Oceanologia No. 67 (2) / 25


Original Research Articles

Short Communications

Corrigendum


Original Research Articles



Water mass stability and mixing in the Banda Sea derived from Global Data Repository and the Jalacitra II Expedition
Oceanologia, 67 (2)/2025, 67201, 18 pp.
https://doi.org/10.5697/NRNG3078

Noir P. Purba1,2,*, Noor C.D. Aryanto2,3, Hendra K. Febriawan4, Adam B. Nugroho5, Mohd Fadzil Akhir6, Afifi Johari6, Syawaludin A. Harahap1, Ghelby M. Faid7, Muhammad H. Ilmi7, Anom P. Hascaryo8, Dyan P. Sobaruddin8, Candrasa S. Dharma8, Budi Muljana9, Cipta Endyana9
1Department of Marine Science, Padjadjaran University, Bandung, Indonesia;
e-mail: noir.purba@unpad.ac.id (Noir P. Purba)
2Indonesia National Committee, Intergovernmental Oceanographic Commission (IOC) – UNESCO, Jakarta, Indonesia
3Research Centre for Geological Resources, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
4Directorate of Research Vessel Management, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
5Research Centre for Geological Disaster, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
6Institute of Oceanography and Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
7KomitmenX Research Group, Padjadjaran University, Bandung, Indonesia
8Centre for Hydro-Oceanography, Indonesian Navy, Jakarta, Indonesia
9Department of Geology, Padjadjaran University, Bandung, Indonesia
*corresponding author

Keywords: T-S time profiles; Ocean stability; Banda Sea; Ocean circulation; Ocean mixing

Received: 13 February 2024; revised: 11 November 2024; accepted: 30 January 2025.

Highlights

Abstract

The dynamics of the Banda Sea can influence larger-scale oceanic processes and contribute to the global ocean circulation system. This research aims to utilize data from a global in situ data repository spanning the years 1960 to 2018, along with data collected from 12 stations during the recent Jalacitra II-2022 expedition. The focus is on analyzing salinity and potential temperature data to construct water mass features, including seasonal temperature-salinity-time diagrams and water column stability using Brunt Vaisala Frequency. Thorpe analysis is employed to investigate turbulent mixing within the region. The results found that temperatures are notably lower in Northwest Monsoon (NWM), reaching 30.0°C, while Southeast Monsoon (SEM) temperatures hover around 28.0°C. Salinity profiles reveal that SEM generally exhibits lower salinity levels, ranging from 33.5 to 34.4, compared to NWM, which ranges from 34.0 to 34.5. Vertical profiles of temperature and salinity variations in the SEM display a more varied thermocline layer depth than NWM. Data from the JC II expedition in the Banda Sea revealed a slight temperature decrease from 27.5°C to 26°C in August, accompanied by salinity variations. Surface salinity was measured at 33.3, while a uniform salinity of 34.6 was observed from 100 meters downward during the same period. This study identifies five dominant water mass types in the Banda Sea, primarily from the Pacific Ocean, which are North Pacific Intermediate Water (NPIW) and North Pacific Subtropical Water (NPSW). During the NWM season, water column instability occurs at depths up to 200 meters, while deeper water column instability is observed during the SEM, extending to a depth of 300 meters, with stability values lower than four cycles/hour. Furthermore, high turbulence generally occurs in the thermocline layer (50 to 300 m).

  References   ref

Atmadipoera, A., Molcard, R., Madec, G., Wijffels, S., Sprint- all, J., Koch-Larrouy, A., Jaya, I., Supangat, A., 2009. Characteristics and variability of the Indonesian throughflow water at the outflow straits. Deep Sea Res. Pt. I, 56 (11), 1942–1954. https://doi.org/10.1016/j.dsr.2009.06.004

Atmadipoera, A.S., Prartono, T., Jaya, I., Nugroho, D., Har- sono, G., Nanlohy, P., Koch-Larrouy, A., 2019. Seasonal variation of the upper-layer seawater properties in the Banda Sea: Observed from an autonomous CTD Argo float. IOP Conf. Ser. Earth Environ. 278 (1). https://doi.org/10.1088/1755-1315/278/1/012008

Balsamo, G., Agusti-Panareda, A., Albergel, C., et al., 2018. Satellite and in situ observations for advancing global earth surface modelling: A review. Remote Sens. 10 (12), 1–72. https://doi.org/10.3390/rs10122038

Bayhaqi, A., Iskandar, I., Surinati, D., Budiman, A.S., Ward- hana, A.K., Dirhamsyah, Yuan, D., Lestari, D.O., 2018. Water mass characteristic in the outflow region of the Indonesian throughflow during and post 2016 negative Indian ocean dipole event. IOP Conf. Ser. Earth Environ. 149 (1), 1–10. https://doi.org/10.1088/1755-1315/149/1/012053

Birowo, S., 1984. Ekspedisi ilmiah kelautan Snellius II, Indonesia – Belanda (Juli 1984–Juli 1985). LIPI, Jakarta, 23–42.

Boyer, T.P., Baranova, O.K., Coleman, C., Garcia, H.E., Grod- sky, A., Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R., Seidov, D., Smolyar, I.V., Weathers, K.W., Zweng, M.M., 2018. NOAA Atlas NESDIS 87. World Ocean Database 2018.

Bray, N.A., Hautala, S., Chong, J., Pariwono, J., 1996. Large- scale sea level, thermocline, and wind variations in the Indonesian throughflow region. J. Geophys. Res. 101 (C5), 12239–12254. https://doi.org/10.1029/96JC00080

Cai, S., He, Y., Wang, S., Long, X., 2009. Seasonal upper circulation in the Sulu Sea from satellite altimetry data and a numerical model. J. Geophys. Res. 114 (3), 14. https://doi.org/10.1029/2008JC005109

Cheng, L., Zhu, J., Cowley, R., Boyer, T., Wijffels, S., 2014. Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph obser- vations. J. Atmos. Ocean. Tech. 31 (8), 1793–1825. https://doi.org/10.1175/JTECH-D-13-00197.1

Dippner, J.W., Weber, S.C., Subramaniam, A., 2021. Impact of climate variability of the Western Tropical Pacific on maximum salinity water in the South China Sea. Ocean. Dynam. 71 (10), 1033–1049.

Emery, W.J., 2015. Oceanographic Topics: Water Types and Water Masses. Enc. Atmos. Sci. 329–337. https://doi.org/10.1016/B978-0-12-382225-3.00279-6

Febriawan, H.K., Nugroho, A.B., Alodia, G., Hascaryo, A., Fadillah, A., Aryanto, N.C.D., Haryanto, D., Muljana, B., Endyana, C., Purba, N.P., 2023. Nieuwerkerk – Emperor of China (NEC) Seamounts (Banda Sea): A multibeam seafloor imagery analysis. IOP Conf. Ser. Earth Environ. 1163 (1), 012018. https://doi.org/10.1088/1755-1315/1163/1/012018

Feng, M., Zhang, N., Liu, Q., Wijffels, S., 2018. The Indonesian throughflow, its variability and centennial change. Geosci. Lett. 5 (1). https://doi.org/10.1186/s40562-018-0102-2

Fieux, M., Andrié, C., Delecluse, P., Ilahude, A. G., Kartavtseff, A., Mantisi, F., Molcard, R., Swallow, J.C., 1994. Measurements within the Pacific-Indian oceans throughflow region. Deep-Sea Res. Pt. I, 41 (7), 1091–1130.

Gordon, A.L., Fine, R.A., 1996. Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature 379 (6561), 146–149.

Gusviga, B.H., Subiyanto, Faizal, I., Yusri, S., Sari, S. K., Purba, N.P., 2021. Occurrence and Prediction of Coral Bleaching Based on Ocean Surface Temperature Anomalies and Global Warming in Indonesian Waters. IOP Conf. Ser. Earth Environ. 750 (1), 1–13. https://doi.org/10.1088/1755-1315/750/1/012032

Hanifah, F., Ningsih, N.S. 2016. The characteristic of eddies in the Banda Sea. Adv. Appl. Fluid Mech. 19 (4), 889–902. https://doi.org/10.17654/FM019040889

Horhoruw, S.M., Fadli, M., Atmadipoera, A., Lekalette, J., Nugroho, D.Y., Tatipatta, W.M., Kainama, F. 2020. Horizontal Structure of Banda Eddies and the Relationship to Chlorophyll-a during South East Monsoon in Normal and ENSO Period on 2008-2010. IOP Conf. Ser. Earth Environ. 618 (1). https://doi.org/10.1088/1755-1315/618/1/012011

Ilahude, A.G., Muchtar, M., Praseno, D.P., Hadikusumah, A., Ruyitno, N., Simanjuntak, M., Sutomo, A.B., Adnan, Q. 1999. Hydrology of the Mamberamo Plume, Irian Jaya. Proc. Indo-Tropics Workshop, 6–7.

Jackett, D.R., McDougall, T.J., Feistel, R., Wright, D.G., Griffies, S.M., 2006. Algorithms for density, potential temperature, conservative temperature, and the freezing temperature of seawater. J. Atmos. Ocean. Tech. 23 (12), 1709–1728. https://doi.org/10.1175/JTECH1946.1

Johari, A., Akhir, M. F. 2019. Exploring thermocline and water masses variability in southern South China Sea from the World Ocean Database (WOD). Acta Oceanol. Sin. 38, 38–47. Johnson, G.C., Lyman, J.M. 2020. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10 (8), 757–761. https://doi.org/10.1038/s41558-020-0822-0

Katavouta, A., Polton, J.A., Harle, J.D., Holt, J.T., 2022. Effect of Tides on the Indonesian Seas Circulation and Their Role on the Volume, Heat and Salt Transports of the Indonesian Throughflow. J. Geophys. Res. 127 (8). https://doi.org/10.1029/2022JC018524

Kida, S., Wijffels, S. 2012. The impact of the Indonesian Throughflow and tidal mixing on the summertime sea surface temperature in the western Indonesian Seas. J. Geophys. Res. 117 (C9).

Lana, A.B., Kurniawati, N., Purba, N.P., Syamsuddin, M.L. 2017. Thermocline Layers Depth and Thickness in Indonesian Waters when Southeast Monsoon. Omni Akuatika 37 (08), 36–41. https://doi.org/10.1002/jor.23509

Lange, M., van Sebille, E. 2017. Parcels v0.9: Prototyping a Lagrangian ocean analysis framework for the petascale age. Geosci. Model. Dev. 10 (11), 4175–4186. https://doi.org/10.5194/gmd-10-4175-2017

Liang, L., Xue, H., Shu, Y., 2019. The Indonesian Throughflow and the Circulation in the Banda Sea: A Modeling Study. J. Geophys. Res. 124 (5), 3089–3106. https://doi.org/10.1029/2018JC014926

Makarim, S., Sprintall, J., Liu, Z., Yu, W., Santoso, A., Yan, X.-H., Susanto, R.D., 2019. Previously unidentified Indonesian Throughflow pathways and freshening in the Indian Ocean during recent decades. Sci. Rep.-UK, 9 (1), 7364. https://doi.org/10.1038/s41598-019-43841-z

McCreary, J.P., Miyama, T., Furue, R., Jensen, T., Kang, H.W., Bang, B., Qu, T. 2007. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Progr. Oceanogr. 75 (1), 70–114. https://doi.org/10.1016/j.pocean.2007.05.004

Molcard, R., Fieux, M., Syamsudin, F., 2001. The throughflow within Ombai Strait. Deep-Sea Res. Pt. I 48 (5), 1237–1253.

Moore, T.S., Marra, J., Alkatiri, A. 2003. Response of the Banda Sea to the southeast monsoon. Mar. Ecol. Prog. Ser. 261, 41–49. https://doi.org/10.3354/meps261041

Nugraha, A.P., Purba, N.P., Junianto, Sunarto. 2018. Ocean Currents , Temperature, and Salinity at Raja Ampat Islands and The Boundaries Seas. World Sci. News 110 (September), 197–209.

Nuzula, F., Syamsudin, M.L., Yuliadi, L.P.S., Purba, N.P., Martono. 2017. Eddies spatial variability at Makassar Strait – Flores Sea. IOP Conf. Ser. Earth Environ. 54 (1). https://doi.org/10.1088/1755-1315/54/1/012079

Pei, S., Shinoda, T., Steffen, J., Seo, H., 2021. Substantial Sea Surface Temperature Cooling in the Banda Sea Associated With the Madden-Julian Oscillation in the Boreal Winter of 2015. J. Geophys. Res. 126 (6), e2021JC01 7226. https://doi.org/10.1029/2021JC017226

Purba, N.P., Damanik, F.S., 2021. Seasonal Water Mass Transformation in Sulu and Surrounding Seas. World Sci. News 153 (2), 142–156.

Purba, N.P., Khan, A.M.A., 2019. Upwelling Session in Indonesia Waters. World News Nat. Sci. 25 (June), 72–83.

Purba, N.P., Pranowo, W.S., Ndah, A.B., Nanlohy, P., 2021. Seasonal variability of temperature, salinity, and surface currents at 0° latitude section of Indonesia seas. Reg. Stud. Mar. Sci. 44, 101772. https://doi.org/10.1016/j.rsma.2021.101772

Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T., Atmadipoera, A.S., 2020. Historical CTD dataset and associated processed dissipation rate using an improved Thorpe method in the Indonesian seas. Data in Brief. 30. https://doi.org/10.1016/j.dib.2020.105519

Pusparini, N., Prasetyo, B., Ambariyanto, Widowati, I., 2017. The Thermocline Layer and Chlorophyll-a Concentration Variability during Southeast Monsoon in the Banda Sea. IOP Conf. Ser. Earth Environ. 55 (1), 012039. https://doi.org/10.1088/1755-1315/55/1/012039

Schlitzer, R., 2022. Ocean Data View. https://odv.awi.de

Sprintall, J., Gordon, A.L., Koch-Larrouy, A., Lee, T., Potemra, J.T., Pujiana, K., Wijffels, S.E., 2014. The Indonesian seas and their role in the coupled ocean-climate system. Nat. Geosci. 7 (7), 487–492. https://doi.org/10.1038/ngeo2188

Sprintall, J., Gordon, A.L., Wijffels, S.E., Feng, M., Hu, S., Koch-Larrouy, A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Dwi Susanto, R., Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z., Wahyudi, A.J., Zhou, H., Nagai, T., Ansong, J.K., Bourdalle-Badié, R., Chanut J., Lyard, F., Arbic, B.K., Ramdhani, A., Setiawan, A., 2019. Detecting change in the Indonesian seas. Front. Mar. Sci. 6, 257. https://doi.org/10.3389/fmars.2019.00257

Sprintall, J., Timothy Liu, W., 2005. Ekman mass and heat transport in the Indonesian seas. Oceanography 18 (Sp. Iss. 4), 88–97. https://doi.org/10.5670/OCEANOG.2005.09

Susanto, R.D., Fang, G., Soesilo, I., Zheng, Q., Qiao, F., Wei, Z., Sulistyo, B., 2010. New surveys of a branch of the Indonesian throughflow. T. Am. Geophys. Un. 91 (30), 261–263. https://doi.org/10.1029/2010EO300002

Talley, L.D., Sprintall, J., 2005. Deep expression of the Indonesian Throughflow: Indonesian Intermediate Water in the South Equatorial Current. J. Geophys. Res. 10 (10), 1–30. https://doi.org/10.1029/2004JC002826

Tillinger, D., Gordon, A.L,. 2009. Fifty years of the Indonesian throughflow. J. Climate, 22 (23), 6342–6355. https://doi.org/10.1175/2009JCLI2981.1

Tomczak, M., Godfrey, J.S., 2003. Regional oceanography: an introduction. Daya Books, New Delhi.

Van Aken, H.M., Brodjonegoro, I.S., Jaya, I., 2009. The deepwater motion through the Lifamatola Passage and its contribution to the Indonesian throughflow. Deep-Sea Res. Pt. I, 56 (8), 1203–1216.

Vinayachandran, P.N.M., Masumoto, Y., Roberts, M., Hugget, J., Halo, I., Chatterjee, A., Amol, P., Gupta, G., Singh, A., Mukherjee, A., Prakash, S., Beckley, L., Raes, E.J., Hood, R., 2021. Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences Discuss. 18 (2), 5967–6029. https://doi.org/10.5194/bg-2020-486

Wyrtki, K., 1961. Physical oceanography of the Southeast Asian waters. Vol. 2, Univ. California, Scripps Inst. Oceanogr., California.

Zeng, L., Wang, D., Chen, J., Wang, W., Chen, R., 2016. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014. Sci. Data, 3 (1), 1–13.

