelkin, D., 1995.
Selling science: How the press covers science and
technology. W. H. Freeman & Co, 217 pp.
Perrin, S., Siriwardane-De Zoysa, R., 2017.
Women in marine science: The
efficacy of ecofeminist theory in the wake of historical critique. ZMT
Working Paper Ser. 3.
https://doi.org/10.21244/zmt.2017.004
Previs, K.K., 2016.
Gender and race representations of scientists in
Highlights for Children: A content analysis. Scie. Comm. 38 (3),
303–327.
https://doi.org/10.1177/1075547016642248
Robertson Evia, J., Petermen, K., Cloyd, E., Besley, J., 2018.
Validating a
scale that measures scientists’ self-efficacy for public engagement with
science. Int. J. Sci. Educ. Pt. B, 8 (1), 40–52.
https://doi.org/10.1080/21548455.2017.1371356
Thébaud, S., Charles, M., 2018.
Segregation, stereotypes, and STEM.
Social Sci. 7 (7), 111.
https://doi.org/10.3390/socsci7070111
UNESCO, 2021.
Global Ocean Science Report 2020: Charting Capacity for Ocean
Sustainability. UN.
https://doi.org/10.18356/9789216040048
UNESCO, 2023.
UNESCO in action for gender equality: 2022–2023. No.
GEN/2023/AR/3 Rev.
UIS 2024.
The Gender Gap in Science. Status and Trends. February 2024.
UNESCO Institute of Statistics. SC-PBSSTIP/2024/FWIS/2, 8 pp.
Vagni, D., Tartarisco, G., Campisi, S., Cerbara, L., Dedola, M., Pedranghelu,
A., Cerasa, A., 2025.
Psychophysiological correlates of science
communicators. PLOS ONE, 20 (3), e0320160.
https://doi.org/10.1371/journal.pone.0320160
Women View of the Sea, 2025.
Art exhibition catalogue. IO PAN, Sopot,
110 pp.
Climate change mitigation and adaptation measures for the Gulf of Gdańsk region in relation to sea threats
Oceanologia, 68 (1)/2026, 68106, 11 pp.
https://doi.org/10.5697/JDXM8520
Aleksandra Koroza*, Joanna Piwowarczyk, Tymon Zieliński
1Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
e-mail: akoroza@iopan.pl (A. Koroza)
*corresponding author
Keywords:
Climate change; Ocean threats; Climate adaptation and mitigation; Development strategy; Gulf of Gdańsk
Received: 19 February 2025; revised: 27 November 2025; accepted: 8 December 2025
Highlights
- Unclear Plans: Strategic documents lack clarity on climate change.
- Awareness vs. Action: High awareness but few ocean threat plans.
- Few Sea Measures: Limited tools for sea-related threats.
- Urgent Action Needed: Multidisciplinary efforts are required for coastal management.
Abstract
The impacts of climate change are increasingly evident, with many societies affected annually. Coastal areas inhabited
by c. 60% of the world’s population, are especially vulnerable due to a large number of impacts, including real sea
related threats. Implementation of mitigation and adaptation measures as well as challenging climate change threats
must be among the top priority issues for decision makers of all levels. This study presents the results of the critical
analyses of environment and climate related change in publicly available documents in the key economic and touristic
region of Poland, the Gulf of Gdańsk. The authors have evaluated the detailed points in the process of identifying
the awareness of climate change and implemented measures. The results show relatively high awareness of climate
change related threats, however, insufficient information and planning regarding ocean-related threats and hazards.
Few mitigation and adaptation measures addressing sea-based threats were identified. The authors compare the
findings with available knowledge of climate change, measures undertaken in some ports and port cities and reflect on
the urgent need of implementing multidisciplinary efforts to foster the effective management of coastal areas for the
sustainable and safe future.
References
Boero, F., Cummins, V., Gault, J., Huse, G., Philippart, C.J.M., Schneider, R.,
Treguier, A.M., Besiktepe, S., Boeuf, G., Garcia-Soto, C., Horsburgh, K., Kopp,
H., Malfatti, F., Mariani, P., Matz-Lück, N., Mees, J., Menezes Pinheiro, L.,
Lacroix, D., Le Tissier, M., Paterson, D.M., Schernewski, G., Thebaud, O.,
Vandegehuchte, M.B., Visbeck, M., Weslawski, J.M., 2019.
Navigating the
Future V: Marine Science for a Sustainable Future. European Marine Board.
Position Paper 24, Ostend, 200 pp.
https://doi.org/10.5281/zenodo.2809392
Bossier, S., Nielsen, J.R., Almroth-Rosell, E., Höglund, A., Bastardie, F.,
Neuenfeldt, S., Christensen, A., 2021.
Integrated ecosystem impacts of
climate change and eutrophication on main Baltic fishery resources. Ecol.
Model. 453, 109609.
https://doi.org/10.1016/j.ecolmodel.2021.109609
C40 Cities, 2016.
Rotterdam Climate Change Adaptation Strategy.
https://www.c40.org/case-studies/c40-good-practice-guides-rotterdam-climate-change-adaptation-strategy/.Lastaccessed19.11.2025
Cabana, D., Rofler, L., Evadzi, P., Celliers, L., 2023.
Enabling climate
change adaptation in coastal systems: A systematic literature review.
Earth’s Future 11 (8).
https://doi.org/10.1029/2023EF003713.
City of Gothenburg, 2023. Climate City Contract 2030.
https://netzerocities.app/_content/files/knowledge/4455/2030_ccc_gothenburg.pdf
Dumała, H., Łuszczuk, M., Piwowarczyk, J., Zieliński, T., 2021.
Transnational municipal networks as a mechanism for marine governance
toward climate change adaptation and mitigation: Between potential and
practice. Front. Mar. Sci. 8, 644.
https://doi.org/10.3389/fmars.2021.626119
EEA, 2018.
CICES Towards a common classification of ecosystem
services. https://cices.eu/resources/,lastaccessed27thApril2024
Evans, K., Zielinski, T., Chiba, S., Garcia-Soto, C., Ojaveer, H., Park, C.,
Ruva, R., Schmidt, J.O., Simcock, A., Strati, A., Vu, C.T., 2021.
Transferring complex scientific knowledge to usable products for society:
The role of the Global Integrated Ocean Assessment. Front. Environ. Sci.
9, 626532.
https://doi.org/10.3389/fenvs.2021.626532
Garcia-Soto, C., Cheng, L., Caesar, L., Schmidtko, S., Jewett, E.B., Cheripka,
A., Rigor, I., Caballero, A., Chiba, S., Báez, J.C., Zielinski, T., Abraham,
J.P., 2021b.
An overview of ocean climate-change indicators: Sea surface
temperature, ocean heat content, ocean pH, dissolved oxygen, Arctic sea ice,
sea level, and AMOC strength. Front. Mar. Sci. 8, 642372.
https://doi.org/10.3389/fmars.2021.642372
Garcia-Soto, C., Seys, J.J.C., Zielinski, O., Busch, J.A., Luna, S.I., Baez,
J.C., Domegan, C., Dubsky, K., Kotynska-Zielinska, I., Loubat, P., Malfatti,
F., Mannaerts, G., McHugh, P., Monestiez, P., van der Meeren, G.I., Gorsky, G.,
2021a.
Marine citizen science: Current state in Europe and new
technological developments. Front. Mar. Sci. 8, 621472.
https://doi.org/10.3389/fmars.2021.621472
Gargiulo, C., Battarra, R., Tremiterra, M.R., 2020.
Coastal areas and
climate change: A decision-support tool for implementing adaptation
measures. Land Use Policy 91, 104413.
https://doi.org/10.1016/j.landusepol.2019.104413
HELCOM, 2021.
Climate Change in the Baltic Sea: 2021 Fact Sheet.
