Oceanologia No. 67 (2) / 25
Original Research Articles
-
Water mass stability and mixing in the Banda Sea derived from Global Data Repository and the Jalacitra II Expedition: Noir P. Purba, Noor C.D. Aryanto, Hendra K. Febriawan, Adam B. Nugroho, Mohd Fadzil Akhir, Afifi Johari, Syawaludin A. Harahap, Ghelby M. Faid, Muhammad H. Ilmi, Anom P. Hascaryo, Dyan P. Sobaruddin, Candrasa S. Dharma, Budi Muljana, Cipta Endyana
-
Sea level along the Polish coast (southern Baltic Sea):
Comparison of satellite altimetry and tide gauge observations (1995–2019): Anna Izabela Bulczak, Beata Kowalska, Lidia Dzierzbicka-Głowacka
-
Hydroacoustic technique for determination of the
orientation of aggregated Baltic herring: Aleksander Żytko, Natalia Gorska, Dezhang Chu, Beata Schmidt
-
Thornthwaite method based climate classifying and
generation of GIS based climate boundary maps: a case of Kozlu District on the Western Black Sea coast of Turkey: Hulya Keskin Citiroglu, Deniz Arca
-
Coupling pattern of estuarine and surf zone longshore
currents at tidal frequencies: Case study of S. E. coast of Nigeria: Effiom E. Antia
-
Bering Sea climate dynamics forecast by novel multivariate natural hazard assessment method, utilizing self-deconvolution scheme: Alia Ashraf, Oleg Gaidai, Jinlu Sheng, Yan Zhu, Zirui Liu
-
Analyzing Ogurja Island’s shoreline changes in response
to the Caspian Sea water level decline: Rahimeh Shamsaie, Danial Ghaderi
Short Communications
Corrigendum
Original Research Articles
Water mass stability and mixing in the Banda Sea derived from Global Data Repository and the Jalacitra II Expedition
Oceanologia, 67 (2)/2025, 67201, 18 pp.
https://doi.org/10.5697/NRNG3078
Noir P. Purba1,2,*, Noor C.D. Aryanto2,3, Hendra K. Febriawan4, Adam B. Nugroho5, Mohd Fadzil Akhir6, Afifi Johari6, Syawaludin A. Harahap1, Ghelby M. Faid7, Muhammad H. Ilmi7, Anom P. Hascaryo8, Dyan P. Sobaruddin8, Candrasa S. Dharma8, Budi Muljana9, Cipta Endyana9
1Department of Marine Science, Padjadjaran University, Bandung, Indonesia;
e-mail: noir.purba@unpad.ac.id (Noir P. Purba)
2Indonesia National Committee, Intergovernmental Oceanographic Commission (IOC) – UNESCO, Jakarta, Indonesia
3Research Centre for Geological Resources, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
4Directorate of Research Vessel Management, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
5Research Centre for Geological Disaster, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
6Institute of Oceanography and Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
7KomitmenX Research Group, Padjadjaran University, Bandung, Indonesia
8Centre for Hydro-Oceanography, Indonesian Navy, Jakarta, Indonesia
9Department of Geology, Padjadjaran University, Bandung, Indonesia
*corresponding author
Keywords:
T-S time profiles; Ocean stability; Banda Sea; Ocean circulation; Ocean mixing
Received: 13 February 2024; revised: 11 November 2024; accepted: 30 January 2025.
Highlights
- The Banda Sea is an important region for studying various dynamics in Indonesian waters.
- Distinct temperature and salinity variations between the Northwest Monsoon (NWM) and Southeast Monsoon (SEM).
- The stability of the water column depends on the mixing process.
Abstract
The dynamics of the Banda Sea can influence larger-scale oceanic processes and contribute to the global ocean circulation system. This research aims to utilize data from a global in situ data repository spanning the years 1960 to 2018, along with data collected from 12 stations during the recent Jalacitra II-2022 expedition. The focus is on analyzing salinity and potential temperature data to construct water mass features, including seasonal temperature-salinity-time diagrams and water column stability using Brunt Vaisala Frequency. Thorpe analysis is employed to investigate turbulent mixing within the region. The results found that temperatures are notably lower in Northwest Monsoon (NWM), reaching 30.0°C, while Southeast Monsoon (SEM) temperatures hover around 28.0°C. Salinity profiles reveal that SEM generally exhibits lower salinity levels, ranging from 33.5 to 34.4, compared to NWM, which ranges from 34.0 to 34.5. Vertical profiles of temperature and salinity variations in the SEM display a more varied thermocline layer depth than NWM. Data from the JC II expedition in the Banda Sea revealed a slight temperature decrease from 27.5°C to 26°C in August, accompanied by salinity variations. Surface salinity was measured at 33.3, while a uniform
salinity of 34.6 was observed from 100 meters downward during the same period. This study identifies five dominant water mass types in the Banda Sea, primarily from the Pacific Ocean, which are North Pacific Intermediate Water (NPIW) and North Pacific Subtropical Water (NPSW). During the NWM season, water column instability occurs at
depths up to 200 meters, while deeper water column instability is observed during the SEM, extending to a depth of 300 meters, with stability values lower than four cycles/hour. Furthermore, high turbulence generally occurs in the thermocline layer (50 to 300 m).