Zhu, Y., Wang, L., Wang, Y., Xu, T., Li, S., Cao, G., Wei, Z., Qu, T., 2019. Stratified Circulation in the Banda Sea and Its Causal Mechanism. J. Geophys. Res. 124 (10), 7030–7045. https://doi.org/10.1029/2019JC015279

Zubaedah, S., Setiyono, H., Puspita, C.D., Gusmawati, N. F., Pranowo, W.S., 2021. Schematic Model of Ocean Pacific Seawater Mass Circulation in Banda Sea. IOP Conf. Ser. Earth Environ. 750 (1). https://doi.org/10.1088/1755-1315/750/1/012009

full, complete article - PDF


Sea level along the Polish coast (southern Baltic Sea): Comparison of satellite altimetry and tide gauge observations (1995–2019)
Oceanologia, 67 (2)/2025, 67202, 15 pp.
https://doi.org/10.5697/VUAB8974

Anna Izabela Bulczak1,*, Beata Kowalska2, Lidia Dzierzbicka-Głowacka1
1Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: abulczak@iopan.pl, annabulczak@gmail.com (A.I. Bulczak)
2Instytut Meteorologii i Gospodarki Wodnej, Jerzego Waszyngtona 42, 81–342, Gdynia, Poland
*corresponding author

Keywords: Tide gauges; Satellite altimetry; Baltic Sea; Sea level; Validation

Received: 6 September 2024; revised: 13 January 2025; accepted: 1 February 2025.

Highlights

Abstract

This study examines sea level observations along the Polish coast from 1995 to 2019, combining in situ measurements from tide gauge stations with radar satellite altimetry data. The research is driven by developing new satellite products under the Baltic + SEAL project, specifically tailored for the Baltic Sea. These innovative products utilise advanced algorithms for sea level estimation, enhanced radar waveform processing, and high-resolution sea level data collected in Synthetic Aperture Radar (SAR) mode by multiple satellites during the analysed period. The study’s primary aim is to validate and assess the performance of the Baltic + SEAL product against the standard sea level data provided by the Copernicus Marine Environment Monitoring Service (CMEMS) and observations from nine tide gauges distributed along the Polish coast. The evaluation focuses on long-term trends, seasonal variations, and statistical metrics across various time scales, from daily to decadal. The results underscore both the strengths and limitations of the Baltic + SEAL product in capturing spatial and temporal variations in sea levels. This study contributes valuable insights into sea level change dynamics along the Polish coast, providing essential information for coastal monitoring, management, and future research in the Baltic Sea region.

  References   ref

Abdalla, S., Kolahchi, A.A., Ablain, M., Adusumilli, S., Bhowmick, S.A., et al. [International Altimetry Team], 2021. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 68, 319–363. https://doi.org/10.1016/j.asr.2021.01.022

Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle,A., Chelton, D., Dibarboure, G., Picot, N., 2019. On the resolutions of ocean altimetry maps. Ocean Sci. 15, 1091–1109. https://doi.org/10.5194/os-15-1091-2019

Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R., Almar, R., Andersen, O., Birol, F., Bonnefond, P., Bouffard, J., Calafat, F., Cardellach, E., Cipollini, P., Le Cozannet, G., Dufau, C., Fernandes, M.J., Frappart, F., Garrison, J., Gommenginger, C., Han, G., Høyer, J. L., Kourafalou, V., Leuliette, E., Li, Z., Loisel, H., Madsen, K.S., Marcos, M., Melet, A., Meyssignac, B., Pascual, A., Passaro, M., Ribó, S., Scharroo, R., Song, Y.T., Speich, S., Wilkin, J., Woodworth, P., Wöppelmann G., 2019. Requirements for a Coastal Hazards Observing System. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00348

Bugajny, N., Furmańczyk, K., Furmańczyk, K., 2024. Statistics of significant storm events using one- and two- dimensional analyses of the natural and protected coasts of the Dziwnów Spit. Est. Coast. Shelf Sci., 306, 108881. https://doi.org/10.1016/j.ecss.2024.108881

Grinsted, A., Jevrejeva, S., Riva, R., Dahl-Jensen, D., 2015. Sea level rise projections for Northern Europe under RCP8.5. Clim. Res. Online 64(1), 15–23. https://doi.org/10.3354/cr01309

IPCC, 2022. Annex IV: Contributors to the Working Group II Contribution to the IPCC Sixth Assessment Report, 2023. In: Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegrı́a, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B. (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge Univ. Press, New York, 2939–2963. https://doi.org/10.1017/9781009325844.031

Kapsi, I., Kall, T., Liibusk, A., 2023. Sea Level Rise and Future Projections in the Baltic Sea. J. Mar. Sci. Eng. 11, 1514. https://doi.org/10.3390/jmse11081514

Karimi, A.A., Bagherbandi, M., Horemuz, M., 2021. Multidecadal sea level variability in the Baltic Sea and its impact on acceleration estimations. Front. Mar. Sci. 8, 702512. https://doi.org/10.3389/fmars.2021.702512

Kowalczyk, K., Pajak, K., Wieczorek, B., Naumowicz, B., 2021. An Analysis of Vertical Crustal Movements along the European Coast from Satellite Altimetry, Tide Gauge, GNSS and Radar Interferometry. Remote Sens. 13 (11), 2173. https://doi.org/10.3390/rs13112173

Leppäranta, M., Myrberg, K., 2009. Physical oceanography of the Baltic Sea. 1st edn., Springer, Berlin, Heidelberg, 401 pp. https://doi.org/10.1007/978-3-540-79703-6

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., Aarninkhof, S., 2018. The State of the World’s Beaches. Scient. Rep. 8, 6641. https://doi.org/10.1038/s41598-018-24630-6

Lyard, F.H., Allain, D.J., Cancet, M., Carrère, L., Picot, N., 2021. FES2014 global ocean tide atlas: design and performance. Ocean Sci. 17, 615–649. https://doi.org/10.5194/os-17-615-20

Madsen, K.S., Høyer, J.L., Suursaar, Ü., She, J., Knudsen, P., 2019. Sea Level Trends and Variability of the Baltic Sea From 2D Statistical Reconstruction and Altimetry. Front. Earth Sci. 7, 67. https://doi.org/10.3389/feart.2019.00243

Mostafavi, M., Ellmann, A., Delpeche-Ellmann, N., 2024. Long-Term and Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite Altimetry. Remote Sens. 16(5), 760. https://doi.org/10.3390/rs16050760

Müller, F., Passaro, M., Dettmering, D., 2020. Baltic + SEAL (Sea Level): Algorithm Theoretical Baseline Document (ATBD), Version 2.1. Technical report delivered under the Baltic + SEAL project. Technische Universität München, 20 pp. https://doi.org/10.5270/esa.BalticSEAL.ATBDV2.1

Musielak, S., Furmańczyk, K., Bugajny, N., 2017. Factors and processes forming the Polish Southern Baltic Sea coast on various temporal and spatial scales. In: Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea From South to East, Past and Future Projection. Coast. Res. Libr. vol. 19, Springer, 69–85.

Oelsmann, J., Passaro, M., Dettmering, D., et al., 2021. The zone of influence: matching sea level variability from coastal altimetry and tide gauges for vertical land motion estimation. Ocean Sci. 17(1). https://doi.org/10.5194/os-17-35-2021.

Oelsmann, J., Marcos, M., Passaro, M., et al., 2024. Regional variations in relative sea-level changes influenced by nonlinear vertical land motion. Nat. Geosci. 17, 137–144. https://doi.org/10.1038/s41561-023-01357-2

Pająk, K., Kowalczyk, K., 2019. A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data. Advan. Space Res. 63(5), 1768–1780. https://doi.org/10.1016/j.asr.2018.11.022

Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G.D., Snaith, H.M., 2014. ALES: A multimission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens. Environ. 145, 173–189.

Passaro, M., Müller, F., Dettmering, D., Abulaitjiang, A., Rautiainen, L., Scarrott, R.G., Chalençon, E., Sweeney, M., 2021a. Baltic + SEAL (Sea Level): Product Handbook, Version 1.1. Report delivered under the Baltic + SEAL project (ESA Contract: 4000126590/19/I/BG). Technische Universität München, 58 pp.

Passaro, M., Müller, F.L., Oelsmann, J., Rautiainen, L., Dettmering, D., Hart-Davis, M.G., Abulaitijiang, A., Andersen, O.B., Høyer, J.L., Madsen, K.S., Ringgaard, I.M., Särkkä, J., Scarrott, R., Schwatke, C., Seitz, F., Tuomi, L., Restano, M., Benveniste, J., 2021b. Absolute Baltic Sea Level Trends in the Satellite Altimetry Era: A Revisit. Front. Mar. Sci. 8, 647607. https://doi.org/10.3389/fmars.2021.647607

Passaro, M., Restano, M., Sabatino, G., Orru, C., Benveniste, J., 2020. The ALES + SAR Service for Cryosat-2 and Sentinel-3 at ESA GPOD. OSTST 2020. https://meetings.aviso.altimetry.fr/index.html

Passaro, M., Rose, S.K., Andersen, O.B., Boergens, E., Calafat, F.M., Dettmering, D., Benveniste, J., 2018. ALES+: Adapt ing a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters. Remote Sens. Environ. 211, 456–471. https://doi.org/10.1016/j.rse.2018.02.07

Rautiainen, L., Särkkä, J., Tuomi, L., Müller, F., Passaro, M., 2020. Baltic + SEAL: Validation Report, Version 2.2. Technical report delivered under the Baltic + SEAL project. Technische Universität München, 36 pp. https://doi.org/10.5270/esa.BalticSEAL.VRV2.2

Pujol, I., 2023. Product User Manual For Sea Level Altimeter products. Issue 9.0, 2024/11. https://documentation.marine.copernicus.eu/PUM/CMEMS-SL-PUM-008-032-068.pdf

Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., Picot, N., 2016. DUACS DT2014: the new multimission altimeter data set reprocessed over 20 years. Ocean Sci. 12, 1067–1090. https://doi.org/10.5194/os-12-1067-2016

Ruiz Etcheverry, L.A., Saraceno, M., Piola, A.R., Valladeau, G.,. Möller, O.O., 2015. A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges. Cont. Shelf Res. 92, 87–97. https://doi.org/10.1016/j.csr.2014.10.006

Stramska, M., 2013. Temporal variability of the Baltic Sea level based on satellite observations. Estuar. Coast. Shelf Sci. 133, 244–250. https://doi.org/10.1016/j.ecss.2013.09.002

Stramska, M., Chudziak, N., 2013. Recent multiyear trends in the Baltic Sea level. Oceanologia 55 (2), 319–337. https://doi.org/10.5697/oc.55-2.319

Taburet, G., Pujol, M., SL-TAC team, 2024. Quality Information Document for Sea Level TAC DUACS Products. Copernicus Marine service, CMEMS-SL-QUID-008-032-068, Issue 110, 11 pp.

Uścinowicz, G., Uścinowicz, S., Szarafin, T., Maszloch, E., Wirkus, K., 2024. Rapid coastal erosion, its dynamics and cause – An erosional hot spot on the southern Baltic Sea coast, Oceanologia 66 (2), 250–266. https://doi.org/10.1016/j.oceano.2023.12.002

Weidemann, H., 2014. Klimatologie der Ostseewasserstände: Eine Rekonstruktion von 1948 bis 2011. Universität Hamburg, Hamburg, 132 pp.

Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dynam. 12, 871–898. https://doi.org/10.5194/esd-12-871-2021

Wolski, T., Wiśniewski, B., 2020. Geographical diversity in the occurrence of extreme sea levels on the coasts of the Baltic Sea. J. Sea Res. 159, 101890. https://doi.org/10.1016/j.seares.2020.101890

Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaitė, Ž., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56 (2), 259–290. https://doi.org/10.5697/oc.56-2.259

Vestøl, O., Ågren, J., Steffen, H., Kierulf, H., Tarasov, L., 2019. NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region. J Geod. 93, 1759–1779. https://doi.org/10.1007/s00190-019-01280-8

Zalewska, T., Wilman, B., Łapeta, B., Marosz, M., Biernacik, D., Wochna, A., Saniewski, M., Grajewska, A., Iwaniak, M., 2023. Seawater Temperature Changes in the Southern Baltic Sea (1959–2019) Forced by Climate Change. Oceanologia 66 (1), 37–55. https://doi.org/10.1016/j.oceano.2023.08.001.

Zaucha, J., Matczak, M., 2015. Studium uwarunkowań zagospodarowania przestrzennego polskich obszarów morskich wraz z analizami przestrzennymi. Instytut Morski w Gdańsku, Gdańsk, 356 pp.

full, complete article - PDF


Hydroacoustic technique for determination of the orientation of aggregated Baltic herring
Oceanologia, 67 (2)/2025, 67203, 20 pp.
https://doi.org/10.5697/KAOE6308

Aleksander Żytko1,*, Natalia Gorska1,*, Dezhang Chu2, Beata Schmidt3,*
1Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: azytko@iopan.pl (A. Żytko), gorska@iopan.pl (N. Gorska)
2NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
3National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: bschmidt@mir.gdynia.pl (B. Schmidt)
*corresponding author

Keywords: Target Strength; Modified resonance scattering model; Fish orientation; Baltic herring

Received: 23 February 2024; revised: 4 December 2024; accepted: 24 February 2025.

Highlights

Abstract

The distribution of fish orientation is a very important factor influencing their Target Strength (TS𝑆), and thus the hydroacoustic assessment of fish abundance. A technique has been developed to estimate the orientation distribution of aggregated Baltic herring (Clupea harengus) by fitting the TS histograms obtained from the theoretical backscattering model to the measured𝑇TS histograms. By using available morphometry data of Baltic herring, a modified resonance scattering model to describe the backscattering by Baltic herring has been developed. Using this model, TS histograms were generated for different probability density functions (PDFs) of fish orientation, and then compared with the measured histograms. Based on the best fit to the measured histograms, the most likely distribution of herring orientation can be inferred.

  References   ref

Alexander, C.K., 2013. Fundamentals of electric circuits. McGraw-Hill.

Andreeva, I.B., 1964. Scattering of sound by air bladders of fish in deep sound-scattering ocean layers. Sov. Phys. Acoust. 10, 17–20.

Beltestad, A.K. 1973. Feeding behavior and vertical migration in 0-group herring (Clupea harengus) in relation to light intensity. Cand. Real. thesis, Univ. Bergen (in Norwegian).

Blaxter, J.H.S., Batty, R.S., 1990. Swimbladder “behaviour” and target strength. Rap. Proces. 189, 233–244.

Blaxter, J.H.S., Hunter, J.R., 1982. The biology of the clupeoid fishes. Adv. Mar. Biol. 20, 1–223. https://doi.org/10.1016/S0065-2881(08)60140-6

Boyar, H.C., 1961. Swimming Speed of Immature Atlantic Herring with Reference to the Passamaquoddy Tidal Project. T. Am. Fish. Soc. 90, 21–26. https://doi.org/10.1577/1548-8659(1961)90[21:SSOIAH]2.0.CO;2

Burwen, D., Nealson, P., Fleischman, S., Mulligan, T., Horne J., 2007. The complexity of narrowband echo envelopes as a function of side-aspect angle. ICES J. Mar. Sci. 64, 1066–1074. https://doi.org/10.1093/icesjms/fsm074

Cardinale, M., Arrhenius, F., 2000. Decreasing weight-at-age of Atlantic herring (Clupea harengus) from the Baltic Sea between 1986 and 1996: a statistical analysis. ICES J. Mar. Sci. 57, 882–893. https://doi.org/10.1139/f00-221

Casini, M., Kornilovs, G., Cardinale, M., Möllmann, C., Grygiel, W., Jonsson, P., Raid, T., Flinkman, J., Feldman, V., 2011. Spatial and temporal density dependence regulates the condition of central Baltic Sea clupeids: compelling evidence using an extensive international acoustic survey. Popul. Ecol. 53, 511–523. https://doi.org/10.1007/s10144-011-0269-2

Chapman, R., 2006. A sea water equation of state calculator. APL Ocean Remote Sensing. http://fermi.jhuapl.edu/denscalc.html

Chu, D., Foote, K., Stanton T., 1993. Further analysis of target strength measurements of Antarctic krill at 38 and 120 khz: Comparison with deformed cylinder model and inference of orientation distribution. J. Acoust. Soc. Am. 93 (5), 2985–2988. https://doi.org/10.1121/1.405818

Didrikas, T., 2005. Estimation of in situ target strength of the Baltic Sea herring and sprat. Department of Systems Ecology. Stockholm University, 1 (5).

Didrikas, T., Hansson, S., 2004. In situ target strength of the Baltic Sea herring and sprat. ICES J. Mar. Sci. 61 (3), 378–382. https://doi.org/10.1016/j.icesjms.2003.08.003

Edwards, J.I., Armstrong, F., Magurran, A.E., Pitcher, T.J., 1984. Herring, mackerel and sprat target strength experiments with behavioural observations. ICES CM / B, 34.