Baltic Sea Environ. Proc. No. 180. HELCOM/Baltic Earth, Helsinki, 37 pp.
https://helcom.fi/wp-content/uploads/2021/09/Baltic-Sea-Climate-Change-Fact-Sheet-2021.pdf
Interreg South Baltic Programme, 2021.
Programme area description:
socio-economic context and cooperation potential. Interreg South Baltic
Programme 2021–2027, 1–50.
https://southbaltic.eu/wp-content/uploads/2024/10/2021-09-08_Interreg-South-Baltic-Programme-2021-2027_draft_readers-friendly-version_accessible-version.pdf
IPCC, 2022. Climate Change 2022:
Impacts, Adaptation and Vulnerability.
Contribution of Working Group II to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge Univ. Press.
https://www.ipcc.ch/report/ar6/wg2/
Krippendorff, K., 2004.
Content Analysis: An Introduction to Its
Methodology. 2nd edn., Sage Publ., Thousand Oaks, CA, 413 pp.
Le, T.D.N., 2020.
Climate-change adaptation in coastal cities of developing
countries: Vulnerability types and adaptation options. Mitig. Adapt.
Strat. Gl. 25, 739–761.
https://doi.org/10.1007/s11027-019-09888-z
Piwowarczyk, J., Hansson, A., Hjerpe, M., Chubarenko, B., Karmanov, K., 2012.
Climate change in the Baltic Sea region: A cross-country analysis of
institutional stakeholder perceptions. Ambio 41 (6), 645–655.
https://doi.org/10.1007/s13280-012-0327-9.
Port of HaminaKotka Ltd., n.d.
Environment. https://www.haminakotka.com/about-port/environment
Port of Rotterdam Authority, 2025.
Climate Change Adaptation. https://www.portofrotterdam.com/en/building-port/sustainable-port/climate-adaptation
Port of Rotterdam Authority, n.d.
Energy transition strategy: Towards a
CO2-neutral port. https://www.portofrotterdam.com/en/energy-transition-strategy
PreventionWeb, 2019.
Sweden: Gothenburg foresees impact of climate
change-plans to build a barrier by 2070 to prevent flooding. https://www.preventionweb.net/news/sweden-gothenburg-foresees-impact-climate-change-plans-build-barrier-2070-prevent-flooding
Reimann, L., Vafeidis, A.T., Honsel, L.E., 2023.
Population development as
a driver of coastal risk: Current trends and future pathways. Cambridge
Prisms: Coastal Futures 1.
https://doi.org/10.1017/cft.2023.3
Sanders, F., Sanders, H., Jonkers, K., 2021.
Cross-over analysis of the
climate-change delta situation of Gdańsk and Rotterdam. Open Res. Europe
1 (9), 9.
https://doi.org/10.12688/openreseurope.13125.2
Sharifi, A., 2021.
Co-benefits and synergies between urban climate change
mitigation and adaptation measures: A literature review. Sci. Total
Environ. 750, 141642.
https://doi.org/10.1016/j.scitotenv.2020.141642.
Stoll-Kleemann, S., 2019.
Feasible options for behavior change toward more
effective ocean literacy: A systematic review. Front. Mar. Sci. 6, 273.
https://doi.org/10.3389/fmars.2019.00273
Tittensor, D. P., Beger, M., Boerder, K., Boyce, D. G., Cavanagh, R. D.,
Cosandey-Godin, A., Crespo, G. O., Dunn, D. C., Ghiffary, W., Grant, S. M.,
Hannah, L., Halpin, P. N., Harfoot, M., Heaslip, S. G., Jeffery, N. W.,
Kingston, N., Lotze, H. K., McGowan, J., McLeod, E., McOwen C.J.,O’Leary
B.C., Schiller L., Ryan R.E.Stanley, Westhead M., Wilson K.L., Worm, B., 2019.
Integrating climate adaptation and biodiversity conservation in the global
ocean. Sci. Advanc. 5(11), eaay9969.
https://doi.org/10.1126/sciadv.aay9969
Terorotua, H., Duvat, V.K., Maspataud, A., Ouriqua, J., 2020.
Assessing
perception of climate change by public authorities and designing coastal
climate services: Lessons from French Polynesia. Front. Mar. Sci. 7, 160.
https://doi.org/10.3389/fmars.2020.00160.
UBC, 2021.
UBC Sustainability Action Programme 2020–2030. https://ubc.net/commissions/sustainable-cities/
UNEP (United Nations Environment Programme), 2017.
Adaptation Gap Report
2017. Nairobi, UNEP.
https://wedocs.unep.org/handle/20.500.11822/27114
UNEP (United Nations Environment Programme), 2019.
Climate Change
Adaptation: UNEP’s Approach. UNEP.
https://www.unep.org/resources/factsheet/climate-change-adaptation-unep-approach
UNEP (United Nations Environment Programme), 2022.
UNEP and Climate Adaptation: What We Do. UNEP.
https://wedocs.unep.org/20.500.11822/40977
UNEP (United Nations Environment Programme), 2023.
Ecosystem-based
adaptation. https://www.unep.org/topics/climate-action/adaptation/ecosystem-based-adaptation.
Vye, S.R., Dickens, S., Adams, L., Bohn, K., Chenery, J., Dobson, N., et al.,
2020.
Patterns of abundance across geographical ranges as predictors for
climate-change responses: Evidence from UK rocky shores. Div. Dist. 26,
1357–1365.
https://doi.org/10.1111/ddi.13118
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt,
A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021.
Sea-level dynamics and coastal erosion in the Baltic Sea region. Earth
Sys. Dynam. 12 (3), 871–898.
https://doi.org/10.5194/esd-12-871-2021
Wisz, M.S., Satterthwaite, E.V., Fudge, M., Fischer, M., Polejack, A., St John,
M., Fletcher, S., Rudd, M.A., 2020.
100 opportunities for more inclusive
ocean research: Crossdisciplinary research questions. Front. Mar. Sci. 7,
576.
https://doi.org/10.3389/fmars.2020.00576
World Economic Forum, 2019.
The world’s coastal cities are going
under-here is how some are fighting back. https://www.weforum.org/agenda/2019/01/the-world-s-coastal-cities-are-going-under-here-is-how-some-are-fighting-back/
Zielinski, T., Bolzacchini, E., Evans, K., Ferrero, L., Gregorczyk, K.,
Kijewski, T., Kotyńska-Zielińska, I., Mrowiec, P., Oleszczuk, B., Pakszys,
P., Piechowska, E., Piwowarczyk, J., Sobieszczański, J., Wichorowski, M.,
2021.
Abundance of environmental data vs. low public interest in ocean and
climate issues. Front. Mar. Sci. 8, 51.
https://doi.org/10.3389/fmars.2021.619638
Zielinski, T., Kotynska-Zielinska, I., Garcia-Soto, C., 2022.
A blueprint
for ocean literacy: EU4. Ocean. Sustainability 14, 926.
https://doi.org/10.3390/su14020926
Zimmerman, R., Faris, C., 2011.
Climate change mitigation and adaptation in
North American cities. Curr. Opin. Environ. Sust. 3 (3), 181–187.
https://doi.org/10.1016/j.cosust.2010.12.004
Geohazards and coastal Dynamic: a geo-engineering assessment of the southern Iraqi shore (Ras al-Bisha zone)
Oceanologia, 68 (1)/2026, 68107, 12 pp.
https://doi.org/10.5697/ZZIM7445
Hiba Ahmed Mahdi1, Wisam R. Muttashar2,*, Raid Aziz Mahmood1
1Geology Department, College of Sciences, University of Basrah, Basra, Iraq;
2Marine Science Center, University of Basrah, Basra, Iraq
e-mail: wisam.muttashar@uobasrah.edu.iq (W.R. Muttashar)
*corresponding author
Keywords:
Iraqi shore; Geohazard mapping; Ebb and flood tide dynamics; Sediment stability; Coastal erosion risk
Received: 8 July 2025; revised: 10 October 2025; accepted: 8 December 2025
Highlights
- A dual factor-of-safety framework assesses sediment stability under ebb and flood tides.