References
Atmadipoera, A., Molcard, R., Madec, G., Wijffels, S., Sprint- all, J.,
Koch-Larrouy, A., Jaya, I., Supangat, A., 2009.
Characteristics and
variability of the Indonesian throughflow water at the outflow straits.
Deep Sea Res. Pt. I, 56 (11), 1942–1954.
https://doi.org/10.1016/j.dsr.2009.06.004
Atmadipoera, A.S., Prartono, T., Jaya, I., Nugroho, D., Har- sono, G., Nanlohy,
P., Koch-Larrouy, A., 2019.
Seasonal variation of the upper-layer seawater
properties in the Banda Sea: Observed from an autonomous CTD Argo float.
IOP Conf. Ser. Earth Environ. 278 (1).
https://doi.org/10.1088/1755-1315/278/1/012008
Balsamo, G., Agusti-Panareda, A., Albergel, C., et al., 2018.
Satellite and
in situ observations for advancing global earth surface modelling: A
review. Remote Sens. 10 (12), 1–72.
https://doi.org/10.3390/rs10122038
Bayhaqi, A., Iskandar, I., Surinati, D., Budiman, A.S., Ward- hana, A.K.,
Dirhamsyah, Yuan, D., Lestari, D.O., 2018.
Water mass characteristic in the
outflow region of the Indonesian throughflow during and post 2016 negative
Indian ocean dipole event. IOP Conf. Ser. Earth Environ. 149 (1), 1–10.
h
ttps://doi.org/10.1088/1755-1315/149/1/012053
Birowo, S., 1984.
Ekspedisi ilmiah kelautan Snellius II, Indonesia –
Belanda (Juli 1984–Juli 1985). LIPI, Jakarta, 23–42.
Boyer, T.P., Baranova, O.K., Coleman, C., Garcia, H.E., Grod- sky, A.,
Locarnini, R.A., Mishonov, A.V., Paver, C.R., Reagan, J.R., Seidov, D.,
Smolyar, I.V., Weathers, K.W., Zweng, M.M., 2018.
NOAA Atlas NESDIS
87. World Ocean Database 2018.
Bray, N.A., Hautala, S., Chong, J., Pariwono, J., 1996.
Large- scale sea
level, thermocline, and wind variations in the Indonesian throughflow
region. J. Geophys. Res. 101 (C5), 12239–12254.
https://doi.org/10.1029/96JC00080
Cai, S., He, Y., Wang, S., Long, X., 2009.
Seasonal upper circulation in
the Sulu Sea from satellite altimetry data and a numerical model. J.
Geophys. Res. 114 (3), 14.
https://doi.org/10.1029/2008JC005109
Cheng, L., Zhu, J., Cowley, R., Boyer, T., Wijffels, S., 2014.
Time, probe
type, and temperature variable bias corrections to historical expendable
bathythermograph obser- vations. J. Atmos. Ocean. Tech. 31 (8),
1793–1825.
https://doi.org/10.1175/JTECH-D-13-00197.1
Dippner, J.W., Weber, S.C., Subramaniam, A., 2021.
Impact of climate
variability of the Western Tropical Pacific on maximum salinity water in the
South China Sea. Ocean. Dynam. 71 (10), 1033–1049.
Emery, W.J., 2015.
Oceanographic Topics: Water Types and Water Masses.
Enc. Atmos. Sci. 329–337.
https://doi.org/10.1016/B978-0-12-382225-3.00279-6
Febriawan, H.K., Nugroho, A.B., Alodia, G., Hascaryo, A., Fadillah, A.,
Aryanto, N.C.D., Haryanto, D., Muljana, B., Endyana, C., Purba, N.P., 2023.
Nieuwerkerk – Emperor of China (NEC) Seamounts (Banda Sea): A multibeam
seafloor imagery analysis. IOP Conf. Ser. Earth Environ. 1163 (1), 012018.
https://doi.org/10.1088/1755-1315/1163/1/012018
Feng, M., Zhang, N., Liu, Q., Wijffels, S., 2018.