Fässler, S.M.M., 2010. Target strength variability in Atlantic herring (Clupea harengus) and its effect on acoustic abundance estimates. PhD thesis, University of St. Andrews. https://doi.org/10.13140/2.1.1883.4247

Fässler, S.M.M., Gorska, N., 2009. On the target strength of Baltic clupeids. ICES J. Mar. Sci. 66, 1184–1190. https://doi.org/10.1093/icesjms/fsp005

Fässler, S.M.M., Gorska, N., Ona, E., 2007. Differences in swimbladder volume between Baltic and Norwegian spring spawning herring: possible consequences for mean target strength. ICES CM 2007/H, 3. https://doi.org/10.1016/j.fishres.2008.01.013

Fässler, S.M.M., Gorska, N., Ona, E., Fernandes, P.G., 2008. Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring: Consequences for mean target strength. Fish. Res. 92, 314–321. https://doi.org/10.1016/j.fishres.2008.01.013

Fofonoff, N.P., Millard Jr, R.C., 1983. Algorithms for the computation of fundamental properties of seawater. UN-ESCO Publ., Paris. https://doi.org/10.25607/OBP-1450

Foote K.G., Francis D.T.I., 2002. Comparing Kirchhoff-approximation and boundary-element models for computing gadoid target strengths. J. Acoust. Soc. Am. 111, 1644–1654. https://doi.org/10.1121/1.1458939

Francis, D.T.I., 1993. A gradient formulation of the Helmholtz integral eąuation for acoustic radiation and scattering. J. Acoust. Soc. Am., 93, 1700–1709. https://doi.org/10.1121/1.406735

Francis, D.T.I., Foote, K.G., 2003. Depth-dependent target strengths of gadoids by the boundary-element method. J. Acoust. Soc. Am. 114, 3136–3146. https://doi.org/10.1121/1.1619982.

Fréon, P., Misund, O.A., 1999. Dynamics of pelagic fish distribution and behaviour: effects on fisheries and stock assessment. Vol. 348, Fishing News Books, Oxford. Gaunaurd, G.C., 1985. Sonar cross sections of bodies partially insonified by finite sound beams. IEEE J. Ocean. Eng. 10, 213–230. https://doi.org/10.1109/JOE.1985.1145097

Gorska, N., 2007. On target strength of Baltic herring. ICES CM 2007/H 07, 17–21.

Gorska, N., Idczak, J., 2010. On the acoustic backscattering by Baltic herring and sprat. Hydroacoustics 13, 89–100. http://pta.eti.pg.gda.pl/journal/paper.py?id=469

Gorska, N., Idczak, J., 2021. On Baltic herring morphometry and its impact on the backscattering properties. Oceanologia, 64 (1), 198–211. https://doi.org/10.1016/j.oceano.2021.10.001

Gorska, N., Ona, E., 2003. Modelling the acoustic effect of swimbladder compression in herring. ICES J. Mar. Sci. 60, 548–554. https://doi.org/10.1016/S1054-3139(03)00050-X

Grelowska, G., 2000. Prevailing patterns of the sound speed distributions in the environment of the Southern Baltic. Arch. Acoust. 25 (3).

Grygiel, W., Łączkowski, T., Podolska, M., Wodzinowski, T., 2011. Research report from the Baltic International Acoustic Survey (BIAS) on board of the Polish r.v. Baltica (20.09–08.10.2010). Working paper on the WGBIFS meeting in Kaliningrad (Russia), 21–25.03.2011. [in:] ICES CM 2011/SSGESST:05, REF. SCICOM, WGISUR, ACOM; Annex 9; 396–429.

Grygiel, W., Wyszyński, M., 2003. Temporal (1980–2001) and geographic variation in the sexual maturity at age and length of herring and sprat inhabiting the southern Baltic. Bull. Nat. Mar. Fish. Res. Inst. 159 (2), 3–34.

Hjellvik, V., Handegard, N.O., Ona, E., 2008. Correcting for vessel avoidance in acoustic-abundance estimates for herring. ICES J. Mar. Sci. 65 (6), 1036–1045. https://doi.org/10.1093/icesjms/fsn082

Holliday, D.V., 1972. Resonance structure in echoes from schooled pelagic fish. J. Acoust. Soc. Am. 51, 1322–1332. https://doi.org/10.1121/1.1912978

Hornborg, S., 2023. Follow the herring–A case study on the interplay between management and markets for marine resource utilization. Mar. Policy 158, 105874. https://doi.org/10.1016/j.marpol.2023.105874

Huse, I., Korneliussen, R., 2000. Diel variation in acoustic density measurements of overwintering herring (Clupea harengus L.). ICES J. Mar. Sci. 57 (4), 903–910. https://doi.org/10.1006/jmsc.2000.0577

Huse, I., Ona, E., 1996. Tilt angle distribution and swimming speed of overwintering Norwegian spring spawning herring. ICES J. Mar. Sci. 53 (5), 863–873. https://doi.org/10.1006/jmsc.1996.9999

ICES, 2017. Manual for the International Baltic Acoustic Surveys (IBAS). Ser. ICES Survey Protocols SISP 8 – IBAS, Version 2.0, 47. http://www.ices.dk/sites/pub/Publication%20Reports/ICES%20Survey%20Protocols%20%28SISP%29 /2017/SISP%208%20IBAS%202017.pdf

Idczak, J., Gorska, N., 2016. Modelling of acoustic backscattering by southern Baltic herring. Hydroacoustics 19, 145–152. http://pta.eti.pg.gda.pl/journal/paper.py?id=639

Idczak, J., Kniaź-Kubacka, N., 2012. Backscattering properties of southern Baltic herring. Hydroacoustics 15, 57–64. http://pta.eti.pg.gda.pl/journal/paper.py?id=531

Jaffe, J.S., Roberts, P.L., 2011. Estimating fish orientation from broadband, limited-angle, multiview, acoustic reflections. J. Acoust. Soc. Am. 129 (2), 670–680. https://doi.org/10.1121/1.3523430

Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N., Jones, B., Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada, K., 2015. Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. J. Acoust. Soc. Am. 138, 3742–3764. https://doi.org/10.1121/1.4937607

Kasatkina, S., 2007. Target strength of Baltic herring and sprat in relation to changes of their biological characteristics: effects on acoustic abundance indices estimates. ICES CM /H, 06. https://doi.org/10.17895/ices.pub.25257874.v2

Kasatkina, S.M., 2009. The influence of uncertainty in target strength on abundance indices based on acoustic surveys: examples of the Baltic Sea herring and sprat. ICES J. Mar. Sci. 66, 1404–1409. https://doi.org/10.1093/icesjms/fsp086

Kloser, R., Ryan, T., Sakov, P., Williams, A., Koslow, J.A., 2002. Species identification in deep water using multiple acoustic frequencies. Can. J. Fish. Aquat. Sci. 59, 1065–1077.

Kulmala, S., Peltomäki, H., Lindroos, M., Söderkultalahti, P., Kuikka, S., 2007.Individual transferable quotas in the Baltic Sea herring fishery: a socio-bioeconomic analysis. Fish. Res. 84 (3), 368–377. https://doi.org/10.1016/j.fishres.2006.11.029

Lassen, H., Stæhr, K.J., 1985. Target strength of Baltic herring and sprat measured in-situ. ICES CM. B 41, 1–14.

Levine, I.N., 1978. Physical Chemistry. University of Brooklyn, McGraw-Hill.

Love, R.H., 1978. Resonant acoustic scattering by swim-bladder-bearing fish. J. Acoust. Soc. Am. 64 (2), 571–580. https://doi.org/10.1121/1.382009

MacLennan, D.N., Fernandes, P.G., Dalen, J., 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369. https://doi.org/10.1006/jmsc.2001.1158

Medwin, H., Clay, C.S., 1998. Fundamentals of acoustical oceanography. Acad. Press, New York, USA.

Mitson, R.B., (ed.) 1995. Underwater Noise of Research Vessels: Review and Recommendations. ICES Cooperative Res. Rep., 209 pp.

Mitson, R.B., Knudsen, H.P., 2003. Causes and effects of underwater noise on fish abundance estimation. Aquat. Living Resour. 16 (3), 255–263. https://doi.org/10.1016/S0990-7440(03)00021-4

Nakken, O., Olsen, K., 1977. Target strength measurements of fish. Rap. Proces. 170, 52–69.

Nero, R.W., Thompson, C.H., Jech, J.M., 2004. In situ acoustic estimates of the swimbladder volume of Atlantic herring (Clupea harengus). ICES J. Mar. Sci. 61, 323–337.

Nøttestad, L., 1998. Extensive gas bubble release in Norwegian spring spawning herring (Clupea harengus) during predator avoidance. ICES J. Mar. Sci. 55 1133–1140. https://doi.org/10.1006/jmsc.1998.0416

Ojaveer, E., 1988. Baltic Herrings. Biology and Management. Agropromizdat, Moscow, Russia, 204 pp.

Olsen, K., Angell, J., Pettersen, F., Løvik, A., 1983. Observed fish reactions to a surveying vessel with special reference to herring, cod, capelin and polar cod. FAO Fish. 300, 131–138.

Ona, E., 1984. Tilt angle measurements on herring. ICES C.M. 1984/B, 19.

Ona, E., 1990. Physiological factors causing natural variations in acoustic target strength of fish. J. Mar. Biol. Assoc. UK 70, 107–127.

Ona, E., 2001. Herring tilt angles, measured through target tracking. [in:] Herring: Expectations for a New Millennium, 509–519.

Ona, E., Godø, O.R., Handegard, N.O., Hjellvik, V., Patel, R., Pedersen, G., 2007. Silent research vessels are not quiet. J. Acoust. Soc. Am. 121, 145–150. https://doi.org/10.1121/1.2710741

Pele, O., Werman, M., 2010. The quadratic-chi histogram distance family. [in:] Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010 Proceedings, Part II, Springer, Berlin, Heidelberg, 749–762.

Peltonen, H., Balk, H., 2005. The acoustic target strength of herring (Clupea harengus L.) in the northern Baltic Sea. ICES J. Mar. Sci. 62, 803–808. https://doi.org/10.1016/j.icesjms.2005.02.001

Rudstam, L.G., Hansson, S., Lindem, T., Einhouse, D.W., 1999. Comparison of target strength distributions and fish densities obtained with split- and single-beam echosounders. Fish. Res. 42, 207–214. https://doi.org/10.1016/S0165-7836(99)00047-8

Rudstam, L., Lindem, T., Hansson, S., 1988. Density and in situ target strength of herring and sprat: a comparison between two methods of analyzing single beam sonar data, Fish. Res. 6, 305–315. https://doi.org/10.1016/0165-7836(88)90001-X

Sawada, K., Furusawa, M., Williamson, N.J., 1993. Conditions for the precise measurement of fish target strength in situ. J. Mar. Acoust. Soc. Jpn. 20 (2), 73–79. https://doi.org/10.3135/jmasj.20.73

Sawicki, T., Juszczak, M., Szymczak, M., 2019. Ichthyology and economic importance of baltic herring in polish fish industry. Folia Pomeranae Universitatis Technologiae Stetinensis. Agricultura, Alimentaria, Piscaria et Zootechnica 348(49)1, 131–144. https://doi.org/10.21005/AAPZ2019.49.1.14

Scoulding, B., Chu, D., Ona, E., Fernandes, P.G., 2015. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137 (2), 989–1000. https://doi.org/10.1121/1.4906177

Scoulding, B., Gastauer, S., MacLennan, D.N., Fässler, S.M., Copland, P., Fernandes, P.G., 2017. Effects of variable mean target strength on estimates of abundance: the case of Atlantic mackerel (Scomber scombrus). ICES J. Mar. Sci. 74 (3), 822–831. https://doi.org/10.1093/icesjms/fsw212

Scoulding, B., Chu, D., Ona, E., Fernandes, P.G. 2022. Erratum: Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 151, 3398. https://doi.org/10.1121/10.0011465

Simmonds, J., MacLennan, D.N., 2005. Fisheries Acoustics: Theory and Practice. 2nd Edn., Blackwell Publ., London.

Schmidt, B., Gorska, N., Szczucka, J., 2011. Target strength relationship for herring and sprat in the southern Baltic Sea. ICES 1129 Annual Science Conference, Gdańsk, Poland, 19–23 September, 2011, ICES Council Meeting 2011/R:15.

Stanton, T.K., 1988a. Sound scattering by cylinders of finite length. I. Fluid cylinders. J. Acoust. Soc. Am. 83, 55–63. https://doi.org/10.1121/1.396184

Stanton, T.K., 1988b. Sound scattering by cylinders of finite length. II. Elastic cylinders. J. Acoust. Soc. Am. 83, 64–67. https://doi.org/10.1121/1.396185

Stanton, T.K., 1989. Sound scattering by cylinders of finite length. III. Deformed cylinders. J. Acoust. Soc. Am. 86, 691–705. https://doi.org/10.1121/1.398193

Stanton, T.K., Reeder, D.B., Jech, J.M. 2003. Inferring fish orientation from broadband-acoustic echoes. ICES J. Mar. Sci. 60 (3), 524–531. https://doi.org/10.1016/S1054-3139(03)00032-8

Teacher, A.G., André, C., Jonsson, P.R., Merilä, J., 2013. Oceanographic connectivity and environmental correlates of genetic structuring in Atlantic herring in the Baltic Sea. Evol. Appl. 6 (3), 549–567. https://doi.org/10.1111/eva.12042

Thorne, R.E., Thomas, G.L., 1990. Acoustic observations of gas bubble release by Pacific herring (Clupea harengus pallasi). Can. J. Fish. Aquat. Sci. 47, 1920–1928. https://doi.org/10.1139/f90-216

Martin Traykovski, L.V., O’Driscoll, R.L., McGehee, D.E., 1998. Effect of orientation on broadband acoustic scattering of Antarctic krill Euphausia superba: Implications for inverting zooplankton spectral acoustic signatures for angle of orientation. J. Acoust. Soc. Am. 104 (4), 2121–2135.

Vabø, R., Olsen, K., Huse, I., 2002. The effect of vessel avoidance of wintering Norwegian spring spawning herring. Fish. Res. 58, 59–77. https://doi.org/10.1016/S0165-7836(01)00360-5

Von Dorrien, C., Hammer, C., Zimmermann, C., Stepputtis, D., Stuermer, I.W., Kotterba, P., Polte, P., 2013. A review on herring, Clupea harengus (Actinopterygii: Clupeiformes: Clupeidae) recruitment and early life stage ecology in the western Baltic Sea. Acta Ichthyol. Piscat. 43, 169–182.

Wyszyński, M., 1997. Charakterystyka biologiczno-technologiczna śledzia południowego Bałtyku, Stud. Mat. Nat. Mar. Fish. Inst. Gdynia, Poland, Ser. B 69, 94–123.

Ye, Z., 1997. Low-frequency acoustic scattering by gas-filled prolate spheroids in liquids. J. Acoust. Soc. Am. 101 (4), 1945–1952. https://doi.org/10.1121/1.418225

Zampolli, M., Tesei, A., Jensen, F., Malm, N., Blottman, J., 2007. A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects. J. Acoust. Soc. Am. 122, 1472–1485. https://doi.org/10.1121/1.2764471

Żytko A., 2021. Measurements and determination of fish orientation: Review of different methods. [in:] Mieloszyk, M., Sagan, S., Ochrymiuk, T. (Eds.), Selected problems in Earth and related environmental sciences. Monogr. PAN, Wydawnictwo Instytutu Maszyn Przepływowych PAN.

full, complete article - PDF


Thornthwaite method based climate classifying and generation of GIS based climate boundary maps: a case of Kozlu District on the Western Black Sea coast of Turkey
Oceanologia, 67 (2)/2025, 67204, 17 pp.
https://doi.org/10.5607/MSGL7170

Hulya Keskin Citiroglu1, Deniz Arca 2,*
1Directorate of Aydın Investment Monitoring and Coordination, Aydın YIKOB, Aydın, Turkey;
2Department of Architecture and Urban Planning, Izmir Vocational School, Dokuz Eylul University, Izmir, Turkey
e-mail: deniz.arca@deu.edu.t (D. Arca)
*corresponding author

Keywords: Black Sea coast; Thornthwaite method; Kriging interpolation method; GIS; Climate border map

Received: 17 May 2024; revised: 28 January 2025; accepted: 3 March 2025.

Highlights

Abstract

It is necessary to know the climatic conditions and classes in order to address a region’s climate-related problems and ensure its sustainability. Kozlu, located on the Black Sea coast in the Black Sea region of Turkey, is a district where underground mining, fishing, sea tourism and agricultural activities are conducted. The district faces challenges due to geo-environmental factors, including landslides, subsidence, and floods, necessitating the identification of climate classes and characteristics to support sustainable development. For this reason, data for the last thirty years from four meteorological stations representing the Kozlu district were obtained. It was associated with the location, and then the Kriging interpolation method was applied. After this, water balances were calculated by applying the Thornthwaite climate classification method, and GIS-based climate boundary maps were generated using the same method. In the climate classification made by the Thornthwaite method, it was observed that the humid climate characteristic was dominant throughout the district. The drought index indicates moderate summer water deficiency in the north and the south of the district. In the south of the district, it is characterized by little or no water deficiency. Considering that the annual precipitation amounts at the stations located in the south of the district are higher than in the other areas, and the time interval in which water deficiency occurs is shorter, the fact that the climate feature of little or no water deficiency is seen moving south in the study area shows that the results are quite compatible with each other. In addition, according to the results of the summer concentration index, the entire study area was observed to be dominated by a marine climate. Climate boundary maps consisting of precipitation efficiency, temperature efficiency, drought and summer concentration index maps will contribute to monitoring climate change in the district.