- Spatial maps reveal an inland-to-seaward decline in shear strength, Su, and critical shear stress, τc values.
- Flood tides produce high applied shear stress, expanding unstable coastal zones.
- Erosion rates peak during flood phases; ebb phases partially mitigate instability.
- Hazard maps guide targeted mitigation and infrastructure planning in estuarine settings.
Abstract
The coastal zone of Ras al-Bisha, located between the mouth of the Shatt al-Arab River and the eastern breakwater of
the Grand Faw Port, exhibits complex interactions of tidal forces, sediment transport, and anthropogenic modifications.
This study develops an engineering geological framework to assess sediment stability and geohazard potential under
semi-diurnal tidal conditions. Field measurements, including in situ vane shear tests at 41 stations, were used to
determine undrained shear strength and derive critical shear stress for surface sediments. Hydrological data provided
ebb and flood current velocities and water levels. A dual factor of safety (FS) approach was introduced to evaluate
sediment stability separately for ebb and flood tides, producing spatially explicit maps of stable (FS > 1.5), critical
(1.0 ≤ FS ≤ 1.5), and unstable (FS < 1.0) zones. The results reveal an inland-to-seaward gradient in sediment strength
and resistance, with very soft to soft sediments dominating the nearshore environment. Flood tides generate higher
applied shear stresses than ebb tides, leading to expanded unstable zones along the shoreline front. Erosion rate
analyses confirm greater sediment displacement during flood conditions, while ebb tides partially mitigate instability.
The dual-FS hazard maps offer a refined way for prioritizing monitoring and mitigation efforts, directly informing
coastal management and infrastructure planning in estuarine settings affected by bidirectional tidal dynamics.
References
Aladwani, N.S., 2022.
Shoreline change rate dynamics analysis and
prediction of future positions using satellite imagery for the southern coast
of Kuwait: A case study. Oceanologia 64 (3), 417–432.
https://doi.org/10.1016/j.oceano.2022.02.002
Al-Aesawi, Q.M., Al-Nasrawi, A.K., Jones, B.G., 2020.
Shortterm
geoinformatics evaluation in the Shatt Al-Arab Delta (Northwestern
Arabian/Persian Gulf ). J. Coast. Res. 36 (3), 498–505.
https://doi.org/10.2112/JCOASTRES-D-19-00110.1
Al-Amery, A.A., Al-Saad, H.A., 2022.
Mineralogical variation of the banks
of Shatt Al-Arab and Shatt Al-Basrah River sediments in southern Iraq.
Iraqi Geol. J. 55 (1A), 116–127.
Al-Asadi, S.A., Alhello, A.A., Ghalib, H.B., Muttashar, W.R., Al-Eydawi, H.T.,
2023.
Seawater intrusion into Shatt Al-Arab River, Northwest
Arabian/Persian Gulf. J. Appl. Water Eng. Res. 11 (2), 289–302.
https://doi.org/10.1080/23249676.2022.2113460
Albadran, B., 2004. Shatt al-Arab Delta, Southern Iraq, sedimentological study.
Mar. Mesopotamia 1 (9), 311–322.
Albadran, B.N., Albadran, A., 1993.
Sedimentological characteristics of the
offshore sediments of the Khor Abdulla entrance NW Arabian Gulf. J. Water
Resour. 2 (1), 17–34.
Albadran, N.B., Al-Manssory, F., Al-Bahily, N., 2002.
Erosion and
sedimentation processes in the Shatt al-Arab.
Alfaris, M.A., Alrubaye, A.A., Muttashar, W.R., Lo, E.L., 2024.
The
compression behavior of riverine fine-grained soils treated with organic
matter. Soil Environ. 43 (2), 248–257.
https://doi.org/10.25252/SE/2024/43214
Al-Fartusi, A.J., 2022.
Tidal Range and Sea Level Changes at The Area in
front of Umm Qasr Port South of Iraq. J. Univ. Anbar Pure Sci. 14 (2),
72–76.
https://doi.org/10.37652/juaps.2022.172391
Al-Fartusi, A.J., Malik, M.I., Abduljabbar, H.M., 2023.
November.
Spatial-temporal of Iraqi coastline changes utilizing remote sensing. AIP
Conf. Proc. 3018 (1), 020062.
https://doi.org/10.1063/5.0172293
Alkhafaji, H., Muttashar, W.R., Al-Mosawi, W.M., 2023.
Proposing an
inflatable rubber dam on the tidal Shatt Al- Arab River, Southern Iraq. J.
Mech. Behav. Mater. 32 (1), 20220201.
https://doi.org/10.1515/jmbm-2022-0201
ASTM D2573-01, 2008.
Standard test method for field vane shear test in
cohesive soil.
ASTM D422.
Standard test method for particle-size analysis of soils.
ASTM D4318-10, 2010.
Standard test methods for liquid limit, plastic limit,
and plasticity index of soils. Darmoian, S.A., Lindqvist, K., 1988.
Sediments in the estuarine environment of the Tigris/Euphrates delta, Iraq,
Arabian Gulf. Geol. J. 23 (1), 15–37.
https://doi.org/10.1002/gj.3350230102
Hadmoko, D.S., Lavigne, F., Sartohadi, J., Hadi, P., 2010.
Landslide hazard
and risk assessment and their application in risk management and land use
planning in eastern flank of Menoreh Mountains, Yogyakarta Province,
Indonesia. Nat. Hazards 54 (3), 623–642.
https://doi.org/10.1007/s11069-009-9490-7
Hashemi, M., Nikoudel, M.R., Khamehchiyan, M., Hafezi Moghadas, N., 2014.
Engineering geology and geohazards of Sefidrud Delta, South Caspian Coast,
North Iran, [In:] Lollino, G., Manconi, A., Locat, J., Huang, Y., Canals
Artigas, M. (eds)
Engineering Geology for Society and Territory.
Springer, Cham, 77–83.
https://doi.org/10.1007/978-3-319-08660-6_16
Lafta, A.A., 2021.
Estimation of tidal excursion length along the Shatt
Al-Arab estuary, southern Iraq. Viet. J. Sci. Technol. 59 (1), 79–89.
https://doi.org/10.15625/2525-2518/59/1/15433
Lafta, A.A., 2022.
Investigation of tidal asymmetry in the Shatt al-Arab
river estuary, Northwest of Arabian Gulf. Oceanologia 64 (2), 376–386.
https://doi.org/10.1016/j.oceano.2022.01.004
Lafta, A.A., 2023.
General characteristics of tidal currents in the
entrance of Khor Abdullah, northwest of Arabian Gulf. Oceanologia 65 (3),
494–502.
https://doi.org/10.1016/j.oceano.2023.03.002
Léonard, J., Richard, G., 2004.
Estimation of runoff critical shear
stress for soil erosion from soil shear strength. Catena 57 (3),
233–249.
https://doi.org/10.1016/j.catena.2003.11.007
Liu, X., Liu, J.P., Wang, Y.P., 2023.
Sediment dynamics and geohazards in
estuaries and deltas. Front. Earth Sci. 10, 1079804.
https://doi.org/10.3389/feart.2022.1079804
Mahdi, H.A., Mahmood, R.A., Muttashar, W.R., 2025.
Iraqi shoreline
stability: A review of recent geological and engineering research. Arab.
J. Geosci. 18 (6), 1–10. https://doi.org/10.1007/s12517-025-12273-7
Muttashar, W.R., Al-Aesawi, Q.M., Al-Nasrawi, A.K., Almayahi, D.S., Jones,
B.G., 2024.