The Indonesian
throughflow, its variability and centennial change. Geosci. Lett. 5 (1).
https://doi.org/10.1186/s40562-018-0102-2
Fieux, M., Andrié, C., Delecluse, P., Ilahude, A. G., Kartavtseff, A.,
Mantisi, F., Molcard, R., Swallow, J.C., 1994.
Measurements within the
Pacific-Indian oceans throughflow region. Deep-Sea Res. Pt. I, 41 (7),
1091–1130.
Gordon, A.L., Fine, R.A., 1996.
Pathways of water between the Pacific and
Indian oceans in the Indonesian seas. Nature 379 (6561), 146–149.
Gusviga, B.H., Subiyanto, Faizal, I., Yusri, S., Sari, S. K., Purba, N.P.,
2021.
Occurrence and Prediction of Coral Bleaching Based on Ocean Surface
Temperature Anomalies and Global Warming in Indonesian Waters. IOP Conf.
Ser. Earth Environ. 750 (1), 1–13.
https://doi.org/10.1088/1755-1315/750/1/012032
Hanifah, F., Ningsih, N.S. 2016.
The characteristic of eddies in the Banda
Sea. Adv. Appl. Fluid Mech. 19 (4), 889–902.
https://doi.org/10.17654/FM019040889
Horhoruw, S.M., Fadli, M., Atmadipoera, A., Lekalette, J., Nugroho, D.Y.,
Tatipatta, W.M., Kainama, F. 2020.
Horizontal Structure of Banda Eddies and
the Relationship to Chlorophyll-a during South East Monsoon in Normal and ENSO
Period on 2008-2010. IOP Conf. Ser. Earth Environ. 618 (1).
https://doi.org/10.1088/1755-1315/618/1/012011
Ilahude, A.G., Muchtar, M., Praseno, D.P., Hadikusumah, A., Ruyitno, N.,
Simanjuntak, M., Sutomo, A.B., Adnan, Q. 1999.
Hydrology of the Mamberamo
Plume, Irian Jaya. Proc. Indo-Tropics Workshop, 6–7.
Jackett, D.R., McDougall, T.J., Feistel, R., Wright, D.G., Griffies, S.M.,
2006.
Algorithms for density, potential temperature, conservative
temperature, and the freezing temperature of seawater. J. Atmos. Ocean.
Tech. 23 (12), 1709–1728.
https://doi.org/10.1175/JTECH1946.1
Johari, A., Akhir, M. F. 2019.
Exploring thermocline and water masses
variability in southern South China Sea from the World Ocean Database
(WOD). Acta Oceanol. Sin. 38, 38–47. Johnson, G.C., Lyman, J.M. 2020.
Warming trends increasingly dominate global ocean. Nat. Clim. Change 10 (8),
757–761.
https://doi.org/10.1038/s41558-020-0822-0
Katavouta, A., Polton, J.A., Harle, J.D., Holt, J.T., 2022.
Effect of Tides
on the Indonesian Seas Circulation and Their Role on the Volume, Heat and Salt
Transports of the Indonesian Throughflow. J. Geophys. Res. 127 (8).
https://doi.org/10.1029/2022JC018524
Kida, S., Wijffels, S. 2012.
The impact of the Indonesian Throughflow and
tidal mixing on the summertime sea surface temperature in the western
Indonesian Seas. J. Geophys. Res. 117 (C9).
Lana, A.B., Kurniawati, N., Purba, N.P., Syamsuddin, M.L. 2017.
Thermocline
Layers Depth and Thickness in Indonesian Waters when Southeast Monsoon.
Omni Akuatika 37 (08), 36–41.
https://doi.org/10.1002/jor.23509
Lange, M., van Sebille, E. 2017.
Parcels v0.9: Prototyping a Lagrangian
ocean analysis framework for the petascale age. Geosci. Model. Dev. 10
(11), 4175–4186.
https://doi.org/10.5194/gmd-10-4175-2017
Liang, L., Xue, H., Shu, Y., 2019.
The Indonesian Throughflow and the
Circulation in the Banda Sea: A Modeling Study. J. Geophys. Res. 124 (5),
3089–3106.
https://doi.org/10.1029/2018JC014926
Makarim, S., Sprintall, J., Liu, Z., Yu, W., Santoso, A., Yan, X.-H., Susanto,
R.D., 2019.