  References   ref

Aalto, J., Pirinen, P., Heikkinen, J., Venäläinen, A. 2013. Spatial interpolation of monthly climate data for Finland: comparing the performance of kriging and generalized additive models. Theor. Appl. Climatol. 112(1–2), 99–111.

Akinci, H., 2022. Assessment of rainfall-induced landslide susceptibility in Artvin, Turkey using machine learning techniques. J. Afr. Earth Sci. 191, 104535. https://doi.org/10.1016/j.jafrearsci.2022.104535

Arca, D., Keskin Citiroglu, H., 2022. Geographical information systems-based analysis of site selection for wind power plants in Kozlu District (Zonguldak-NW Turkey) by multi-criteria decision analysis method. Energy Sources Pt. A – Recovery Util. Environ. Eff. 44(4), 10720–10732. https://doi.org/10.1080/15567036.2020.1834030

Arca, D., Keskin Citiroglu, H., 2024. Determining climate classifications and producing climate border maps with GIS of Muğla province on the southern Aegean Sea coast of Türkiye. Theor. Appl. Climatol. 155(7), 5745–5757. https://doi.org/10.1007/s00704-024-04954-2

Arca, D., Keskin Citiroglu, H., Kutoğlu, H.S., Mekik, C., Deguchi, T., 2017. Assessment of geo-environmental properties depressing urban development with GIS: a case study of Kozlu settlement, Turkey. Nat. Hazards 87(1), 307–322.

Arca, D., Kutoglu, S.H., Becek, K., 2018. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method. Environ. Monit. Assess. 190, 725. https://doi.org/10.1007/s10661-018-7085-5

Arslan, O., 2021. Ankara ili içme suyu kalite parametrelerinin coğrafi bilgi sistemleri (CBS) ortamında farklı enterpolasyon yöntemleri kullanılarak modellenmesi, (M.Sc. Thesis), Nevşehir Hacı Bektaş Veli Üniv., Turkey.

Bajjali, W., 2017. ArcGIS for environmental and water issues. Springer Int. Publ., 353 pp.

Behera, S.K., Shukla, A.K., 2015. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degrad. Dev. 26 (9), 71–79.

Belda, M., Holtanová, E., Halenka, T., Kalvová, J., 2014. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 59, 1–13. http://dx.doi.org/10.3354/cr01204

Bidinger, F.R., 1979. Transfer of agricultural technology. Develop. Transfer Tech., p. 71.

Bieniek, P.A., Bhatt, U.S., Thoman RL. 2012. Climate divisions for Alaska based on objective methods. J. Appl. Meteor. Climatol. 51, 1276–1289.

Bolat, İ., Kara, Ö., Tok, E., 2018. Global warming and climate change: a practical study on Bartin, Zonguldak and Düzce. J. Bartin Facult. Forestry (BAROFD) 20(1), 116–127. https://doi.org/10.24011/barofd.374840

Bostan, P., 2017. Basic Kriging methods in geostatistics. J. Agricult. Sci. 27(1), 10–20 (Yüzüncü Yıl Univ.).

Boz, A.Ö., Dönmez, Y., Özyavuz, M., 2020. Use of climate maps in determining sustainable agriculture areas. J. Environ. Protec. Ecol. 21(3), 1062–1071.

Calda, B., An, N., Turp, M.T., Kurnaz, M.L., 2020. Effects of climate change on the wildfires in the Mediterranean Basin. Int. J. Adv. Eng. Pure Sci. 1, 15–32. https://dx.doi.org/10.7240/jeps.571001

Camargo, A.P. de., 1991. Classificação climática para zonea- mento de aptidão agroclimática. Rev. Brasil. Agrometeorol. 8, 126–131.

Carmin, J., Anguelovski, I., Roberts, D., 2012. Urban climate adaptation in the global south: planning in an emerging policy domain. J. Plan. Edu. Res. 32(1), 18–32. https://doi.org/10.1177/0739456X11430951

Can, E., Mekik, C., Kuscu, S., Akcin, H., 2011. Subsidence occurring in mining regions and a case study of Zonguldak-Kozlu Basin. Sci. Res. Essays. 6(6), 1317–1327.

Climate Data, 2024. Climate data for cities around the world. Climate Data. https://tr.climate-data.org/

Colak, H. E., Memisoglu, T., 2021. Thornthwaite iklim sınıflandırma yöntemine göre Karadeniz Bölgesi iklim sınır haritasının CBS ile üretilmesi. Geomatik 6(1), 31–43. https://doi.org/10.29128/geomatik.651702

Coumou, D., Rahmstorf, S.A., 2012. Decade of weather extremes.Nat. Clim. Change 2(7), 491–49

Cui, D., Liang, S., Wang, D., 2021. Observed and projected changes in global climate zones based on Köppen climate classification. WIREs Clim. Change 12:e701. https://doi.org/10.1002/wcc.701

de Castro, M., Gallardo, C., Jylha, K., Tuomenvirta, H., 2007. The use of a climate-type classification for assessing climate change effects in Europe from an ensemble of nine regional climate models. Clim. Chang. 81 (Suppl. 1), 329–341. https://doi.org/10.1007/s10584-006-9224-1

de Oliveira Aparecido, L.E., de Meneses, K.C., Lorençone, P.A. et al., 2023. Climate classification by Thornthwaite (1948) humidity index in future scenarios for Maranhão State, Brazil. Environ. Dev. Sustain. 25, 855–878. https://doi.org/10.1007/s10668-021-02082-9

Elguindi, N., Grundstein, A., Bernardes, S., Turuncoglu, U., Feddema, J., 2014. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Clim. Chang. 122, 523–538. https://doi.org/10.1007/s10584-013-1020-0

Erinç, S., 1984. Klimatoloji ve metodları. I.U. Publ. 3278, Deniz Bilimleri ve Coğ. Enst. 2, Istanbul.

Flohn, H., 1950. Neue Anschauungen über die allgemeine zirkulation der atmosphareund ihre klimatische bedeutung. Erdkunde 4, 141–162.

Gallardo, C., Gil, V., Hagel, E., Tejeda, C., Castro, M., 2013. Assessment of climate change in Europe from an ensemble of regional climate models by the use of Köppen–Trewartha classification. Int. J. Climatol. 33, 2157–2166.

Gariano, S.L., Guzzetti, F., 2016. Landslides in a changing climate. Earth-Sci. Rev. 162, 227–252.

Gregory, W.L., Duran, A., 2001. Scenarios and acceptance of forecasts. [in:] Principles of forecasting: a handbook for researchers and practitioners. J. Scott Armstrong (ed.), Springer Sci., Business Media Inc., New York.

Gürkan, H., Arabaci, H., Demircan, M., Eskioğlu, O., Şenso, S., Yazici, B., 2016. Temperature and precipitation projections based on GFDL-ESM2M using RCP4.5 and RCP8.5 scenarios for Turkey. Coğrafi Bilimler Dergisi CBD 14 (2), 77–88.

Holdridge, L.R., 1967. Life zone ecology. Tropical Science Center, San Jose, Costa Rica, 266 pp.

IPCC, 2013. Climate change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, England.

IPCC, 2000. Special report on emissions scenarios. Cambridge University Press, England. Işlem GIS., 2005. ArcGIS 9 uygulama dökümanı. İşlem Coğrafi Bilgi Sistemleri Mühendislik ve Eğitim Ltd. Şti. Sinan Ofset Matbaacılık, Ankara.

Jacobeit, J., 2010. Classifications in climate research. Phys. Chem. Earth 35, 411–421.

Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu, K., Karhu, J.A., 2010. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Climate Soc. 2, 148–167. https://doi.org/10.1175/2010WCAS1010.1

Kazancı Altınok, G., 2022. Kentsel büyüme dinamiklerinin iklim değişikliği etkileri çerçevesinde yeniden irdelenmesi. Çevre Şehir Ve İklim Dergisi 1(1), 174–198.

Keskin Citiroglu, H., 2024. Determining climate classifications and producing climate border maps with GIS of Safranbolu district, Karabük, Türkiye. Environ. Monit. Assess. 196, 402. https://doi.org/10.1007/s10661-024-12562-w

Keskin Çıtıroğlu, H., Arca, D., 2024. Bartın ilinin iklim sınıflarının belirlenmesi ve CBS tabanlı iklim sınır haritalarının oluşturulması. Doğ. Afet. Çev. Derg. 10(2), 282–294. https://doi.org/10.21324/dacd.1427198

Keskin Citiroglu, H., Baysal, G., 2011. Effects of geological and hydrological factors on the creation of flooding in Kozlu, Zonguldak, NW Turkey. Int. J. Physic. Sci. 6(6), 1360–1373.

Koç, C., 2024. Kentsel büyüme ve iklim değişikliğinin Yalova örneğinde değerlendirilmesi. DÜFED 13, 11–44. https://doi:10.55007/dufed.1246371

Kozlu District Governorship, 2024. Kozlu. http://www.kozlu.gov.tr/ilcemiz

Kozlu Municipality, 2024. Life in Kozlu. https://www.kozlu.bel.tr/kozluda-yasam

Köppen, W., Geiger, R., 1928. Klimate der Erde, Justus Perthes, Gotha.

Krige, D.G., 1951. A statistical approach to some mine valuations and Witwatersrand. Witwatersrand.

Lakshmi, R., Thomas, J., Joseph, S., 2024. Impacts of recent rainfall changes on agricultural productivity and water resources within the Southern Western Ghats of Kerala, India. Environ. Monit. Assess. 196, 115. https://doi.org/10.1007/s10661-023-12270-x

Mahlstein, I., Daniel, J.S., Solomon, S., 2013. Pace of shifts in climate regions increases with global temperature. Nat. Clim. Chang. 3, 739–743.

MGM, 2024. Climate classification, Zonguldak. Ministry of Environment, Urbanization and Climate Change, General Directorate of Meteorology. https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=ZONGULDAK

MGM, 2025. Klimatoloji-II. Ministry of Environment, Urbanization and Climate Change, General Directorate of Meteorology. https://www.mgm.gov.tr/FILES/iklim/klimatoloji2.pdf

Orhan, O., Dadaser-Celik, F., Ekercin, S., 2019. Investigating land surface temperature changes using Landsat-5 data and real-time infrared thermometer measurements at Konya Closed Basin in Turkey. Int. J. Eng. Geosci. (IJEG) 4(1), 16–27. https://doi.org/10.26833/ijeg.417151

Özüpekçe, S., 2021. Drought analysis and relationship with water resources of Western Mediterrenean Basins closed area. Int.J. Geogr. & Geogr. Edu. IGGE 43, 317–337.

Rahimi, J., Ebrahimpour, M., Khalili, A., 2013. Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theor. Appl. Climatol. 112, 409–418.

Rolim, G. de S., Paes, de Camargo M.B., Lania, D.G., Leite de Moraes, J.F., 2007. Climatic classification of Köppen and Thornthwaite sistems and their applicability in the determination of agroclimatic zonning for the state of São Paulo, Brazil. Bragantia 66(4), 711–720.

Santos, C.N., Santos, A.A.R., Abreu, M.C. et al., 2024. Monthly potential evapotranspiration estimated using the Thornthwaite method with gridded climate datasets in Southeastern Brazil. Theor. Appl. Climatol. 155, 3739–3756. https://doi.org/10.1007/s00704-024-04847-4

Schendel, U., 1968. Messungen mit grundwasser lysimeter über den wasserverbrauch aus oberflachennahem grunwasser. Z. Grundwasser 9, Kulturtechnik Flurbereich, Berlin//Hamburg, 314–326.

Schmidt, S., 2010. Kruskal–wallis test. [in:] Encyclopedia of Research Design, 674–676. SAGE Publ. Inc. https://doi.org/10.4135/9781412961288

Shanmugam, M., Lim, S., Hosan, M.L., Shrestha, S., Babel, M. S., Virdis, S.G.P., 2024. Lapse rate-adjusted bias correction for CMIP6 GCM precipitation data: An application to the Monsoon Asia Region. Environ. Monit. Assess. 196, 49. https://doi.org/10.1007/s10661-023-12187-5

Singh, P., Khan, I., 2011. Ground water quality assessment of Dhankawadi ward of Pune by using GIS. Int. J. Geomatics Geosci. (IJGAGS), 688–703.

Spinoni, J., Vogt, J., Naumann, G., Carrao, H., Barbosa, P., 2014. Towards identifying areas at climatological risk of desertification using the Köppen–Geiger classification and FAO aridity index. Int. J. Climatol. 35, 2210–2222.

Taylan, E.D., Damçayırı, D., 2016. Isparta Bölgesi Yağış değerlerinin IDW ve Kriging Enterpolasyon Yöntemleri ile tahmini. İMO Teknik Dergi. 459.

Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. (BAMS) 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geogr. Rev. 38(1), 55–94.

TUIK, 2024. Address based population census. Türkiye İstatistik Kurumu. https://www.tuik.gov.tr/

URL-1, 2024. Türkiye mülki idare haritaları. Coğrafya-Harita. http://cografyaharita.com/haritalarim/4l-zonguldak-ili-haritasi.png

Uyan, M., Cay, T., 2013. Spatial analyses of groundwater level differences using geostatistical modeling. Environ. Ecol. Stat. 20(4), 633–646.

Üstüntaş, T., 2006. Sayısal arazi modellerinde bazı enterpolasyon yöntemlerinin karşılaştırılması. Selçuk Univ. Tech., Voc. School Tech. Sci. 5(2), 41–48 (online).

Valjarević, A., Milanović, M., Gultepe, I., Filipović, D., Lukić, T., 2022. Updated Trewartha climate classification with four climate change scenarios. Geogr. J. 188, 506–517. https://doi.org/10.1111/geoj.12458

Van Delden, H., Stuczynski, T., Ciaian, P., Paracchini, M.L., Hurkens, J., Lopatka, A., Shi, Yu-e., Prieto, O.G., Calvo, S., van Vliet, J., Vanhout, R., 2010. Integrated assessment of agricultural policies with dynamic land use change modelling. Ecol. Modell. 221(18), 2153–2166.

Yalcin, F., Arca, D., 2024. Investigation and comparison of climate boundary maps generated with various climate classifications. [in:] Interdisciplinary studies on contemporary research practices in engineering in the 21st century, K. Kaygusuz (ed.), Gaziantep, Ozgur Press, 33–88.

Yaprak, S., Arslan, E., 2008. Kriging yöntemi ve geoit yüksekliklerinin enterpolasyonu. Jeodezi, Jeeinformasyon ve Arazi Yönetimi Dergisi, JGG 1(98), 36–42.

Yılmaz, G., 2023. Kuraklık ve sıcak hava dalgasının tarımsal üretim üzerine etkileri. Doğ. Afet. Çev. Derg. 9(2), 240–257. https://doi.org/10.21324/dacd.1220462

full, complete article - PDF


Coupling pattern of estuarine and surf zone longshore currents at tidal frequencies: Case study of S. E. coast of Nigeria
Oceanologia, 67 (2)/2025, 67205, 12 pp.
https://doi.org/10.5697/DMFV7237

Effiom E. Antia
Department of Physical Oceanography, Faculty of Oceanography, University of Calabar, PMB 1115 Calabar, Cross River State, Nigeria;
e-mail: e_antia@yahoo.co.uk (E. Antia)

Keywords: Longshore current; Estuarine flow; Surf zone; Tidal cycle; Nigerian coast

Received: Received: 6 June 2024; revised: 15 March 2025; accepted: 17 March 2025.

Highlights

Abstract

Within the coastal flow-field system, the hydrodynamic coupling between the tidal channel and surf zone is among the most important, implicated in shoreline morphodynamics, river mouth bar dynamics, and the recreational quality of nearshore waters. The nature of the coupling has seldom been empirically evaluated at tidal frequencies spanning lunar cycles. This investigation is directed at filling this gap in information based on 50-day successive tidal cycle flow monitoring in an estuary–surf zone setting, S. E. coast of Nigeria. Results show a reversing flow pattern at all monitoring stations at tidal frequencies. The estuary indicated ebb-asymmetric tidal cycle residual flow velocities which at spring tide (30–38 cm/s range) act as an expanding jet relative to the flanking surf zone residual longshore current counterparts (typically ≤ 5 cm/s). The western and eastern flanking surf zones showed westward- and eastward-asymmetric tidal cycle residual flows, respectively with coastwise decreasing asymmetry reflecting the weakening impact of the estuary outflow. Coupling of surf zone – estuarine residual flow vectors indicated a higher frequency of threshold coefficient (r ≥ 0.7) at ebb than at flood stage. The observed pattern of strong estuarine residual outflow velocities and modally divergent weak surf zone flows is a favourable condition for the estuary mouth bar development. However, the eastward-skewed bar configuration fits more to the effect of eastward-directed momentum flux associated with water mass transport of the obliquely-shoaling southwesterly waves given that breaking wave-generated longshore currents in the western surf zone display a westward-asymmetry over a tidal cycle.