Coastline instability evaluation: Multitemporal bathymetric
mapping and sediment characteristics. Environ. Earth Sci. 83 (1), 43.
https://doi.org/10.1007/s12665-023-11375-3
Muttashar, W.R., Al-Whaely, U.Q., Almayahi, D.S., Hussein, M.A., Al-Aesawi,
Q.M., Lafta, A.A., Chassib, S.K., 2025.
Quantifying the level of
erosion-induced hazards on tidal riverbanks. Nat. Hazards Res. 5 (3),
678–688.
https://doi.org/10.1016/j.nhres.2025.02.007
Muttashar, W.R., Bryson, L.S., Al-Humaidan, Z.A., 2021.
The use of particle
size distribution integrated with consistency limits for experimentally
simulating fine-grained sedimentary units. Arab. J. Geosci. 14, 1–12.
https://doi.org/10.1007/s12517-021-08812-7
Sun, H., Zhao, Z., Ruan, X., Chu, Y., Fan, C., 2025.
Large-scale evaluation
of beach morphodynamic evolution and environmental drivers along China’s
eastern coast through long-term Landsat analysis. Earth’s Future 13 (9),
e2025EF006058.
https://doi.org/10.1029/2025EF006058
Terzaghi, K., Peck, R.B., Mesri, G., 1996.
Soil mechanics in engineering
practice, 3rd edn. Wiley, New York, 549 pp. van Rijn, L.C., 2016.
Stability design of coastal structures (seadikes, revetments, break-waters
and groins).
Trapped contaminants in the coastal waters of the southern Caspian Sea: off Sefidrud River
Oceanologia, 68 (1)/2026, 68108, 11 pp.
https://doi.org/10.5697/WPXV9307
Jafar Azizpour*, Reza Rahnama, Ali Hamzepoor, Seyed Masoud Mahmoudof
Iranian National for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran 1411813389, Iran;
e-mail: azizpour@inio.ac.ir (J. Azizpour)
*corresponding author
Keywords:
Caspian Sea; Sub-mesoscale eddy; Contaminants; Nutrients; Field measurements
Received: 11 August 2024; revised: 1 December 2025; accepted: 8 December 2025
Highlights
- Near-shore anti-cyclonic sub-mesoscale eddies that form off the Sefidrud River promote the accumulation of nutrients and marine contaminants by trapping them in the area.
- The geometry behind the steep slope are caused to formation of sub-mesoscale eddies in the area.
- The eddy cores exhibited elevated nutrient concentrations and water temperatures.
- Since near-shore sub-mesoscale eddies are undetectable by satellite, they are best identified through current measurement and water sampling.
Abstract
Identifying and collecting accumulated contaminants is crucial for environmental protection in enclosed bodies of water,
such as the Caspian Sea. As the world’s largest landlocked water body, its limited exchange with open seas and oceans
hinders self-purification. This research maps contaminant accumulation at the mouth of the Sefidrud River on the
southern coast of the Caspian Sea using vessel-mounted ADCP, CTD, and water sampling data. Field measurements
were conducted in two distinct seasons at different stations and transects ranging from 2–15 m in depth. The results
show that the contaminants accumulated in the core of sub-mesoscale eddies. These surface sub-mesoscale eddies
trap nutrient-rich freshwater discharging from the river, creating distinct hydrographic cores with significantly elevated
nutrient levels, as well as different temperature and salinity compared to the surrounding waters.
References
Aladin, N., Plotnikov, I., 2004.
The Caspian Sea. Lake Basin Manage.
Initiative Thematic Paper.
Andi, S., Rashidi Ebrahim Hesari, A., Farjami, H., 2021.
Detection of
internal waves in the Persian Gulf. Remote Sens. Lett. 12, 190–198.
https://doi.org/10.1080/2150704X.2020.1847349
Azizpour, J., Farjami, H., Ghaffari, P., 2021.
Intrathermocline eddies in
the Strait of Hormuz. Arabian J. Geosci. 14, 2118.
https://doi.org/10.1007/s12517-021-08541-x
Azizpour, J., Ghaffari, P., 2023.
Low-frequency sea level changes in the
Caspian Sea: long-term and seasonal trends. Climate Dynam. 1–11.
https://doi.org/10.1007/s00382-023-06715-9
Azizpour, J., Siadatmousavi, S.M., Chegini, V., 2016.
Measurement of tidal
and residual currents in the Strait of Hormuz. Estuar. Coast. Shelf Sci.
178, 101–109. https://doi.org/10.1016/j.ecss.2016.06.004
Bakhtiari, A., Shad, E., Siadatmousavi, S.M., 2024.
Exploring submesoscale
eddies in the southern Caspian Sea: A focus on rudsar Rudsar and Sefidrud
regions. Deep Sea Res. Pt. I: Oceanograph. Res. Papers 208, 104316.
https://doi.org/10.1016/j.dsr.2024.104316
Beni, A.N., Lahijani, H., Harami, R.M., Leroy, S., Shah-Hosseini, M., Kabiri,
K., Tavakoli, V., 2013.
Development of spit–lagoon complexes in response
to Little Ice Age rapid sea-level changes in the central Guilan coast, South
Caspian Sea, Iran. Geomorphology 187, 11–26.
https://doi.org/10.1016/j.geomorph.2012.11.026
CEP, 1998.
National Report, Russian Federation. Caspian Environment
Programme, Baku, Azerbaijan.
CEP, 2011.
Caspian Sea State of the Environment, 102 pp.
Costantini, M.L., Agah, H., Fiorentino, F., Irandoost, F., Trujillo, F.J.L.,
Careddu, G., Calizza, E., Rossi, L., 2021.
Nitrogen and metal pollution in
the southern Caspian Sea: a multiple approach to bioassessment. Environ.
Sci. Pollut. Res. 28, 9898–9912.
https://doi.org/10.1007/s11356-020-11243-8
Dyakonov, G.S., Ibrayev, R.A., 2020.
High-resolution data on mesoscale
dynamics of the Caspian Sea upper layer, obtained in a numerical
reconstruction. Data In Brief 30, 105368.
https://doi.org/10.1016/j.dib.2020.105368
Ehteshami, M., Dravishi, G., ShirAli, E., 2017.
Caspian Sea, Leading
Threats in terms of Pollution and Hydrological Crises.
Environment, R.O.f.t.P.o.t.M., 1999.
Manual of oceanographic observations
and pollutant analyses methods (MOOPAM), 3rd Edn., Kuwait.
Garcia, D., 2010.
Robust smoothing of gridded data in one and or higher
dimensions with missing values. Computat. Statistics Data Anal. 54,
1167–1178.
https://doi.org/10.1016/j.csda.2009.09.020
Ghaffari, P., Chegini, V., 2010.
Acoustic Doppler Current Profiler
observations in the southern Caspian Sea: shelf currents and flow field off
Feridoonkenar Bay, Iran. Ocean Sci. 6, 737–748.
https://doi.org/10.5194/os-6-737-2010
Ghaffari, P., Lahijani, H., Azizpour, J., 2010.
Snapshot observation of the
physical structure and stratification in deep-water of the South Caspian Sea
(western part). Ocean Sci. 6, 877–885.
https://doi.org/10.5194/os-6-877-2010
Gilmet, 2022.
https://gilmet.ir/
GLRW, 2025.
www.glrw.ir/?l=EN [the site may be
temporarily unavailable. Please refer to this alternative source
https://www.glrw.ir/cs/RainStatistic/208
(in Persian)].
Hansen, H.P., Koroleff, F., 1999. Chapter 10 – Nutrients.
Methods of
seawater analysis. [In:] Grasshoff, K., Kremling, K., Ehrhardt, M. (Eds.)
Methods of seawater analysis, 159–228.
https://doi.org/10.1016/j.csda.2009.09.020
Ji, J., Dong, C., Zhang, B., Liu, Y., Zou, B., King, G.P., Xu, G., Chen, D.,
2018.