Previously unidentified Indonesian Throughflow pathways and
freshening in the Indian Ocean during recent decades. Sci. Rep.-UK, 9 (1),
7364.
https://doi.org/10.1038/s41598-019-43841-z
McCreary, J.P., Miyama, T., Furue, R., Jensen, T., Kang, H.W., Bang, B., Qu, T.
2007.
Interactions between the Indonesian Throughflow and circulations in
the Indian and Pacific Oceans. Progr. Oceanogr. 75 (1), 70–114.
https://doi.org/10.1016/j.pocean.2007.05.004
Molcard, R., Fieux, M., Syamsudin, F., 2001.
The throughflow within Ombai
Strait. Deep-Sea Res. Pt. I 48 (5), 1237–1253.
Moore, T.S., Marra, J., Alkatiri, A. 2003.
Response of the Banda Sea to the
southeast monsoon. Mar. Ecol. Prog. Ser. 261, 41–49.
https://doi.org/10.3354/meps261041
Nugraha, A.P., Purba, N.P., Junianto, Sunarto. 2018.
Ocean Currents ,
Temperature, and Salinity at Raja Ampat Islands and The Boundaries Seas.
World Sci. News 110 (September), 197–209.
Nuzula, F., Syamsudin, M.L., Yuliadi, L.P.S., Purba, N.P., Martono. 2017.
Eddies spatial variability at Makassar Strait – Flores Sea. IOP
Conf. Ser. Earth Environ. 54 (1).
https://doi.org/10.1088/1755-1315/54/1/012079
Pei, S., Shinoda, T., Steffen, J., Seo, H., 2021.
Substantial Sea Surface
Temperature Cooling in the Banda Sea Associated With the Madden-Julian
Oscillation in the Boreal Winter of 2015. J. Geophys. Res. 126 (6),
e2021JC01 7226.
https://doi.org/10.1029/2021JC017226
Purba, N.P., Damanik, F.S., 2021.
Seasonal Water Mass Transformation in
Sulu and Surrounding Seas. World Sci. News 153 (2), 142–156.
Purba, N.P., Khan, A.M.A., 2019.
Upwelling Session in Indonesia
Waters. World News Nat. Sci. 25 (June), 72–83.
Purba, N.P., Pranowo, W.S., Ndah, A.B., Nanlohy, P., 2021.
Seasonal
variability of temperature, salinity, and surface currents at 0° latitude
section of Indonesia seas. Reg. Stud. Mar. Sci. 44, 101772.
https://doi.org/10.1016/j.rsma.2021.101772
Purwandana, A., Cuypers, Y., Bouruet-Aubertot, P., Nagai, T., Hibiya, T.,
Atmadipoera, A.S., 2020.
Historical CTD dataset and associated processed
dissipation rate using an improved Thorpe method in the Indonesian seas.
Data in Brief. 30.
https://doi.org/10.1016/j.dib.2020.105519
Pusparini, N., Prasetyo, B., Ambariyanto, Widowati, I., 2017.
The
Thermocline Layer and Chlorophyll-a Concentration Variability during Southeast
Monsoon in the Banda Sea. IOP Conf. Ser. Earth Environ. 55 (1), 012039.
https://doi.org/10.1088/1755-1315/55/1/012039
Schlitzer, R., 2022.
Ocean Data View. https://odv.awi.de
Sprintall, J., Gordon, A.L., Koch-Larrouy, A., Lee, T., Potemra, J.T., Pujiana,
K., Wijffels, S.E., 2014.
The Indonesian seas and their role in the coupled
ocean-climate system. Nat. Geosci. 7 (7), 487–492.
https://doi.org/10.1038/ngeo2188
Sprintall, J., Gordon, A.L., Wijffels, S.E., Feng, M., Hu, S., Koch-Larrouy,
A., Phillips, H., Nugroho, D., Napitu, A., Pujiana, K., Dwi Susanto, R.,
Sloyan, B., Yuan, D., Riama, N. F., Siswanto, S., Kuswardani, A., Arifin, Z.,
Wahyudi, A.J., Zhou, H., Nagai, T., Ansong, J.K., Bourdalle-Badié, R., Chanut
J., Lyard, F., Arbic, B.K., Ramdhani, A., Setiawan, A., 2019.
Detecting
change in the Indonesian seas. Front. Mar. Sci. 6, 257.
https://doi.org/10.3389/fmars.2019.00257
Sprintall, J., Timothy Liu, W., 2005.
Ekman mass and heat transport in the
Indonesian seas. Oceanography 18 (Sp. Iss. 4), 88–97.
https://doi.org/10.5670/OCEANOG.2005.09
Susanto, R.D., Fang, G., Soesilo, I., Zheng, Q., Qiao, F., Wei, Z., Sulistyo,
B., 2010.