  References   ref


Anthony, E. J., 2015. Wave influence in the construction, shaping and destruction of river deltas: a review. Mar. Geol. 361, 53–78. https://doi.org/10.1016/j.margeo.2014.12.004

Antia E. E., 2024. On reversal of wave-generated longshore currents at tidal frequencies on dissipative beaches contiguous to a mesotidal estuary, S. E coast of Nigeria. Mar. Geol. 477(5):107389. https://doi.org/10.1016/j.margeo.2024.107389

Chao, S.–Y., 1990. Tidal modulation of estuarine plumes. J. Phys. Oceanogr. 20(7), 1115–1123.

Davis, R. A., Fox, W.T., 1981. Interaction between waveand tide-generated processes at the mouth of a microtidal estuary: Matanzas River, Florida (USA). Mar. Geol. 40(1–2), 49–68. https://doi.org/10.1016/0025-3227(81)90042-6

Dodet, G., Bertin, X., Bruneau, N., Fortuato, A. B., Nahon, A., Roland, A., 2013. Wave-current interactions in a wavedominated tidal inlet. J. Geophys Res.-Oceans 118, 1597–1605. https://doi.org/10.1002/jgrc.20146.2013

Finley, R. J., 1978. Ebb-tidal delta morphology and sediment supply in relation to seasonal wave energy flux, North Inlet, South Carolina. J. Sediment. Res. 48 (1), 227–238. https://doi.org/10.1306/212F743C-2B24-11D7-8648000102C1865D

FitzGerald, D. M., 1984. Interactions between the ebb-tidal delta and landward shoreline: Price Inlet, South Carolina. J. Sediment. Petrol. 54(4), 1303–1318.

Guillou N., Chapalain, G., 2012. Effects of tide on waves in the outer seine estuary and the harbor of Le Havre. Coast Eng. Proc. 1(33). https://doi.org/10.9753/ice.v33.waves.47

Hansen, J. E., Elias, E., List, J. H., Erikson, L. H., Barnard, P. L., 2013. Tidally influenced alongshore circulation at an inlet-adjacent shoreline. Cont. Shelf Res. 56, 26–38.

Hayes, M. O., 1979. Barrier island morphology as a function of tidal and wave regime, [in:] Leatherman, S. P. (ed.), Barrier Islands from the Gulf of St. Lawrence to the Gulf of Mexico. Acad. Press, New York, 1–27.

Hayes, M. O., 1980. General morphology and sediment patterns in tidal inlets. Sediment. Geol. 26, 139–156.

Hughes, S. A., 2002. Estimating surface currents near coastal structure using dye and drogues. EDC/CL CHETN-V1-37, U.S. Army Eng. Res. Dev. Ctr, Vicksburg, MS. 14 pp. http://chl.wes.army.mil/library/publications/chetn

Joshi, P. B., 1982. Hydromechanics of tidal jets. J. Waterw, Port C-ASCE 108(3), 239–253.

Oertel, G. F.,1975. Ebb tidal deltas of Georgia estuaries, [in:] Cronin, L. E. (ed.), Estuarine Research, Acad. Press, New York, San Francisco, London, 267–276.

Olabarrieta, M., Geyer, R., Kumar. N., 2014. The role of morphology and wave-current interaction at tidal inlets: an idealized modeling analysis. J. Geophys. Res.-Oceans 119(12), 8818–8837.

Ozsoy, E., Unluata, U., 1982. Ebb-tidal flow characteristics near inlets. Estuar. Coast Shelf Sci. 14(3), 251–263.

Rusu, L., Bernardino, M., Guedes, S. C., 2011. Modelling the influence of currents on wave propagation at the entrance of Tagus estuary. Ocean Eng. 38, 1174–1183.

Sha, L. P., van der Berg, J. H., 1993. Variation in ebb-tidal delta geometry along the coast of the Netherlands and the German Bight. J. Coast. Res. 9, 730–746.

Todd, T. W., 1968. Dynamic diversion: influence of longshore current-tidal flow interaction on chernier and barrier island plains. J. Sediment. Petrol. 38, 734–746.

Zainescu, F., Anthony, E. J., Vespremeanu-Stroe, A., 2021. River jets versus wave-driven longshore currents at river mouths. Front. Mar. Sci. 8, 708258. https://doi.org/10.3389/fmars.2021.708258

full, complete article - PDF


Bering Sea climate dynamics forecast by novel multivariate natural hazard assessment method, utilizing self-deconvolution scheme
Oceanologia, 67 (2)/2025, 67206, 10 pp.
https://doi.org/10.5697/EUFR9367

Alia Ashraf1, Oleg Gaidai1,*, Jinlu Sheng2, Yan Zhu3, Zirui Liu1
1Shanghai Ocean University, Shanghai, China;
e-mail: o_gaidai@just.edu.cn (O. Gaidai)
2Chongqing Jiao Tong University, Chongqing, China
3Jiangsu University of Science and Technology, Zhenjiang, China
*corresponding author

Keywords: Climate; Dynamic system; Global warming; Stochastics; Windspeed

Received: 6 May 2024; revised: 3 November 2024; accepted: 13 May 2025.

Highlights

Abstract

This case study advocates a generic state-of-the-art multidimensional natural hazards evaluation methodology, applied to windspeeds and wave heights, measured in different offshore locations. Due to complex nonlinear spatiotemporal cross-correlations between different environmental system components and covariates, it is challenging to assess associated environmental risks, utilizing existing reliability techniques. Hence, it is necessary to develop novel multimodal reliability and risk assessment methods for natural hazards prognostics further, given global climate variability. Advocated multivariate risk assessment methodology being particularly suitable for both environmental and offshore/ocean structural systems, which have been either physically measured or numerically simulated over a representative period. National Oceanic and Atmospheric Administration (NOAA) buoys, operating in the central Bering Sea, provided the raw in situ measurements of windspeeds and wave heights, utilized in this case study. A relatively limited amount of underlying data had been analyzed – only 4 months between June and September 2024. The presented multimodal natural hazards prognostics methodology has a generic nature, hence, large amounts of measured data can be analyzed if available. A novel non-parametric deconvolution extrapolation scheme has been utilized to accurately forecast in situ extreme environmental climate dynamics events. System’s quasi-stationarity was assumed; otherwise, for nonstationary multidimensional dynamic systems with underlying multivariate trend, this trend has to be identified first, before the advocated reliability methodology to be applied.
Distinct advantage of presented multivariate reliability methodology versus existing ones lies within its ability to overcome “curse of dimensionality”, namely ability to treat systems with dimensionality above two.

  References   ref

Cook, N.J., 2023. Reliability of Extreme Wind Speeds Predicted by Extreme-Value Analysis, Meteorology 2 (3), 344–367. https://doi.org/10.3390/meteorology2030021

Ditlevsen, O., Madsen, H.O., 1996. Structural reliability methods. John Wiley & Sons, Inc., Chichester (UK).

Gaidai, O., 2024. Pacific Ocean Windspeeds Prediction by Gaidai Multivariate Risks Evaluation Method, Utilizing Self-Deconvolution, ASME Open J. Eng. 3, 031025. https://doi.org/10.1115/1.4066682

Gaidai, O., 2025a. Israel COVID-19 data verification by multimodal Gaidai reliability method. ASME J. Eng. Sci. Med. Diagn. Ther. JESMDT-25-1003. https://doi.org/10.1115/1.4068499

Gaidai, O., 2025b. Emotional excess prognostics by multimodal Gaidai reliability methodology, using thorax respiration signal, ASME J. Eng. Sci. Med. Diagn. Ther. JESMDT-24-1103. https://doi.org/10.1115/1.4068500

Gaidai, O., Ashraf, A., Cao, Y., Sheng, J., Zhu, Y., Liu, Z., 2024a. Lifetime assessment of semi-submersible wind turbines by Gaidai risk evaluation method. J. Mater. Sci.: Mater. Eng. 19 (2). https://doi.org/10.1186/s40712-024-00142-2

Gaidai, O., Ashraf, A., Cao, Y., Sheng J., Li, H., Liu, Z., Zhu, Y., 2024b, Gaidai multimodal risk evaluation methodology based on cargo vessel onboard measurements, given structural damage accumulation. Discover Oceans 1 (28). https://doi.org/10.1007/s44289-024-00030-9

Gaidai, O., Ashraf, A., Sheng, J. et al., 2024c. Onboard multi- variate hazard assessment for UIKKU chemical tanker by Gaidai reliability method. Discov. Oceans 1 (26). https://doi.org/10.1007/s44289-024-00027-4

Gaidai, O., Cao, Y., Ashraf, A., Sheng, J., Zhu, Y., Liu, Z., 2024d, FPSO/LNG hawser system lifetime assessment by multimodal Gaidai risk assessment method. Energy Inform. 7 (51). https://doi.org/10.1186/s42162-024-00350-2

Gaidai, O., Cao, Y., Li, H., Liu, Z., Ashraf, A., Zhu, Y., Sheng, J., 2024e, Multivariate Gaidai hazard assessment method in combination with deconvolution scheme to predict extreme wave heights. Res. Eng. 22, 102326. https://doi.org/10.1016/j.rineng.2024.102326

Gaidai, O., Cao, Y., Wang, F., Zhu, Y., 2024f. Applying the multivariate Gaidai reliability method in combination with an efficient deconvolution scheme to prediction of extreme ocean wave heights. Mar. Syst. Ocean Tech. 19, 165–178. https://doi.org/10.1007/s40868-024-00145-w

Gaidai, O., Cao, Y., Xing, Y., Wang, J., 2023a. Piezoelectric Energy Harvester Response Statistics. Micromachines 14 (2), 271. https://doi.org/10.3390/mi14020271

Gaidai, O., Cao, Y., Zhu, Y., Zhang, F., Li, H., 2024g. Multi- variate Risk Assessment for Offshore Jacket Platforms by Gaidai Reliability Method. J. Mar. Sci. Appl. 24, 428–436. https://doi.org/10.1007/s11804-024-00542-y

Gaidai, O., Cao, Y., Zhu, Y., Zhang, F., Liu, Z., Wang, K., 2024h. Limit hypersurface state of the art multimodal Gaidai risk evaluation approach for offshore Jacket. Mech. Based Des. Struc. 53, 1–16. https://doi.org/10.1080/15397734.2024.2379523

Gaidai, O., He, S., Ashraf, A., Sheng, J., Zhu, Y., 2024i. Green- land Wind-Wave Bivariate Dynamics by Gaidai Natural Hazard Spatiotemporal Evaluation Approach, Atmosphere 15 (11), 1357. https://doi.org/10.3390/atmos15111357

Gaidai, O., He, S., Wang, F., 2024j. State-of-the-art nonsta- tionary hypersurface damage assessment approach for energy harvesters. Renew. Energ. 121824. https://doi.org/10.1016/j.renene.2024.121824

Gaidai, O., Li, H., Cao, Y., Ashraf, A., Zhu, Y., Liu, Z., 2024k. Shuttle tanker operational reliability study by multimodal Gaidai risk assessment method, utilizing deconvolution scheme. Transport. Res. Interdiscip. 26, 101194. https://doi.org/10.1016/j.trip.2024.101194

Gaidai, O., Li, H., Cao, Y., Liu, Z., Zhu, Y., Sheng, J., 2024l. Wind turbine gearbox reliability verification by multivariate Gaidai reliability method. Results Eng. 23. https://doi.org/10.1016/j.rineng.2024.102689

Gaidai O., Liu Z., Cao Y., Zhang F., Zhu Y., Sheng J., 2024m. Limit hypersurface state-of-the-art damage assessment approach for a galloping energy harvester, accounting for memory effects. J. Vib. Control https://doi.org/10.1177/10775463241279993

Gaidai, O., Sheng, J., Cao, Y. Zhu, Y., Wang, K., Liu, Z., 2024n. Limit hypersurface state of art Gaidai risk assessment approach for oil tankers Arctic operational safety. J. Ocean Eng. Mar. Energ. 10, 351–364. https://doi.org/10.1007/s40722-024-00316-2

Gaidai, O., Sheng, J., Cao, Y., Zhang, F., Zhu, Y., Liu, Z., 2024o. Gaidaimultivariateriskassessmentmethodforcargoshipdynamics. Urban, Planning and Transport Research.12, 1. https://doi.org/10.1080/21650020.2024.2327362

Gaidai, O., Sheng, J., Cao, Y., Zhang, F., Zhu, Y., Liu, Z., 2024p. Design of floating wind turbine gearboxes using Gaidai risk assessment method. Procedia CIRP, 128, 120–125. https://doi.org/10.1016/j.procir.2024.06.011

Gaidai, O., Sheng, J., Cao, Y., Zhu, Y., Liu, Z., 2024q. Evaluating Areal Windspeeds and Wave Heights by Gaidai Risk Evaluation Method. Nat. Hazards Rev. 25 (4). https://doi:10.1061/NHREFO.NHENG-2184

Gaidai, O., Sun, J. Cao, Y., 2024r. FPSO/FLNG mooring system evaluation by Gaidai reliability method. J. Mar. Sci. Tech.-Japan. 29, 546–555. https://doi.org/10.1007/s00773-024-01001-7

Gaidai, O., Wang, F., Wu, Y., Xing Y., Rivera Medina, A., Wang, J., 2022a. Offshore renewable energy site correlated wind-wave statistics. Probabilistic Engineering Mechanics, 68. https://doi.org/10.1016/j.probengmech.2022.103207

Gaidai, O., Wang, F., Cao, Y. et al., 2024s. 4400 TEU cargo ship dynamic analysis by Gaidai reliability method. J. Shipp. Trd. 9, 1. https://doi.org/10.1186/s41072-023-00159-4

Gaidai, O., Wang, F., Yakimov, V., Sun, J., Balakrishna, R., 2023b, Lifetime assessment for riser systems. Green Tech. Res. Sustain. 3. https://doi.org/10.1007/s44173-023-00013-7

Gaidai, O., Wang, K., Wang, F., Xing, Y., Yan, P., 2022b. Cargo ship aft panel stresses prediction by deconvolution. Mar. Struct. 88. https://doi.org/10.1016/j.marstruc.2022.103359

Gaidai, O., Xing, Y., 2022. Novel reliability method validation for offshore structural dynamic response. Ocean. 266 (5). https://doi.org/10.1016/j.oceaneng.2022.113016

Gaidai, O., Xing, Y., Xu, X., 2023c, Novel methods for coupled prediction of extreme windspeeds and wave heights. Sci. Rep. UK. 13, 1119. https://doi.org/10.1038/s41598-023-28136-8

Gaidai, O., Xu, J., Hu, Q., Xing, Y., Zhang, F., 2022. Offshore tethered platform springing response statistics. Sci. Rep. UK. 12. http://www.nature.com/articles/s41598-022-25806-x

Gaidai, O., Xu, J., Xing, Y., Hu, Q., Storhaug, G., Xu, X., Sun, J., 2022d. Cargo vessel coupled deck panel stresses reliability study. Ocean Eng. 268, 113318. https://doi.org/10.1016/j.oceaneng.2022.113318

Gaidai, O., Xu, J., Yakimov, V., Wang, F., 2023d. Liquid carbon storage tanker disaster resilience , Environment Systems and Decisions. https://doi.org/10.1007/s10669-023-09922-1

Gaidai, O., Xu, J., Yan, P., Xing, Y., Zhang, F., Wu, Y., 2022e. Novel methods for windspeeds prediction across multiple locations. Sci. Rep. UK, 12, 19614. https://doi.org/10.1038/s41598-022-24061-4

Gaidai, O., Yakimov, V., Wang, F., Cao, Y., 2024t. Gaidai Multivariate Risk assessment Method for Energy Harvester Operational Safety, Given Manufacturing Imperfections. Int. Precis Eng. Man. 25, 1011–1025. https://doi.org/10.1007/s12541-024-00977-x

Gaidai, O., Yakimov, V., Wang, F., Hu, Q., Storhaug, G., 2023e. Lifetime assessment for container vessels. Appl. Ocean. Res. https://doi:10.1016/j.apor.2023.103708

Gaidai, O., Yakimov, V., Wang, F., Sun, J., Wang, K., 2024u. Bivariate reliability analysis for floating wind turbines. Int. J. Low-Carbon Tec. Vol. 19, 55–64. https://doi.org/10.1093/ijlct/ctad108

Gaidai, O., Yakimov, V., Wang, F., Zhang, F., 2023f. Safety design study for energy harvesters. Sustainable Energy Research, Vol. 10 (1). https://doi.org/10.1186/s40807-023-00085-w

Gaidai, O., Yakimov, V., Wang, F., Zhang, F., Balakrishna, R. 2023g. Floating wind turbines structural details fatigue life assessmen. Sci. Rep. UK 13 (1). https://doi:10.1038/s41598-023-43554-4

Glukhovskii, B., 1966. Investigation of sea wind waves. Gidrometeoizdat (in Russian).