Oceanic eddy characteristics and generation mechanisms in the
Kuroshio Extension region. J. Geophys. Res.-Oceans 123, 8548–8567.
https://doi.org/10.1029/2018JC014196DigitalObjectIdentifier(DOI)
Joyce, T.M., 1989.
On in situ “calibration” of shipboard ADCPs. J.
Atmos. Oceanic Tech. 6, 169–172.
https://doi.org/10.1175/1520-0426(1989)006<0169:OISOSA>2.0.CO;2
Khosravi, M., Siadatmousavi, S.M., Vennell, R., Chegini, V., 2018.
The
transverse dynamics of flow in a tidal channel within a greater strait. Ocean
Dynami. 68(2), 239–254.
https://doi.org/10.1007/s10236-017-1127-3
Komijani, F., Chegini, V., Siadatmousavi, S., 2019.
Seasonal variability of
circulation and air-sea interaction in the Caspian Sea based on a high
resolution circulation model. J. Great Lakes Res. 45, 1113–1129.
https://doi.org/10.1016/j.jglr.2019.09.026
Kouraev, A., Crétaux, J.-F., Lebedev, S., Kostianoy, A., Ginzburg, A.,
Sheremet, N., Mamedov, R., Zakharova, E., Roblou, L., Lyard, F., 2011.
Satellite altimetry applications in the Caspian Sea, Coastal Altimetry
Springer, 331–366.
Kubryakov, A., Aleskerova, A., Plotnikov, E., Mizyuk, A., Medvedeva, A.,
Stanichny, S., 2023.
Accumulation and cross-shelf transport of coastal
waters by submesoscale cyclones in the Black Sea. Remote Sens. 15(18),
4386.
https://doi.org/10.3390/rs15184386
Laanemets, J., Zhurbas, V., Elken, J., Vahtera, E., 2009.
Dependence of
upwelling-mediated nutrient transport on wind forcing, bottom topography and
stratification in the Gulf of Finland: model experiments. Boreal Environ.
Res. 14(1), p. 213.
Lass, H.U., Mohrholz, V., Nausch, G., Siegel, H., 2010.
On phosphate
pumping into the surface layer of the eastern Gotland Basin by upwelling.
J. Marine Syst. 80(1–2), 71–89.
https://doi.org/10.1016/j.jmarsys.2009.10.002
Manbohi, A. and Gholamipour, S., 2020.
Utilizing chemometrics and
geographical information systems to evaluate spatial and temporal variations of
coastal water quality. Reg. Stud. Marine Sci. 34, 101077.
https://doi.org/10.1016/j.rsma.2020.101077
Manbohi, A., Mehdinia, A., Rahnama, R., Dehbandi, R., 2021.
Microplastic
pollution in inshore and offshore surface waters of the southern Caspian
Sea. Chemosphere 281, 130896.
https://doi.org/10.1016/j.chemosphere.2021.130896
Mason, O.U., Canter, E.J., Gillies, L.E., Paisie, T.K., Roberts, B.J., 2016.
Mississippi river plume enriches microbial diversity in the northern Gulf
of Mexico. Frontiers Microbiol. 7, 1048.
https://doi.org/10.3389/fmicb.2016.01048
Masoud, M., Pawlowicz, R., Namin, M.M., 2019.
Low frequency variations in
currents on the southern continental shelf of the Caspian Sea. Dynam.
Atmos. Oceans 87, 101095.
https://doi.org/10.1016/j.dynatmoce.2019.05.004
Murphy, J., Riley, J.P., 1962.
A modified single solution method for the
determination of phosphate in natural waters. Anal. Chim. Acta 27,
31–36.
https://doi.org/10.1016/S0003-2670(00)88444-5
Raeisi, A., Bidokhti, A., Nazemosadat, S.M.J., Lari, K., 2020.
Mesoscale
eddies and their dispersive environmental impacts in the Persian Gulf.
Chinese Phys. B 29, 084701.
https://doi.org/10.1088/1674-1056/ab96a3
Romero, E., Garnier, J., Lassaletta, L., Billen, G., Le Gendre, R., Riou, P.,
Cugier, P., 2013.
Large-scale patterns of river inputs in southwestern
Europe: seasonal and interannual variations and potential eutrophication
effects at the coastal zone. Biogeochemistry 113, 481–505.
https://doi.org/10.1007/s10533-012-9778-0
Roshan, G., Moghbel, M., Grab, S., 2012.
Modeling Caspian Sea water level
oscillations under different scenarios of increasing atmospheric carbon dioxide
concentrations. Iranian J. Environ. Health Sci. Eng. 9, 24.
https://doi.org/10.1186/1735-2746-9-24
Sabet, B.S., Barani, G.A., 2011.
Field investigation of rip currents along
the southern coast of the Caspian Sea. Scientia Iranica 18, 878–884.
https://doi.org/10.1016/j.scient.2011.07.017
Safaian, N., Shokri, M., Jabbarian, B., 2004.
Environmental Impact
Assessment of Development in the Southern Coast of the Caspian Sea (Northern
Iran). Polish J. Environ. Stud. 13.
Saleh, A., Hamzehpour, A., Mehdinia, A., Bastami, K.D., Mazaheri, S., 2018.
Hydrochemistry and nutrient distribution in the southern deep-water basin
of the Caspian Sea. Marine Pollut. Bull. 127, 406–411.
https://doi.org/10.1016/j.marpolbul.2017.12.013
Teodoro, A.C., 2016.
Optical satellite remote sensing of the coastal zone
environment – An overview. Environ. Appl. Remote Sens., InTechOpen,
London, UK, 165–196.
https://doi.org/10.5772/61974
UNEP, 2006.
Caspian Sea, (Stolberg, F., Borysova, O., Mitrofanov, I.,
Barannik, V. and Eghtesadi, P., eds.), GIWA Region. Assess. 23, p. 92.
Väli, G., Meier, H.M., Liblik, T., Radtke, H., Klingbeil, K., Gräwe, U.,
Lips, U., 2024
. Submesoscale processes in the surface layer of the central
Baltic Sea: A high-resolution modelling study. Oceanologia 66(1), 78–90.
https://doi.org/10.1016/j.oceano.2023.11.002
Wood, E.D., Armstrong, F., Richards, F.A., 1967.
Determination of nitrate
in sea waterseawater by cadmium-copper reduction to nitrite. J. Mar. Biol.
Assoc. UK 47, 23–31.
https://doi.org/10.1017/S002531540003352X
Zaker, N., Ghaffari, P., Jamshidi, S., Nouranian, M., 2011.
Currents on the
southern continental shelf of the Caspian Sea off Babolsar, Mazandaran,
Iran. J. Coast. Res. 64(SI), 1989–1997.
https://www.jstor.org/stable/26482525
New records of non-indigenous polychaeta Boccardiella ligerica (Ferronnière, 1898) (Spionidae) in the southern Baltic Sea
Oceanologia, 68 (1)/2026, 68109, 6 pp.
https://doi.org/10.5697/XSXY8999
Bartosz Witalis1, Joanna Hegele-Drywa2,*, Sławomira Gromisz1, Piotr Gruszka3, Wojciech Kraśniewski4, Lena Szymanek1, Piotr Kukliński5
1Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland;
e-mail: joanna.hegele-drywa@ug.edu.pl (J. Hegele-Drywa)
2Laboratory of Ecophysiology and Bioenergetics, Department of Marine Ecology, Faculty of Oceanography and Geography, University of Gdańsk, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
3Gdynia Maritime University, Maritime Institute, Roberta de Plelo 20, 80-548 Gdańsk, Poland
4Institute of Meteorology and Water Management – National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland
5Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
*corresponding author
Keywords:
Boccardiella ligerica; Non-indigenous species; Baltic Sea; Range expansion; Benthic communities
Received: 29 September 2025; revised: 1 December 2025; accepted: 8 December 2025
Highlights
- Boccardiella ligerica was newly recorded from several sites in the Gulf of Gdańsk and the Vistula Lagoon (southern Baltic Sea).