Haghayeghi, Z., Ketabdari, M., 2018. A long-term joint probability model for metocean circular and linear characteristics. Appl. Ocean Res. 75, 143–152. https://doi.org/10.1016/j.apor.2018.03.009

Han, C., Gaidai, O., El-Wazery, M., He, S., Ashraf, A., Sheng, J., Zhu, Y., 2024a. Bivariate validation of the Gaidai natural hazard evaluation method for climate dynamics. Ocean Eng. 313 (3), 119630. https://doi.org/10.1016/j.oceaneng.2024.119630

Han, C., Gaidai, O., Zhu, Y., Ashraf, A., Qin, P., Sheng, J., 2024b. Multivariate Gaidai reliability methodology for marine riser dynamics in the Red Sea with memory effects included. Ocean Eng. 313 (2), 119437. https://doi.org/10.1016/j.oceaneng.2024.119437

Haring, R., Osborne, A., Spencer, L., 1976. Extreme wave parameters based on continental shelf storm wave records. Proc. 15th Int. Conf. Coastal Engineering, Honolulu, HI , 151–170.

Ishihara, T., Yamaguchi, A., 2015. Prediction of the extreme windspeed in the mixed climate region by using Monte Carlo simulation and measure-correlate-predict method. Wind Energ. 18 (1), 171–186. https://doi.org/10.1002/we.1693

Jahns, H., Wheeler, J., 1973. Long-term wave probabilities based on hindcasting of severe storms. J. Petrol. Technol. 25, 473–486.

Mackay, E., Murphy-Barltrop, C., Jonathan, P., 2024. The SPAR model: a new paradigm for multivariate extremes. application to joint distributions of metocean variables. Proc. ASME 2024 43rd Int. Conf., Ocean, Offshore & Arctic Eng. OMAE 2024, June 9–14, 2024, Singapore EXPO. https://ore.exeter.ac.uk/repository/handle/10871/136413

Madsen, H.O., Krenk, S., Lind, N.C., 1986. Methods of structural safety. Prentice-Hall Inc., Englewood Cliffs.

NAG Toolbox for Matlab. NAG Ltd., Oxford, UK.

NOAA, 2024. National Oceanic and Atmospheric Administration. https://www.ndbc.noaa.gov

Nwankwo, W., Ukhurebor, K., 2021. Big data analytics: A single window IoT-enabled climate variability system for all-year-round vegetable cultivation. IOP Conf. Ser.: Earth Environ. Sci. 655, 012030. https://doi10.1088/1755-1315/655/1/012030

Phillips, O., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417–445.

Phillips, O., 1958. The equilibrium range in the spectrum of wind-generated waves. J. Fluid. Mech. 4, 426–434.

Phillips, O., 1985. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid. Mech. 156, 505–531.

Pierson, W.J., Marks, W., 1952. The power spectrum analysis of ocean-wave records. T. Am. Geophys. Union 33, 834–844.

Pierson, W.J., Moskowitz, L., 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69, 5181–5190.

Qin, P., Gaidai, O., Sheng, J., Zhu, Y., Li, H., Cao, Y., Liu, Z., 2024. Multivariate risk assessment for offshore structures by Gaidai risk evaluation method under an accumulation of fatigue damage, utilizing novel deconvolution scheme. Structures, 70, 107691. https://doi.org/10.1016/j.istruc.2024.107691

Rice, S.O., 1944. Mathematical analysis of random noise. Bell System Tech. J. 23, 282–332.

Ross, E., Astrup, O., Bitner-Gregersen, E., Bunn, N., Feld, G., Gouldby, B., Huseby, A., Liu, Y., Randell, D., Vanem, E., Jonathan, P., 2020. On environmental contours for marine and coastal design. Ocean Eng. 195, 106194. https://doi.org/10.1016/j.oceaneng.2019.106194

Siloko, I., Ukhurebor, K., Siloko, E., Enoyoze, E., Bobadoye, A., Ishiekwene, C., Uddin, O., Nwankwo, W., 2021. Effects of some meteorological variables on cassava production in Edo State, Nigeria via density estimation. Sci. Afr. 13, e00852. https://doi.org/10.1016/j.sciaf.2021.e00852

Stansell, P., 2004. Distribution of freak wave heights measured in the North Sea. Appl. Ocean Res. 26, 35–48.

Sun, J., Gaidai, O., Wang, F., Yakimov, V., 2023a. Gaidai reliability method for fixed offshore structures. J. Braz. Soc. Mech. Sci. Eng. 46, 27. https://doi.org/10.1007/s40430-023-04607-x

Sun, J., Gaidai, O., Xing, Y., Wang, F., Liu, Z., 2023b. On safe offshore energy exploration in the Gulf of Eilat. Qual. Reliab. Eng. Int. 39 (7), 2957–2966. https://doi.org/10.1002/qre.3402

Tayfun, M.A., 1980. Narrow-band nonlinear sea waves. J. Geophys. Res. 85, 1548–1552.

Tayfun, M.A., Fedele, F., 2007. Wave-height distributions and nonlinear effects. Ocean Eng. 34, 1631–1649.

Ukhurebor, K., Azi, S., Aigbe, U., Onyancha, R., Emegha, J., 2020. Analyzing the uncertainties between reanalysis meteorological data and ground measured meteorological data. Measurement, 165, 108110. https://doi.org/10.1016/j.measurement.2020.108110

Ukhurebor, K.E., Aidonojie, P.A., 2021a. The influence of climate change on food innovation technology: review on topical developments and legal framework. Agric & Food Secur 10, 50. https://doi.org/10.1186/s40066-021-00327-4

Ukhurebor, K., Singh, K., Nayak, V., Eghonghon, G., 2021b. Influence of the SARS-CoV-2 pandemic: a review from the climate change perspective. Environ. Sci.-Proc. Imp. 8. https://doi.org/10.1039/D1EM00154J

Vega-Bayo, M., Pérez-Aracil, J., Prieto-Godino, L., Salcedo- Sanz, S., 2023. Improving the prediction of extreme wind speed events with generative data augmentation techniques. Renew Energ. 221, 119769. https://doi.org/10.1016/j.renene.2023.119769

Yakimov, V., Gaidai, O., Wang, F., Wang, K., 2023a. Arctic naval launch and recovery operations, under ice impact interactions. Appl. Eng. Sci. 15, 100146. https://doi.org/10.1016/j.apples.2023.100146

Yakimov, V., Gaidai, O., Wang, F., Xu, X., Niu, Y., Wang, K., 2023b. Fatigue assessment for FPSO hawsers. Int. J. Nav. Arch. Ocean. 15, 100540. https://doi.org/10.1016/j.ijnaoe.2023.100540

Yayık, A., Kutlu, Y., Altan, G., 2019. Regularized HessELM and Inclined Entropy Measurement for Congestive Heart Failure Prediction. Cornell University. https://arxiv.org/abs/1907.05888

Zhang, H., Reynolds, R. Bates, J., 2006. Blended and Gridded High Resolution Global Sea Surface Windspeed and Climatology from Multiple Satellites: 1987–Present. American Meteorological Society.

Zhang, J., Benoit, M., Kimmoun, O., Chabchoub, A., Hsu, H.C., 2019. Statistics of extreme waves in coastal waters: Large scale experiments and advanced numerical simulations. Fluids 4.

full, complete article - PDF


Analyzing Ogurja Island’s shoreline changes in response to the Caspian Sea water level decline
Oceanologia, 67 (2)/2025, 67207, 17 pp.
https://doi.org/10.5697/QPUN2882

Rahimeh Shamsaie1, Danial Ghaderi2,3,*
1Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
2Center Providing Consultation and Simulation Services For Coastal And Marine Environments (NPDS Company), Bandar Abbas, Iran;
e-mail: d.ghaderi@irseas.ir, danialghaderi1@gmail.com (D. Ghaderi)
3Physical Oceanography, Shahid Rajaee Port Complex, Ports and Maritime Organization, Bandar Abbas, Iran
*corresponding author

Keywords: Ogur Chinsky; Caspian Sea; Shoreline Changes; Decreasing Water Levels; DSAS

Received: 30 July 2024; revised: 8 May 2025; accepted: 12 May 2025.

Highlights

Abstract

Shorelines are vital and dynamic components of the coastal zone, constantly changing due to various environmental factors. These areas hold significant recreational, economic, and ecological importance, making the understanding of shoreline alterations critical. Unlike open oceans, the Caspian Sea (CS) has experienced a noticeable decline in water level since the late 1990s due to a combination of climatic variability, reduced riverine inflow, increased evaporation, and anthropogenic factors. This decline in water level is expected to drive morphological changes in the shorelines, with an overall trend of shorelines retreating seaward. In this study, the shoreline changes of Ogurja Island, the largest island in the CS, were analyzed using Sentinel-2 satellite imagery from 2015 to 2023, covering a total of 9 images, and the Digital Shoreline Analysis System tool. The study aimed to establish a relationship between these shoreline changes and the decline in the Caspian Sea water level (CSL). The results reveal a strong correlation, with shoreline movements reaching up to 80 m/year in some areas, and significant changes are expected with the projected CSL decline. This research offers an initial attempt to connect shoreline dynamics with water level fluctuations, highlighting the importance of considering shoreline changes in future water level predictions. The study recommends that future research focus on integrating advanced models, such as hydrodynamic simulations and machine learning techniques, to refine shoreline predictions and enhance understanding of the CS’s dynamic coastal environment.

  References   ref

Alharbi, O.A., Hasan, S.S., Fahil, A.S., Mannaa, A., Rangel- Buitrago, N., Alqurashi, A.F., 2023. Shoreline change rate detection applying the DSAS technique on low and medium resolution data: Case study along Ash Sh’aybah- Al Mujayrimah coastal Area of the Eastern Red Sea, Saudi Arabia. Reg. Stud. Mar. Sci. 66, 103118. https://doi.org/10.1016/j.rsma.2023.103118

Ataei H., S., Adjami, M., Neshaei, S.A., 2018. The Effects of Sea Level Fall on the Caspian Sea Shoreline Changes. Int. J. Coast. offshore Eng. 2, 1–12. https://doi.org/10.29252/ijcoe.2.3.1

Ayadi, K., Boutiba, M., Sabatier, F., Guettouche, M.S., 2016. Detection and analysis of historical variations in the shoreline, using digital aerial photos, satellite images, and topographic surveys DGPS: case of the Bejaia bay (East Algeria). Arab. J. Geosci. 9, 26. https://doi.org/10.1007/s12517-015-2043-9

Barsi, J.A., Alhammoud, B., Czapla-Myers, J., Gascon, F., Haque, M.O., Kaewmanee, M., Leigh, L., Markham, B.L., 2018. Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites. Eur. J. Remote Sens. https://doi.org/10.1080/22797254.2018.1507613

Boak, E.H., Turner, I.L., 2005. Shoreline Definition and Detection: A Review. J. Coast. Res. 214, 688–703. https://doi.org/10.2112/03-0071.1

Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher, S., Ruescas, A., 2016. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. ESASP 740, 54.

Chen, J., Cazenave, A., Wang, S.-Y., Li, J., 2023. Caspian Sea Level Change Observed by Satellite Altimetry. Remote Sens. 15, 703. https://doi.org/10.3390/rs15030703

Chen, J.L., Pekker, T., Wilson, C.R., Tapley, B.D., Kostianoy, A.G., Cretaux, J. -F., Safarov, E.S., 2017. Long-term Caspian Sea level change. Geophys. Res. Lett. 44, 6993–7001. https://doi.org/10.1002/2017GL073958

Crétaux, J.-F., Arsen, A., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Abarca Del Rio, R., Cazenave, A., Maisongrande, P., 2011. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Sp. Res. 47, 1497–1507. https://doi.org/10.1016/j.asr.2011.01.004

Davidson-Arnott, R., Bauer, B., Houser, C., 2019. Introduction to Coastal Processes and Geomorphology. Cambridge Univ. Press. https://doi.org/10.1017/9781108546126

Dmitrieva, L., Jüssi, M., Jüssi, I., Kasymbekov, Y., Verevkin, M., Baimukanov, M., Wilson, S., Goodman, S., 2016. Individual variation in seasonal movements and foraging strategies of a land-locked, ice-breeding pinniped. Mar. Ecol. Prog. Ser. 554, 241–256. https://doi.org/10.3354/meps11804

Do, A.T.K., Vries, S. de, Stive, M.J.F., 2019. The Estimation and Evaluation of Shoreline Locations, Shoreline-Change Rates, and Coastal Volume Changes Derived from Landsat Images. J. Coast. Res. 35, 56. https://doi.org/10.2112/JCOASTRES-D-18-00021.1

ESA, 2020. Copernicus Open Access Hub of the ESA. https://scihub.copernicus.eu/ (accessed 8.2.20).

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De Bonis, R., Isola, C., Martimort, P., Fernandez, V., 2017. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. https://doi.org/10.3390/rs9060584

Ghaderi, D., Rahbani, M., 2025. A Long-Term Survey on the Shoreline Changes of Gulf of Oman Coasts (Makran). Ocean Sci. J. 60, 11. https://doi.org/10.1007/s12601-025-00208-y

Ghaderi, D., Rahbani, M., 2024. Evaluating the shoreline vulnerability of eastern coast of Makran employing geomorphological and hydrodynamic parameters. J. Earth Syst. Sci. 133, 48. https://doi.org/10.1007/s12040-024-02266-7

Ghaderi, D., Rahbani, M., 2023. Simultaneous employment of hydrodynamical simulation and RS imageries for analyzing the influence of an anthropogenic construction on shoreline transformation. J. Hydraul. Struct. 9, 14–31.

Ghaderi, D., Rahbani, M., 2022. Mud volcano as a feature of emergence in Caspian Sea. Oceanologia 64(3), 503–513. https://doi.org/10.1016/j.oceano.2022.03.006

Ghaderi, D., Rahbani, M., 2021. Tracing suspended matter in Tiab estuary applying ANN and Remote sensing. Reg. Stud. Mar. Sci. 44, 101788. https://doi.org/10.1016/j.rsma.2021.101788

Ghaderi, D., Rahbani, M., 2020a. Detecting shoreline change employing remote sensing images (Case study: Beris Port – east of Chabahar, Iran). Int. J. Coast. Offshore Eng. 3, 1–8. https://doi.org/10.29252/ijcoe.3.4.1

Ghaderi, D., Rahbani, M., 2020b. Shoreline change analysis along the coast of Bandar Abbas city, Iran using remote sensing images. Int. J. Coast. Offshore Environ. Eng. 4, 51–64. https://doi.org/10.22034/ijcoe.2020.149346

Ghanavati, E., Shah-Hosseini, M., Marriner, N., 2021. Analysis of the Makran Coastline of Iran’s Vulnerability to Global Sea-Level Rise. J. Mar. Sci. Eng. 9, 891. https://doi.org/10.3390/jmse9080891

Godwyn-Paulson, P., Jonathan, M.P., Roy, P.D., Rodrı́guez- Espinosa, P.F., Muthusankar, G., Muñoz-Sevilla, N.P., Lakshumanan, C., 2021. Evolution of southern Mexican Pacific coastline: Responses to meteo-oceanographic and physiographic conditions. Reg. Stud. Mar. Sci. 47, 101914. https://doi.org/10.1016/j.rsma.2021.101914

Gunasinghe, G.P., Ruhunage, L., Ratnayake, N.P., Ratnayake, A.S., Samaradivakara, G.V.I., Jayaratne, R., 2021. Influence of manmade effects on geomorphology, bathymetry and coastal dynamics in a monsoon-affected river outlet in Southwest coast of Sri Lanka. Environ. Earth Sci. 80, 238. https://doi.org/10.1007/s12665-021-09555-0

Haghani, S., Leroy, S.A.G., Wesselingh, F.P., Rose, N.L., 2016. Rapid evolution of coastal lagoons in response to human interference under rapid sea level change: A south Caspian Sea case study. Quat. Int. 408, 93–112. https://doi.org/10.1016/j.quaint.2015.12.005

Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., Farris, A.S., 2018. Digital shoreline analysis system (DSAS) version 5.0 user guide. https://doi.org/https://doi.org/10.3133/ofr20181179

Hossen, M.F., Sultana, N., 2023. Shoreline change detection using DSAS technique: Case of Saint Martin Island, Bangladesh. Remote Sens. Appl. Soc. Environ. 30, 100943. https://doi.org/10.1016/j.rsase.2023.100943

Hsu, T.-W., Lin, T.-Y., Tseng, I.-F., 2007. Human Impact on Coastal Erosion in Taiwan. J. Coast. Res. 234, 961–973. https://doi.org/10.2112/04-0353R.1

Isaie Moghaddam, E., Allahdadi, M.N., Ashrafi, A., Chaichitehrani, N., 2021. Coastal system evolution along the southeastern Caspian Sea coast using satellite image analysis: response to the sea level fall during 1994–2015. Arab. J. Geosci. 14, 771. https://doi.org/10.1007/s12517-021-07106-2

Johnston, W.G., Cooper, J.A.G., Olynik, J., 2023. Shoreline change on a tropical island beach, Seven Mile Beach, Grand Cayman: The influence of beachrock and shore protection structures. Mar. Geol. 457, 107006. https://doi.org/10.1016/j.margeo.2023.107006

Jumb, V., Sohani, M., Shrivas, A., 2014. Color Image Segmentation Using K-Means Clustering and Otsu’s Adaptive Thresholding. Kakroodi, A.A., Kroonenberg, S.B., Goorabi, A., Yamani, M., 2014. Shoreline Response to Rapid 20th Century Sea- Level Change along the Iranian Caspian Coast. J. Coast. Res. 298, 1243–1250. https://doi.org/10.2112/JCOASTRES-D-12-00173.1

Khakhim, N., Kurniawan, A., Pranowo, W.S., Khasanah, E.U., Halilintar, P., 2024. Shoreline morphological change prognostic model based on spatiotemporal framework imagery data on the northern coast of Java, Indonesia. Kuwait J. Sci. 51, 100274. https://doi.org/10.1016/j.kjs.2024.100274

Lahijani, H., Azizpour, J., Arpe, K., Abtahi, B., Rahnama, R., Ghafarian, P., Hamzeh, M.A., Hamzehpour, A., Penchah, M.M., Mahmoudof, S.M., 2023a. Tracking of sea level impact on Caspian Ramsar sites and potential restoration of the Gorgan Bay on the southeast Caspian coast. Sci. Total Environ. 857, 158833. https://doi.org/10.1016/j.scitotenv.2022.158833

Lahijani, H., Leroy, S.A.G., Arpe, K., Crétaux, J.-F., 2023b. Caspian Sea level changes during instrumental period, its impact and forecast: A review. Earth-Science Rev. 241, 104428. https://doi.org/10.1016/j.earscirev.2023.104428

Leroy, S.A.G., Gracheva, R., Medvedev, A., 2022. Natural hazards and disasters around the Caspian Sea. Nat. Hazards 114, 2435–2478. https://doi.org/10.1007/s11069-022-05522-5

Li, Y., Wu, H., 2012. A Clustering Method Based on K-Means Algorithm. Phys. Procedia. https://doi.org/10.1016/j.phpro.2012.03.206

Mageswaran, T., Sachithanandam, V., Sridhar, R., Mahapatra, M., Purvaja, R., Ramesh, R., 2021. Impact of sea level rise and shoreline changes in the tropical island ecosystem of Andaman and Nicobar region, India. Nat. Hazards 109, 1717–1741. https://doi.org/10.1007/s11069-021-04895-3

Mariotti, G., Hein, C.J., 2022. Lag in response of coastal barrier-island retreat to sea-level rise. Nat. Geosci. 15, 633–638. https://doi.org/10.1038/s41561-022-00980-9

McFEETERS, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432. https://doi.org/10.1080/01431169608948714

Medvedev, I.P., Kulikov, E.A., Fine, I. V., 2020. Numerical modelling of the Caspian Sea tides. Ocean Sci. 16, 209–219. https://doi.org/10.5194/os-16-209-2020

Medvedev, I.P., Kulikov, E.A., Rabinovich, A.B., 2017. Tidal oscillations in the Caspian Sea. Oceanology 57(3), 360–375. https://doi.org/10.1134/S0001437017020138

Mishra, M., Guria, R., Paul, S., Baraj, B., Santos, C.A.G., dos Santos, C.A.C., Silva, R.M. da, 2024. Geo-ecological, shoreline dynamic, and flooding impacts of Cyclonic Storm Mocha: A geospatial analysis. Sci. Total Environ. 917, 170230. https://doi.org/10.1016/j.scitotenv.2024.170230

Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S., Evans, M., 2023. Monitoring Shoreline Changes along the Southwestern Coast of South Africa from 1937 to 2020 Using Varied Remote Sensing Data and Approaches. Remote Sens. 15, 317. https://doi.org/10.3390/rs15020317

Nassar, K., Mahmod, W.E., Fath, H., Masria, A., Nadaoka, K., Negm, A., 2019. Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Geores. Geotechnol. 37, 81–95. https://doi.org/10.1080/1064119X.2018.1448912

NAVIONICS, 2023. Navionics ChartViewer. https://webapp.navionics.com/?lang=en#boating (accessed 3.25.24).

Nijamir, K., Ameer, F., Thennakoon, S., Herath, J., Iyoob, A.L., Zahir, I.L.M., Sabaratnam, S., Fathima Jisna, M.V., Madurapperuma, B., 2023. Geoinformatics application for estimating and forecasting of periodic shoreline changes in the east coast of Ampara District, Sri Lanka. Ocean Coast. Manag. 232, 106425. https://doi.org/10.1016/j.ocecoaman.2022.106425

Parthasarathy, K.S.S., Deka, P.C., 2019. Remote sensing and GIS application in assessment of coastal vulnerability and shoreline changes: a review. ISH J. Hydraul. Eng. 27, 1–13. https://doi.org/10.1080/09715010.2019.1603086

Pereira-Sandoval, M., Ruescas, A., Urrego, P., Ruiz-Verdú, A., Delegido, J., Tenjo, C., Soria-Perpinyà, X., Vicente, E., Soria, J., Moreno, J., 2019. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 11, 1469. https://doi.org/10.3390/rs11121469

Pisanti, A., Magrı̀, S., Ferrando, I., Federici, B., 2022. Sea water turbidity analysis from sentinel-2 images: atmospheric correction and bands correlation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLVIII-4/W, 371–378. https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-371-2022

Prange, M., Wilke, T., Wesselingh, F.P., 2020. The other side of sea level change. Commun. Earth Environ. 1, 69. https://doi.org/10.1038/s43247-020-00075-6

Rahbani, M., Ghaderi, D., 2024. Long term investigation on shoreline changes of an Island, inside a Gulf (Hormuz Island). Reg. Stud. Mar. Sci. 71, 103399. https://doi.org/10.1016/j.rsma.2024.103399

Rahbani, M., Ghaderi, D., Shamsaie, R., Salari, Z., Permas, A., 2023a. Investigation on the seasonal transformation of Tiab estuary’s shoreline using RS and GIS techniques. Int. J. Coast. Offshore Environ. Eng. 8, 56–64. https://doi.org/10.22034/ijcoe.2023.395872.1029

Rahbani, M., Ghaderi, D., Shamsaie, R., Zarafshan, S., Razi, A., 2023b. Investigating the impact of earthquakes on manmade structures in the vicinity of coastlines (Case study, earthquake on 2nd of July 2022, Sayekhosh). J. Earth Sp. Phys. https://doi.org/10.22059/jesphys.2023.353910.1007494

Rajasree, B.R., Deo, M.C., Sheela Nair, L., 2016. Effect of climate change on shoreline shifts at a straight and continuous coast. Estuar. Coast. Shelf Sci. 183, 221–234. https://doi.org/10.1016/j.ecss.2016.10.034

Rashmi, C., Chaluvaiah, S., Kumar, G.H., 2016. An Efficient Parallel Block Processing Approach for K -Means Algorithm for High Resolution Orthoimagery Satellite Images. Procedia Comput. Sci. https://doi.org/10.1016/j.procs.2016.06.0252

Renssen, H., Lougheed, B.C., Aerts, J.C.J.H., de Moel, H., Ward, P.J., Kwadijk, J.C.J., 2007. Simulating long-term Caspian Sea level changes: The impact of Holocene and future climate conditions. Earth Planet. Sci. Lett. 261, 685–693. https://doi.org/10.1016/j.epsl.2007.07.0372

Rezaee, S.M., Golshani, A., Abedi, S., 2022. Shoreline changes at Fereydounkenar Port in light of Caspian Sea’s water level fluctuations. Reg. Stud. Mar. Sci. 53, 102393. https://doi.org/10.1016/j.rsma.2022.1023932

Roshan, G., Moghbel, M., Grab, S., 2012. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations. Iranian J. Environ. Health Sci. Eng. 9, 24. https://doi.org/10.1186/1735-2746-9-242

Samant, R., Prange, M., 2023. Climate-driven 21st century Caspian Sea level decline estimated from CMIP6 projections. Commun. Earth Environ. 4, 357. https://doi.org/10.1038/s43247-023-01017-82

Santos, C.A.G., do Nascimento, G.R., Freitas, L.M.T., Batista, L.V., Zerouali, B., Mishra, M., Silva, R.M. da, 2024. Coastal evolution and future projections in Conde County, Brazil: A multi-decadal assessment via remote sensing and sea-level rise scenarios. Sci. Total Environ. 915, 169829. https://doi.org/10.1016/j.scitotenv.2023.1698292

Santos, C.A.G., Nascimento, T.V.M. do, Mishra, M., Silva, R.M. da, 2021. Analysis of long- and short-term shoreline change dynamics: A study case of João Pessoa city in Brazil. Sci. Total Environ. 769, 144889. https://doi.org/10.1016/j.scitotenv.2020.1448892

Seenath, A., 2022. On simulating shoreline evolution using a hybrid 2D/one-line model. Coast. Eng. 178, 104216. https://doi.org/10.1016/j.coastaleng.2022.1042162

Shamsaie, R., Ghaderi, D., 2025. Comparison of efficiency of spectral (NDWI) and SAR (GRD) method in shoreline detection: A novel method of integrating GRD and SLC products of sentinel-1 satellite. Reg. Stud. Mar. Sci. 84, 104132. https://doi.org/10.1016/j.rsma.2025.104132

Shirazi, A.S., Qashqaei, A.T., Faezi, S., Khaleghi, S., Moghaddamipour, N., Ebrahimi, T., Hassan, S.K., Chilvers, B.L., 2023. First confirmed records of white-coat pups of the Endangered Caspian seal Pusa caspica on the coast of Iran. Oryx 57, 784–787. https://doi.org/10.1017/S003060532200148X

Soriano-González, J., Urrego, E.P., Sòria-Perpinyà, X., Angelats, E., Alcaraz, C., Delegido, J., Ruı́z-Verdú, A., Tenjo, C., Vicente, E., Moreno, J., 2022. Towards the Combination of C2RCC Processors for Improving Water Quality Retrieval in Inland and Coastal Areas. Remote Sens. 14, 1124. https://doi.org/10.3390/rs14051124

Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., Ergul, A., 2009. The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change. https://doi.org/10.3133/ofr20081278

Toorani, M., Kakroodi, A.A., Yamani, M., Naderi Beni, A., 2021. Monitoring shoreline shift under rapid sea-level change on the Caspian Sea observed over 60 years of satellite and aerial photo records. J. Great Lakes Res. 47, 812–828. https://doi.org/10.1016/j.jglr.2021.02.006

Toure, S., Diop, O., Kpalma, K., Maiga, A., 2019. Shoreline Detection using Optical Remote Sensing: A Review. IS- PRS Int. J. Geo-Information 8, 75. https://doi.org/10.3390/ijgi8020075

Vallarino Castillo, R., Negro Valdecantos, V., Moreno Blasco, L., 2022. Shoreline Change Analysis Using Historical Multispectral Landsat Images of the Pacific Coast of Panama. J. Mar. Sci. Eng. 10, 1801. https://doi.org/10.3390/jmse10121801

Weerasingha, W.A.D.B., Ratnayake, A.S., 2022. Coastal landform changes on the east coast of Sri Lanka using remote sensing and geographic information system (GIS) techniques. Remote Sens. Appl. Soc. Environ. 26, 100763. https://doi.org/10.1016/j.rsase.2022.100763

Yan, D., Yao, X., Li, J., Qi, L., Luan, Z., 2021. Shoreline Change Detection and Forecast along the Yancheng Coast Using a Digital Shoreline Analysis System. Wetlands 41, 47. https://doi.org/10.1007/s13157-021-01444-3

Yum, S.-G., Park, S., Lee, J.-J., Adhikari, M. Das, 2023. A quantitative analysis of multi-decadal shoreline changes along the East Coast of South Korea. Sci. Total Environ. 876, 162756. https://doi.org/10.1016/j.scitotenv.2023.162756

Zambrano-Medina, Y.G., Plata-Rocha, W., Monjardin- Armenta, S.A., Franco-Ochoa, C., 2023. Assessment and Forecast of Shoreline Change Using Geo-Spatial Techniques in the Gulf of California. Land 12, 782. https://doi.org/10.3390/land12040782

Zanganeh, M., Chaji, A., 2024. A new aspect of the ApEn application to improve the PSO-ANFIS model to forecast Caspian Sea levels. Reg. Stud. Mar. Sci. 69, 103347. https://doi.org/10.1016/j.rsma.2023.103347


full, complete article - PDF

Short Communications



Climate change threatens shallow Arctic macrofaunal blue carbon stocks
Oceanologia, 67 (2)/2025, 07208, 6 pp.
https://doi.org/10.5697/HOHD9156

Marc J. Silberberger1,2
1Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Hugo Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: msilberberger@mir.gdynia.pl (M. Silberberger)
2Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland

*corresponding author

Keywords: Mollusca; Infauna; Biomass; Latitudinal gradient; Ecosystem functioning

Received: 5 August 2024; revised: 5 May 2025; accepted: 19 May 2025.

Highlights

Abstract

This study examines mollusk communities in shallow (< 150 m) and deep (> 200 m) zones of Arctic, sub-Arctic, and temperate fjords to assess macrofaunal blue carbon storage under climate change. Biomass and trait-based analyses show that shallow Arctic habitats support long-lived, large suspension feeders with high carbon storage potential. In contrast, warmer regions host smaller, short-lived taxa, indicating reduced carbon storage and altered climate feedbacks. These findings underscore the vulnerability of existing zoobenthic carbon stocks and highlight the need to expand research to other taxa and full benthic communities across the European Arctic.

  References   ref

Barnes, D.K.A., 2017. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Change Biol. 23, 5083–5091. https://doi.org/10.1111/gcb.13772

Barnes, D.K.A., Sands, C.J., Paulsen, M.L., Moreno, B., Moreau, C., Held, C., Downey, R., Bax, N., Stark, J.S., Zwerschke, N., 2021. Societal importance of Antarctic negative feedbacks on climate change: blue carbon gains from sea ice, ice shelf and glacier losses. Sci. Nat. 108, 43. https://doi.org/10.1007/s00114-021-01748-8

Barnes, D.K.A., Sands, C.J., Richardson, A., Smith, N., 2019. Extremes in Benthic Ecosystem Services; Blue Carbon Natural Capital Shallower Than 1000 m in Isolated, Small, and Young Ascension Island’s EEZ. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00663

Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Roy. Stat. Soc. B Met. 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Brattegard, T., 2011. Endringer i norsk marin bunnfauna 1997–2010. DN-utredning.