- The species occurred on both hard substrata and soft sediments at depths from 1 m to 13 m, reaching up to 1689 indiv. m⁻² in port areas.
- The brackish water conditions of Polish coastal waters may support the spread of this polychaete.
Abstract
The non-indigenous Boccardiella ligerica is a polychaete introduced to the Baltic Sea. Although the species has been
recorded in the Baltic Sea since the 1960s, this is the first time we have reported the repeated occurrence of B. ligerica
in various new locations along the Polish coast. Between 2009 and 2018, the species was recorded in the Vistula
Lagoon, the Gulf of Gdańsk and Puck Bay. Samples of the species were collected from hard substrates and bottom
sediments at depths ranging from approximately 1.0 m to 13.3 m using a range of sampling gear, including van Veen
and Ekman-Birge grab samplers, a HAPS corer and settlement plates, as well as by scraping vertical surfaces during
diving. The highest densities, reaching up to 1689 ind. m−2 and 414 ind. m−2, were recorded in the Gulf of Gdańsk and
the Vistula Lagoon, respectively. The lowest abundance (13 ind. m−2) of this polychaete was recorded in Puck Bay.
The results obtained contribute to the understanding of the dynamics of this non-indigenous species in the brackish
environments of the Baltic Sea. They provide a basis for further research on this species, considering that B. ligerica
may play an important role in food webs, as it feeds on phytoplankton and detritus, and serves as food for small fish
and invertebrates.
References
Blake, J.A., 1983.
Polychaetes of the family Spionidae from South America,
Antarctica, and adjacent seas and islands. [in:] Biology of the Antarctic
Seas, XIV. 205–288.
https://doi.org/10.1029/AR039p0205
Blake, J. A., Kudenov, J. D., 1978.
Spionidae (Polychaeta) from
southeastern Australia and adjacent areas with a revision of the genera.
Memoirs Nat. Museum Victoria 39, 171–280.
Blake, J.A., Woodwick, K.H., 1971.
A review of the genus Boccardia Carazzi
(Polychaeta: Spionidae) with descriptions of two new species. South.
Calif. Acad. Sci. 70 (1), 31–42.
Bonsdorff, E., 1981.
Notes on the occurrence of Polychaeta (Annelida) in
the archipelago of Åland, SW Finland. Mem. Soc. Fauna Fl. Fenn.57,
141–146.
Carlton, J.T., 1985.
Transoceanic and interoceanic dispersal of coastal
marine organisms: The biology of ballast water. Oceanogr. Mar. Biol. Ann.
Rev. 23, 313–371.
Cohen, A.N., Carlton, J.T., 1995.
Nonindigenous aquatic species in a United
States estuary: a case study of the biological invasions of the San Francisco
Bay and Delta. U.S., Fish and Wildlife Service and National Sea Grant
College Program (Connecticut Sea Grant), Washington, DC., 218 pp.
Costello, K.E., Lynch, S.A., McAllen, R., O’Riordan, R.M., Culloty, S.C.,
2022.
Assessing the potential for invasive species introductions and
secondary spread using vessel movements in maritime ports. Mar. Pollut.
Bull. 177, 113496.
https://doi.org/10.1016/j.marpolbul.2022.113496
Diagne, C., Leroy, B., Vaissière, A.C., Gozlan, R.E., Roiz, D., Jarić, I.,
Salles, J.M., Bradshaw C.J.A., Courchamp, F., 2021.
High and rising
economic costs of biological invasions worldwide. Nature 592, 571–576.
https://doi.org/10.1038/s41586-021-03405-6
Eliason, A., Haahtela, I., 1969.
Polydora (Boccardia) redeki Horst from
Finland, Annal. Zool. Fennici 6, 215–218. Ferronniére, G,. 1898.
Contribution a l‘etude de la faune de la Loireinferieure (Polygordiens,
Spionidiens, Nemertiens), Bull. Société Sci. Naturel. l’Ouest France 8,
101–115.
Gallardo, B., Bacher, S., Barbosa, A.M., Gallien, L., Gonzáles- Moreno, P.,
Martinez-Bolea, V., Sorte, C., Vimercati, G., Villá M., 2024.
Risks posed
by invasive species to the provision of ecosystem services in Europe. Nat.
Comm. 15, 2631.
https://doi.org/10.1038/s41467-024-46818-3
Garcı́a-Gómez, J.C., Garrigós, M., Garrigós, J., 202
1. Plastic as a
Vector of Dispersion for Marine Species With Invasive Potential. A Review.
Front. Ecol. Evol. 9,
https://doi.org/10.3389/fevo.2021.629756
Hartmann-Schröder, G., 1971.
Annelida, Borstenwürmer, Polychaeta.
Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und
nach ihrer Lebensweise. Jena, 594 pp.
Hegele-Drywa, J., Normant-Saremba, M., Wójcik-Fudalewska, D., 2024.
Small
sea with high traffic – what is the biofouling potential of commercial ships
in the Baltic Sea? Biofouling 40 (3–4), 280–289.
https://doi.org/10.1080/08927014.2024.2353025
Heyer, K., 2015.
BALSAM Project, WP4‚ Harmonized Criteria Final
Rep., v1, 19 pp.
Horst, R., 1920.
Polychaete Anneliden uit het Alkmaarder Meer.
Zoologische Mededeelingen (Leiden) 5(3), 110–111.
Jaubet, M.L., Martinez, L.E., Bottero, M.A.S., Bazterrica, M.C., 2021.
Boccardiella ligerica, an exotic polychaete in a Southwestern Atlantic
coastal lagoon: Morphology and abundance variations. Ecol. Res. 36 (1),
57–69.
https://doi.org/10.1111/1440-1703.12171
Kocheshkova, O., Ezhova, E., 2018.
On alien polychaete species of the
Russian part of the South-Eastern Baltic. Mar. Biol. J., 3(2), 53–63.
https://doi.org/10.21072/mbj.2018.03.2.04
Kravitz, M.J., 1987.
First record of Boccardiella ligerica (Ferronniere)
(Polychaeta: Spionidae) from the east coast of North America. Northeast
Gulf Sci. 9(1), 39–42.
Lecuyer, R., Brind’amour, A., Barille, A., Chouquet, B., Le Bris, H., 2024.
Thriving life beneath: Biodiversity and functioning of macrobenthic
communities within two human-shaped European estuaries. J. Sea Res. 202,
102545.
https://doi.org/10.1016/j.seares.2024.102545
Lëppakoski, E,. Gollasch, S., Gruszka, P., Ojaveer, H., Olenin, S., Panov,
V., 2002.
The Baltic — a sea of invaders. Can. J. Fish. Aquat. Sci.
59, 1175–1188.
https://doi.org/10.1139/f02-089
Lëppakoski, E., Olenin, S., 2000.
Non-native species and rates of spread:
lessons from the brackish Baltic Sea. Biol. Inv. 2, 151–163.
https://doi.org/10.1023/A:1010052809567
Llansó, R. J., Sillett, K., Scott, L., 2011.
Biofouling survey of the
Florikan in dry dock, Versar, Inc., Columbia, MD, 34 pp.
López Gappa, J., Tablado, A., Fonalleras, M.C., Adami, M.L., 2001.
Temporal and spatial patterns of annelid populations in intertidal
sediments of the Quequén Grande estuary (Argentina). Hydrobiologia, 455,
61–69.
https://doi.org/10.1023/A:1011987301885
Orensantz, J.M., Schwindt, E., Pastorino, G., Bortolus, A., Casas, G.,
Darrigran, G., Elias, R., López Gappa, J.J., Obenat, S., Pascual, M.,
Penchaszadeh, P., Luz Piriz, M., Scarabino, F., Spivak, E.D., Vallarino, E.A.,
2002.