Campanyà-Llovet, N., Snelgrove, P.V.R., Parrish, C.C., 2017. Rethinking the importance of food quality in marine benthic food webs. Prog. Oceanogr. 156, 240–251. https://doi.org/10.1016/j.pocean.2017.07.006

Clare, D.S., Bolam, S.G., McIlwaine, P.S.O., Garcia, C., Murray, J.M., Eggleton, J.D., 2022. Biological traits of marine benthic invertebrates in Northwest Europe. Sci Data 9, 339. https://doi.org/10.1038/s41597-022-01442-y

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M., 1997. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. https://doi.org/10.1038/387253a0

Degen, R., Faulwetter, S., 2019. The Arctic Traits Database – A repository of Arctic benthic invertebrate traits. Earth Syst. Sci. Data 11, 301–322. https://doi.org/10.5194/essd-11-301-2019

Dray, S., Choler, P., Dolédec, S., Peres-Neto, P.R., Thuiller, W., Pavoine, S., ter Braak, C.J.F., 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95, 14–21. https://doi.org/10.1890/13-0196.1

Dunn, O.J., 1964. Multiple Comparisons Using Rank Sums. Technometrics 6, 241–252. https://doi.org/10.1080/00401706.1964.10490181

Griffiths, J.R., Kadin, M., Nascimento, F.J.A., Tamelander, T., Törnroos, A., Bonaglia, S., Bonsdorff, E., Brüchert, V., Gårdmark, A., Järnström, M., Kotta, J., Lindegren, M., Nordström, M.C., Norkko, A., Olsson, J., Weigel, B., Žydelis, R., Blenckner, T., Niiranen, S., Winder, M., 2017. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Global Change Biol. 23, 2179–2196. https://doi.org/10.1111/gcb.13642

Jordà Molina, È., Silberberger, M.J., Kokarev, V., Reiss, H., 2019. Environmental drivers of benthic community structure in a deep sub-arctic fjord system. Estuar. Coast. Shelf Sci. 225. https://doi.org/10.1016/j.ecss.2019.05.021

Kruskal, W.H., Wallis, W.A., 1952. Use of Ranks in One- Criterion Variance Analysis. J. Am. Stat. Assoc. 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441

Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x

Mazurkiewicz, M., Górska, B., Renaud, P.E., Włodarska-Kowalczuk, M., 2020. Latitudinal consistency of biomass size spectra – benthic resilience despite environmental, taxonomic and functional trait variability. Sci. Rep. 10, 4164. https://doi.org/10.1038/s41598-020-60889-4

Ridgway, I.D., Richardson, C.A., Austad, S.N., 2011. Maximum Shell Size, Growth Rate, and Maturation Age Correlate With Longevity in Bivalve Molluscs. J. Gerontol. A-Biol. 66A, 183–190. https://doi.org/10.1093/gerona/glq172

Silberberger, M.J., 2024. Infaunal mollusca in 4 fjord along a long latitudinal gradient (v1.0.0) [Data set]. https://doi.org/10.5281/zenodo.11261016

Silberberger, M.J., Koziorowska-Makuch, K., Reiss, H., Kędra, M., 2024. Trophic niches of macrobenthos: Latitudinal variation indicates climate change impact on ecosystem functioning. Global Change Biol. 30, e17100. https://doi.org/https://doi.org/10.1111/gcb.17100

Snelgrove, P.V.R., 1999. Getting to the Bottom of Marine Biodiversity: Sedimentary Habitats. Bioscience 49, 129. https://doi.org/10.2307/1313538

Souster, T.A., Barnes, D.K.A., Hopkins, J., 2020. Variation in zoobenthic blue carbon in the Arctic’s Barents Sea shelf sediments. Philos. T. R. Soc. A, 378, 20190362. https://doi.org/10.1098/rsta.2019.0362

Souster, T.A., Barnes, D.K.A., Primicerio, R., Jørgensen, L.L., 2024. Quantifying zoobenthic blue carbon storage across habitats within the Arctic’s Barents Sea. Front. Mar. Sci. 10. https://doi.org/10.3389/fmars.2023.1260884

Wanninger, A., Wollesen, T., 2019. The evolution of molluscs. Biol. Rev. 94, 102–115. https://doi.org/10.1111/brv.12439

Włodarska-Kowalczuk, M., Renaud, P., Węsławski, J., Cochrane, S., Denisenko, S., 2012. Species diversity, functional complexity and rarity in Arctic fjordic versus open shelf benthic systems. Mar. Ecol. Prog. Ser. 463, 73–87. https://doi.org/10.3354/meps09858

Zwerschke, N., Sands, C.J., Roman-Gonzalez, A., Barnes, D.K.A., Guzzi, A., Jenkins, S., Muñoz-Ramı́rez, C., Scourse, J., 2022. Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords. Global Change Biol. 28, 8–20. https://doi.org/10.1111/gcb.15898

full, complete article - PDF


First report on the entanglement of Yellow Sea Snake Hydrophis spiralis (Shaw, 1802) in plastic debris in the Northwestern Bay of Bengal
Oceanologia, 67 (2)/2025, 67209, 7 pp.
https://doi.org/10.5697/EIWU6540

Pratyush Das1,2,3,*, Pratap Kumar Mohanty2, Krishnan Silambarasan1,*, Sujit Kumar Pattnayak1, Gunamaya Patra3, Digambar Swain3, Annada Bhusan Kar1, Rebecca Jade Nicholls4
1Fishery Survey of India, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India, Visakhapatnam, India;
e-mail: pratyush.das@fsi.gov.in, silambuplankton@hotmail.com ((P. Das; K. Silambarasan)
2Department of Marine Sciences, Berhampur University, Odisha, India
3Department of Fisheries, Ministry of Fisheries, Animal Husbandry and Dairying, New Delhi – 110001
4Thomson Environmental Consultants, Compass House, Surrey Research Park, Guildford, GU2 7AG, United Kingdom
*corresponding author

Keywords: Bay of Bengal; India; Hydrophis spiralis; Marine plastic debris; Trawling; Entanglement

Received: 29 November 2024; revised: 28 April 2025; accepted: 19 May 2025.

Highlights

Abstract

A common cause of unnatural death in marine organisms is entanglement in derelict fishing gear and other marine debris. Such incidents involving marine birds, mammals, turtles and fish are regularly reported. However, few documented cases of entangled sea snakes (Hydrophiinae) exist. This report details the findings of a dead yellow sea snake (Hydrophis spiralis) in the northwestern Bay of Bengal. The sea snake was found with a section of fishing net mesh constricting its neck, causing damage to the underlying tissue and exposing the muscle. The twine was located anterior to the stomach, and necropsy revealed no food in the stomach or intestines. This is the first recorded case of sea snake mortality due to marine debris entanglement or entrapment in Indian waters.

  References   ref

Carr, A., Harris, J., 1997. Ghost-fishing gear: have fishing practices during the past few years reduced the impact? [In:] Coe, J.M., Rogers, A.B. (eds.), Marine Debris. Sources, Impacts and Solutions. Springer-Verlag, New York, 141–151.

Chandrasekar, K., Balakrishnan, S., Arun, G., Satyanarayana, Ch., Venkataraman, K., 2018. New observation of Intertwined Annulated Sea Snake Hydrophis cyanocinctus (Reptilia: Elaphidae: Hydrophiinae) from Pirotan Island, Gulf of Katchchh. Indian J. Marine Sci. 47 (12), 2465–2468.

Choy, C. A., Drazen, J. C., 2013. Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Marine Ecol. Progress Ser. 485, 155–163.

Claro, F., Fossi, M.C., Ioakeimidis, C., Baini, M., Lusher, A.L., Mcfee, W., Mcintosh, R.R., Pelamatti, T., Sorce, M., Galgani, F., Hardesty, B.D., 2019. Tools and constrains in monitoring interactions between marine litter and megafauna: insights from case studies around the world. Marine Pollut. Bull. 141, 147–160.

Čulin, J., Bielić T., 2016. Plastic Pollution from Ships. Pomorskizbornik 51, 57–66.

Davison, P., Asch, R. G., 2011. Plastic ingestion by mesopelagic fishes in the North Pacific Subtropical Gyre. Marine Ecol. Progress Ser. 432, 173–180.

Derraik, J. G. B., 2002. The pollution of the marine environment by plastic debris: a review. Marine Pollut. Bull. 44, 842–852.

Dunson, W.A., 1975. Sea snakes of tropical Queensland between 18 and 20 degrees South latitude. [In:], Dunison W.A. (ed.), The Biology of Sea Snakes. Univ. Park Press Baltimore, 151–162.

Elfes, C., Livingstone, S. R., Lane, A., Guillot, C., Lukoschek, V., Sanders, K., Courtney, A., Gatus, J., Carpenter, K., 2010. Hydrophis spiralis. The IUCN Red List of Threatened Species 2010: e.T176738A7297563.

Eriksen, M., Lebreton, L. C.M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., Reisser, J., 2014. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 1–15. https://doi.org/10.1371/journal.pone.0111913

Farrell, P., Nelson, K., 2013. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 177, 1–3. https://doi.org/10.1016/j.envpol.2013.01.046

Fuehrer, J., Kong, E., Murphy-Lavoie H., 2020. Sea Snake Toxicity. StatPearls. Treasure Island (FL), StatPearls Publ., https://www.ncbi.nlm.nih.gov/books/NBK532973/ (Accessed: Jan. 2020)

Gall, S. C., Thompson, R. C., 2015. The impact of debris on marine life. Marine Pollut. Bull. 92(1–2), 170–179.

Ganesh, S. R., Nandhini, T., Samuel, V. D., Sreeraj, C. R., Abhilash, K. R., Purvaja, R., Ramesh, R., 2019. Marine snakes of Indian coasts: historical resume, systematic checklist, toxinology, status, and identification key. J. Threatened Taxa 11(1), 13132–13150. https://doi.org/10.11609/jott.3981.11.1.13132-13150

Gregory, M. R., 2009. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philosoph. Transact. Royal Soc. B, 364, 2013–2025.

Guinea, M. L., 1994. Sea snakes of Fiji and Niue. [In:] P. Gopalakrishnakone (ed.), Sea snake toxinology, Singa- pore Univ. Press, 212–233.

Heatwole, H., 1997. Marine snakes: are they a sustainable resource? Wildlife Soc. Bull., 766–772.

Heatwole, H., Cogger, H., 1994. Sea snakes of Australia. [In:] Gopalakrishnakone, P. (ed.) Sea snake toxinology, Singapore Univ. Press, 167–205.

Herre, A.W.C.T., 1942. Notes on Philippine Sea snakes. Copeia, 7–9.

Kardong, K., 2015. Vertebrates: Comparative Anatomy, Function, Evolution, 7th edn.

Karthikeyan, R., Balasubramanian, T., 2007. Species diversity of Sea Snake (Hydrophiidae) distributed in the Coramandal Coast (East Coast of India). Int. J. Zool. Res. 3(3), 107–131.

Karthikeyan, R., Vijayalakshmi, S., Balasubramanian, T., 2008. Feeding and parturition of female annulated sea snake Hydrophiscyanocinctus in captivity. Current Sci. 94 (5), 660–664.

Kühn, S., Van Franeker, J.A., 2020. Quantitative overview of marine debris ingested by marine megafauna. Marine Pollut. Bull. 151, 110858.

Laist, D. W., 1987. Overview of biological effects of lost and discarded plastic debris in the marine environment. Marine Pollut. Bull. 18, 319–326.

Laist, D. W., 1997. Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. [In:] Coe, J. M. et al. (eds.), Marine Debris, Springer-Verlag, New York, 1997, 99–139. https://doi.org/10.1007/978-1-4613-8486-1_10

Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., Leonard, G. H., 2020. The United States’ contribution of plastic waste to land and ocean. Sci. Advances 6(44), eabd0288.

Lebreton, L.C.M., Vanderzwet, J., Damsteeg, J.W., Slat, B., Andrady, A., Reisser, J., 2017. River plastic emissions to the world’s ocean. Nat. Communicat. 8, 1–10.

Lobo, A. S., 2006. Sea snakes of the Gulf of Mannar Marine National Park. The species and their conservation. Tech. rep., Rufford Foundation (submitted).

Lobo, A. S., Vasudevan, K., Pandav, B., 2005. Trophic ecology of Lapemiscurtus (Hydrophiinae) along the western coast of India. Copeia 2005(3), 637–641.

Lobo, A., Pandav, B., Vasudevan, K., 2004. Weight-length relationships in two species of marine snakes along the coast of Goa, Western India. Hamadryad 29, 89–93.

Lusher, A. L., Mchugh, M., Thompson, R. C., 2013. Occurence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine Pollut. Bull. 67, 94–99.

Manupriya, 2019. Threatened and undocumented sea snakes of India. https://india.mongabay.com/2019/03/threatened-and-undocumented-sea-snakes-of-india/

Milton, D.A., 2001. Assessing the susceptibility to fishing of populations of rare trawl bycatch: sea snakes caught by Australia’s Northern Prawn Fishery. Biol. Conserv. 101(3), 281–290.

Murthy, T. S. N., 1977. On sea snakes occurring in Madras waters. J. Marine Biol. Assoc. India 19, 68–72.

Murthy, T. S. N., Rao, K. R., 1988. Snake of the Chilka lake. Orissa, India. The Snake 20, 67–73.

Muthukumaran, M., Rao, A. B. V., Alexander, R., 2015. Threats of passive fishing activities on sea snakes, Enhydrinaschistosa (Daudin, 1803) of Pudu cherry coast, India. Int. J. Pure Appl. Zool. 3 (1), 53–58.

Padate, V. P., Baragi, L. V., Rivonker, C. U. 2009. Biological aspects of sea snakes caught incidentally by commercial trawlers off Goa, west coast of India. J. Threatened Taxa 1(12), 609–616.

Palot, M. J., Radhakrishnan, C. 2010. First record of Yellowbellied Sea Snake Pelamisplaturus (Linnaeus, 1766) (Reptilia: Hydrophiidae) from a riverine tract in northern Kerala, India. J. Threatened Taxa 2(9), 1175–1176.

Rees, G., Pond, K., 1995. Marine litter monitoring programmes – a review of methods with special reference to national surveys. Marine Pollut. Bull. 30, 103–108. https://doi.org/10.1016/0025-326X(94)00192-C

Reid, H.A., Lim, K.J., 1957. Sea-snake Bite. British Med. J. 2(5056), p. 1266.

Rezaie-Atagholipour, M., Ghezellou, P., Hesni, M. A., Dakhteh, S.M.H., Ahmadian, H., Vidal, N., 2016. Sea snakes (Elapidae, Hydrophiinae) in their westernmost extent: an updated and illustrated checklist and key to the species in the Persian Gulf and Gulf of Oman. Zoo Keys 622, 129–164. https://doi.org/10.3897/zookeys.622.9939

Ribic, C.A., Johnson, S.W., Cole, C.A., 1997. Distribution, type, accumulation, and source of marine debris in the United States, 1989–1993. [In:] Coe, J., Rogers, D. (eds.), Marine Debris: Sources, Impacts, and Solutions. Springer-Verlag, New York, 35–47.

Rochman, C. M., Lewison, R. L., Eriksen, M., Allen, H., Cook, A. M., Teh, S, J, 2014. Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats. Sci. Total Environ. 476–477, 622–633.

Ryan, P.G., 2018. Entanglement of birds in plastics and other synthetic materials. Marine Pollut. Bull. 135, 159–164.

Ryan, P.G., Moore, C.J., Vanfraneker, J.A., Moloney, C.L., 2009. Monitoring the abundance of plastic debris in the marine environment. Philosoph. Transac. Royal Soc. B 364, 1999–2012.

Sherratt, E., Rasmussen, A.R. And Sanders, K.L., 2018. Trophic specialization drives morphological evolution in sea snakes. Royal Soc. Open Sci. 5(3), 172141.

Thushari, G. G. N., Senevirathna, J. D. M., 2020. Plastic pollution in the marine environment. Heliyon 6(8), e04709. https://doi.org/10.1016/j.heliyon.2020.e04709

Toriba, M., 1994. Sea snakes of Japan. [In:] Gopalakrishnakone, P. (ed.), Sea snake toxinology, Singapore Univ. Press, 206–211.

Udyawer, V., Goiran, C., Shine, R., 2021. Peaceful coexistence between people and deadly wildlife: Why are recreational users of the ocean so rarely bitten by sea snakes? People and Nature.

Udyawer, V., Read, M. A., Hamann, M., Simpfendorfer, C.A., Heupel, M.R., 2013. First record of sea snake (Hydrophis elegans, Hydrophiinae) entrapped in marine debris. Marine Pollut. Bull. 73(1), 336–8. https://doi.org/10.1016/j.marpolbul.2013.06.023

Udyawer, V., Read, M., Hamann, M., Heupel, M.R., Simpfendorfer, C.A., 2016. Importance of shallow tidal habitats as refugia from trawl fishing for sea snakes. J. Herpetology 50(4), 527–533.

Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen, C. R., 2013. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013

Wallace, N., 1985. Debris entanglement in the marine environment: A review. Proc. Workshop on the Fate and Impact of Marine Debris, 259–277.

NOAA Technical Memorandum, NMFS, SWFC 54. Warrel, D.A., 1994. Sea snake bites in the Asia-Pacific region. [In:] Gopalakrishnakone, P. (ed.), Sea snake toxinology, Singapore Univ. Press, 1–36.

Werner, S., Budziak, A., Van Franeker, J.A., Galgani, F., Hanke, G., Maes, T., Matiddi, M., Nilsson, P., Oosterbaan, L., Priestland, E., Thompson, R., 2016. Harm caused by marine litter. MSFD GES TG Marine Litter – Thematic Rep. No. EUR 28317. European Union. https:doi.org/10.2788/690366

Wilcox, C., Van Sebille, E., Hardesty, B. D., 2018. Marine debris modeling: How the movement of debris connects ocean plastics to ecological impacts. Front. Ecol. Environ. 16(3), 145–152.

Wright, S. L., Thompson, R. C., Galloway, T. S., 2013. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031

full, complete article - PDF

Corrigendum



Corrigendum to "Some probabilistic properties of surf parameter" by Dag Myrhaug [Oceanologia 62(3) 2020, 395-401. https://doi.org/10.1016/j.oceano.2020.02.003]
Oceanologia, 67 (2)/2025, 67210, 7 pp.

Dag Myrhaug
Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway;
e-mail: dag.myrhaug@ntnu.no (D. Myrhaug)
full, complete article - PDF