No Longer The Pristine Confines of the World Ocean: A Survey of
Exotic Marine Species in the Southwestern Atlantic. Biol. Inv. 4,
115–143.
https://doi.org/10.1023/A:1020596916153
Pagnier, J., Daraghmeh, N., Obst, M., 2025.
Using the longterm genetic
monitoring network ARMS-MBON to detect marine non-indigenous species along the
European coasts. Biol. Inv. 27, 77.
https://doi.org/10.1007/s10530-024-03503-2
Peterson, H. A., Vayssieres, M., 2010.
Benthic assemblage variability in
the upper San Francisco estuary: A 27- year retrospective. San Francisco
Estuar. Watershed Sci. 8 (1), 1–27.
https://doi.org/10.15447/sfews.2010v8iss1art2
Pratt, C.J., Ashworth, E.C., DiBacco, C., Kingsbury, S., 2025.
Balancing
efficiency and rigour in horizon scanning: an application to the management of
invasive non-indigenous species in the marine waters of Eastern Canada.
Manag. Biol. Inv. 16, 1–37.
https://doi.org/10.3391/mbi.2025.16.3.09
Pyšek, P., Hulme, P.E., Simberloff, D., Bacher, S., Blackburn, T.M., Carlton,
J.T., Dawson, W., Essl, F., Foxcroft, L.C., Genovesi, P., Jeschke, J.M.,
Kühn, I., Liebhold, A.M., Mandrak, N.E., Meyerson, L.A., Pauchard, A., Pergl,
J., Roy, H.E., Seebens, H., Kleunen, M., Vilà, M., Wingfield, M.J.,
Richardson, D.M., 2020.
Scientists’ warning on invasive alien
species. Biol. Rev., 95, 1511–15.
https://doi.org/10.1111/brv.12627
Rullier, F., 1960.
Morphologie et développement du Spionidae (Annelide
Polychète) Polydora (Boccardia) redeki Horst-Cah. Biol. Mmar. 1,
231–244.
Tempesti, J., Mangano, M.C., Langeneck, J., Lardicc, C., Maltagliati, F.,
Castelli, A., 2020.
Non-indigenous species in Mediterranean ports: a
knowledge baseline. Mar. Environ. Res. 161, 105056.
https://doi.org/10.1016/j.marenvres.2020.105056
Warzocha, J., Gromisz, S., Wodzinowski, T., Szymanek, L., 2018.
The
structure of macrozoobenthic communities as an environmental status indicator
in the Gulf of Gdańsk (the Outer Puck Bay). Oceanologia 60(4), 553–559.
https://doi.org/10.1016/j.oceano.2018.05.002
Wolff, W. J., 1973.
The estuary as a habitat. An analysis of data on the
soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and
Scheldt. Zool. Verh., Leiden, 126, 1–242.
https://doi.org/10.1017/S002531540000240X
Vivóo-Pons, A., Wallin-Kihlber, I., Olsson, J., Ljungberg, P., Behrens, J.,
Lindegren, M., 2023.
The devil is in the details: exploring how
functionally distinct the round goby is among native fish in the Baltic
Sea. NB. 89, 161–186.
https://doi.org/10.3897/neobiota.89.110203
Ysebaert, T., Neve, L.D., Meire, P., 2000.
The subtidal macrobenthos in the
mesohaline part of the Schelde Estuary (Belgium): influenced by man? J.
Mar. Biol. Assoc. U. K.. 80 (4), 587–597.
https://doi.org/10.1017/S002531540000240X
Zaiko, A., Cardeccia, A., Carlton, J. T., Clark, G. F., Creed, J. C., Davidson,
I., Floerl, O., Galil, B., Grosholz, E., Hopkins, G. A., Johnston, E. L.,
Kotta, J., Marchini, A., Ojaveer, H., Ruiz, G., Therriaul, T. W., Inglis, G.
J., 2024.
Structural and functional effects of global invasion pressure on
benthic marine communities—patterns, challenges and priorities. Divers.
Distrib. 30, e138.
https://doi.org/10.1111/ddi.13838
Zettler, M., 2025.
Historical benthic data from the southern Baltic Sea
(1839–2001). Ver. 1.0, Occurrence dataset, Flanders Marine Institute.
https://doi.org/10.15468 /48gksf
(accessed 2025-11-20 via via GBIF.org).
https://www.gbif.org/occurrence/5763645785
Spread of the warm-water clam Rangia cuneata in the temperate coastal waters of the Gulf of Gdańsk (southern Baltic Sea)
Oceanologia, 68 (1)/2026, 68110, 5 pp.
https://doi.org/10.5697/BFUP8645
Halina Kendzierska1,*, Zuzanna Czenczek1, Anna Dziubińska1, Kamila Styrcz-Olesiak1, Agata Rychter2, Michał Gintowt3, Urszula Janas1
1University of Gdańsk, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
e-mail: halina.kendzierska@ug.edu.pl (H. Kendzierska)
2University of Applied Sciences in Elbląg, ul. Wojska Polskiego 1, 82-300 Elbląg, Poland
3Institute of Oceanology, Polish Academy of Sciences, ul. Powstawńców Warszawy 55, 81-712 Sopot, Poland
*corresponding author
Keywords:
Rangia cuneata; Baltic Sea; Gulf of Gdańsk
Received: 29 September 2025; revised: 1 December 2025; accepted: 8 December 2025
Highlights
- Rangia cuneata has spread in the Gulf of Gdańsk.
- The species occurs at depths from 0.3 to 20 m and salinity below 7.5.
- Mass mortality events have been observed both in lagoons and rivers.
- The largest specimens (up to 50.4 mm) were found.
Abstract
The Atlantic wedge clam or common rangia, Rangia cuneata, was reported in the Gdańsk Basin (southern Baltic Sea) around 2010. In the Gulf of Gdańsk, outside the Vistula Lagoon, specimens of the common rangia were collected for the first time in 2014. This paper reports on the spread of the species in the coastal waters of the Gulf of Gdańsk following its arrival.
References
Auil-Marshalleck, S., Robertson, C., Sunley, A., Robinson, L., 2000.
Preliminary review of life history and abundance of the Atlantic Rangia
(Rangia cuneata) with implications for management in Galveston Bay, Texas.
Manage. Data Ser. 171(1), 1–31.
Cain, T. D., 1975.
Reproduction and recruitment of the brackish water clam,
Rangia cuneata in the James River, Virginia. Fish. Bull. 73(2), 412.
Cieśliński, R., Pietruszyński, Ł., Duda, F., 2017
. Differentiation
flow in the waters of the hydrographic systems of western part of the Martwa
Wisła and Wisła Śmiała. Przegl. Geofiz. (3–4), 197–215.
Czerniejewski, P., Dąbrowski, J., Brysiewicz, A., Formicki, K., 2023.
Population structure and density of a new invasive species Rangia cuneata
in the Szczecin Lagoon (Odra/Oder estuary, Poland). Aquat. Invasions
18(3), 371–384.
https://doi.org/10.3391/ai.2023.18.3.109673
Dąbrowski, J., Czerniejewski, P., Brysiewicz, A., Więcaszek, B., 2023.
Morphometrics, growth and condition of the invasive bivalve Rangia cuneata
during colonisation of the Oder Estuary (North-Western Poland). Water
15(19), 3331.
Ezhova, E.E., 2012.
Novyjv selenets v Baltiyskye Morye–mollusc Rangia
cuneata (Bivalvia: Mactridae). Marine. Ecol. J. 11, 29–32.
Florin, A. B., 2017.
Rangia cuneata introduction to Sweden/ Baltic Sea.
Information System on Aquatic Nonindigenous and Cryptogenic Species. World
Wide Web Electronic Publ.,
www.corpi.ku.lt/databases/aquanis
(Ver. 2 9; Accessed 2024-06).
Hopkins, S. H., 1970.
Studies on brackish water clams of the genus Rangia
in Texas. Proc. Nat. Shellfisheries Assoc. 60, 5–6.
Houziauks, J., Craeymeersch, J., Merckx, B., Kerckhof, F., an Lancker, V.,
Courtens, W., Stienen, E., Perdon, J., Goudswaard, P.C., Van Hoey, G., Vigin,
L., Hostens, K., Vinckx, M., Degraer, S., 2011.
Ecosystem sensitivity to
invasive species, EnSIS. Final report. Belgian Sci. Policy Office,
Brussels, 100 pp.
Janas, U., Kendzierska, H., Dąbrowska, A. H., Dziubińska, A., 2014.
Non-indigenous bivalve the Atlantic rangia Rangia cuneata in the Wisła
Śmiała River (coastal waters of the Gulf of Gdańsk, the southern Baltic
Sea). Oceanol. Hydrobiol. Stud. 43, 427–430.
https://doi.org/10.2478/s13545-014-0158-3
Janas, U., Kendzierska, H., 2022. Makrozoobentos Zatoki Puckiej. [In:]
Bolałek, J., Burska, B., (Eds.), Zatoka Pucka Tom III.
Aspekty świata
ożywionego. Wyd. Uniw. Gda., Gdańsk, 183–200.
Jegliński, W., Kramarska, R., Uścinowicz, S., Zachowicz, J., 2009.
Sediments. [In:] Gic-Grusza, G., Kryla-Straszewska, L., Urbański, J.,
Warzocha, J., Węsławski, J. M., (Eds.),
Atlas of Polish marine areas
bottom habitats. Broker Innowacji, Gdynia, 28–29.
Karlson, A. M., Kautsky, N., Granberg, M., Garbaras, A., Lim, H., Liénart,
C., 2024.
Resource partitioning of a Mexican clam in species-poor Baltic
Sea sediments indicates the existence of a vacant trophic niche. Sci. Rep.
14(1), 12527.
https://doi.org/10.1038/s41598-024-62832-3
Kornijów, R., Pawlikowski, K., Drgas, A., Rolbiecki, L., Rychter, A., 2018.
Mortality of post-settlement clams Rangia cuneata (Mactridae, Bivalvia) at
an early stage of invasion in the Vistula Lagoon (South Baltic) due to biotic
and abiotic factors. Hydrobiologia 811, 207–219.
https://doi.org/10.1007/s10750-017-3489-4
LaSalle, M. W., de la Cruz, A., 1985.
Species profiles: life histories and
environmental requirements of coastal fishes and invertebrates (Gulf of
Mexico): Common Rangia. US Fish Wildlife Service. Biol. Rep. 82 (11.31).
US Army Corps Eng. TR EL–82–4, p. 16.
Miernik, N. A., Janas, U., Kendzierska, H., 2023.
Role of macrofaunal
communities in the Vistula River plume, the Baltic Sea—Bioturbation and
bioirrigation potential. Biol. 12(2), 147.
https://doi.org/10.3390/biology12020147
Möller, T., Kotta, J., 2017.
Rangia cuneata (GB Sowerby I, 1831)
continues its invasion in the Baltic Sea: the first record in Pärnu Bay,
Estonia. Bioinvasions Rec. 6 (2), 167—172.
https://doi.org/10.3391/bir.2017.6.2.13
Panicz, R., Eljasik, P., Wrzecionkowski, K., Śmietana, N., Biernaczyk, M.,
2022.
First report and molecular analysis of population stability of the
invasive Gulf wedge clam, Rangia cuneata (GB Sowerby I, 1832) in the Pomeranian
Bay (Southern Baltic Sea). Eur. Zool. J. 89(1), 568–578.
https://doi.org/10.1080/24750263.2022.2061612
PROEKO, 2010.
Modernizacja wejścia do portu wewnętrznego w Gdańsku.
Etap II przebudowa szlaku wodnego na Martwej Wiśle i Motławie. Raport o
oddziaływaniu na środowisko przedsięwzięcia pn. UM, Gdynia, 391 pp.
Rudinskaya, L. V., Gusev, A. A., 2012.
Invasion of the North American wedge
clam Rangia cuneata (GB Sowerby I, 1831) (Bivalvia: Mactridae) in the Vistula
Lagoon of the Baltic Sea. Russ. J. Biol. Invasions 3(3), 220–229.
Skóra, K.E., 2015.
Nowe muszelki w Zatoce Gdańskiej. https://hel.ug.edu.pl/2015/01/06/nowe-muszelki-w-zatoce-gdanskiej
(Accessed 2024-06).
Solovjova, S., 2014.
Rangia cuneata introduction to Lithuania/ Baltic
Sea. AquaNIS. Information System on Aquatic Non-Indigenous and Cryptogenic
Species.
www.corpi.ku.lt/databases/aquanis,
Ver. 2. (Accessed 2024-06).
Solovjova, S., Samuilovienė, A., Srėbalienė, G., Minchin, D., Olenin, S.,
201
9. Limited success of the non-indigenous bivalve clam Rangia cuneata in
the Lithuanian coastal waters of the Baltic Sea and the Curonian Lagoon.
Oceanologia 61(3), 341–349.
https://doi.org/10.1016/j.oceano.2019.01.005
Świeżak, J., Smolarz, K., Michnowska, A., Świątalska, A., Sobczyk, A.,
Kornijów, R., 202
1. Physiological and microbiological determinants of the
subtropical nonindigenous Rangia cuneata health and condition in the cold
coastal waters of the Baltic Sea: the Vistula Lagoon case study. Aquat.
Invasions 16(4).
https://doi.org/10.3391/ai.2021.16.4.05
Tuszer-Kunc, J., Normant-Saremba, M., Rychter, A., 2020.
The combination of
low salinity and low temperature can limit the colonisation success of the
non-native bivalve Rangia cuneata in brackish Baltic waters. J. Exp. Mar.
Biol. Ecol., 524, 151228.
https://doi.org/10.1016/j.jembe.2019.151228
Warzocha, J., Drgas, A., 2013.
The alien gulf wedge clam (Rangia cuneata GB
Sowerby I, 1831) (Mollusca: Bivalvia: Mactridae) in the Polish part of the
Vistula Lagoon (SE. Baltic). Folia Malacolog. 21(4), 291–292.
https://doi.org/10.12657/folmal.021.030
Warzocha, J., Szymanek, L., Witalis, B., Wodzinowski, T., 2016.
Seawater
temperature changes in the southern Baltic Sea (1959–2019) forced by climate
change. The first report on the establishment and spread of the alien clam
Rangia cuneata (Mactridae) in the Polish part of the Vistula Lagoon (southern
Baltic). Oceanologia 58(1), 54–58.
https://doi.org/10.1016/j.oceano.2015.10.001
Wiese, L., Niehus, O., Faass, B., Wiese, V., 2016.
Seawater temperature
changes in the southern Baltic Sea (1959–2019) forced by climate change. Ein
weiteres Vorkommen von Rangia cuneata in Deutschland (Bivalvia:
Mactridae). Schriften zur Malakozool. 29, 53–60.
Wilman, B., Bełdowska, M., Rychter, A., Kornijów, R., 2023.
Seawater
temperature changes in the southern Baltic Sea (1959–2019) forced by climate
change. Different pathways of accumulation and elimination of neurotoxicant Hg
and its forms in the clam Atlantic rangia (Rangia cuneata). Sci. Total
Environ. 858, 160018.
https://doi.org/10.1016/j.scitotenv.2022.160018
Zalewska, T., Wilman, B., Łapeta, B., Marosz, M., Biernacik, D., Wochna, A.,
Saniewski, M., Grajewska, A., Iwaniak, M., 2024.
Seawater temperature
changes in the southern Baltic Sea (1959–2019) forced by climate change.
Oceanologia 66(1), 37–55.
https://doi.org/10.1016/j.oceano.2023.08.001