New surveys of a branch of the Indonesian throughflow. T.
Am. Geophys. Un. 91 (30), 261–263.
https://doi.org/10.1029/2010EO300002
Talley, L.D., Sprintall, J., 2005.
Deep expression of the Indonesian
Throughflow: Indonesian Intermediate Water in the South Equatorial
Current. J. Geophys. Res. 10 (10), 1–30.
https://doi.org/10.1029/2004JC002826
Tillinger, D., Gordon, A.L,. 2009.
Fifty years of the Indonesian
throughflow. J. Climate, 22 (23), 6342–6355.
https://doi.org/10.1175/2009JCLI2981.1
Tomczak, M., Godfrey, J.S., 2003.
Regional oceanography: an
introduction. Daya Books, New Delhi.
Van Aken, H.M., Brodjonegoro, I.S., Jaya, I., 2009.
The deepwater motion
through the Lifamatola Passage and its contribution to the Indonesian
throughflow. Deep-Sea Res. Pt. I, 56 (8), 1203–1216.
Vinayachandran, P.N.M., Masumoto, Y., Roberts, M., Hugget, J., Halo, I.,
Chatterjee, A., Amol, P., Gupta, G., Singh, A., Mukherjee, A., Prakash, S.,
Beckley, L., Raes, E.J., Hood, R., 2021.
Reviews and syntheses: Physical
and biogeochemical processes associated with upwelling in the Indian
Ocean. Biogeosciences Discuss. 18 (2), 5967–6029.
https://doi.org/10.5194/bg-2020-486
Wyrtki, K., 1961.
Physical oceanography of the Southeast Asian waters.
Vol. 2, Univ. California, Scripps Inst. Oceanogr., California.
Zeng, L., Wang, D., Chen, J., Wang, W., Chen, R., 2016.
SCSPOD14, a South
China Sea physical oceanographic dataset derived from in situ measurements
during 1919–2014. Sci. Data, 3 (1), 1–13.
Zhu, Y., Wang, L., Wang, Y., Xu, T., Li, S., Cao, G., Wei, Z., Qu, T., 2019.
Stratified Circulation in the Banda Sea and Its Causal Mechanism. J.
Geophys. Res. 124 (10), 7030–7045.
https://doi.org/10.1029/2019JC015279
Zubaedah, S., Setiyono, H., Puspita, C.D., Gusmawati, N. F., Pranowo, W.S.,
2021.
Schematic Model of Ocean Pacific Seawater Mass Circulation in Banda
Sea. IOP Conf. Ser. Earth Environ. 750 (1).
https://doi.org/10.1088/1755-1315/750/1/012009
Sea level along the Polish coast (southern Baltic Sea): Comparison of satellite altimetry and tide gauge observations (1995–2019)
Oceanologia, 67 (2)/2025, 67202, 15 pp.
https://doi.org/10.5697/VUAB8974
Anna Izabela Bulczak1,*, Beata Kowalska2, Lidia Dzierzbicka-Głowacka1
1Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: abulczak@iopan.pl, annabulczak@gmail.com (A.I. Bulczak)
2Instytut Meteorologii i Gospodarki Wodnej, Jerzego Waszyngtona 42, 81–342, Gdynia, Poland
*corresponding author
Keywords:
Tide gauges; Satellite altimetry; Baltic Sea; Sea level; Validation
Received: 6 September 2024; revised: 13 January 2025; accepted: 1 February 2025.
Highlights
- Sea level variability along the Polish coast from 1995 to 2019, using tide gauges and 2 satellite altimetry products.
-
Over 24 years, TG measurements reveal varying linear sea level trends from 1 mm y–1 in Gdańsk to 4.1 mm y–1 in Ustka. Satellite altimetry products, such as Baltic+SEAL and CMEMS, generally show higher trends, with Baltic+SEAL demonstrating better agreement (16%) with tide gauge data, especially in the Gdańsk Bay.
-
Seasonal cycles in sea level amplitude vary regionally, with the smallest observed on the western coast and the largest in Łeba. SA data generally show larger seasonal cycle amplitudes compared to TG observations.
-
The Pearson correlation for daily sea level anomalies between satellite data and tide gauges ranges from 0.66 to 0.84. Satellite data show lower variability and smaller seasonal amplitudes than in situ measurements, indicating limitations in capturing extreme sea level events. The high-frequency variability (<30 days) is not well represented in the SA CMEMS product.
Abstract
This study examines sea level observations along the Polish coast from 1995 to 2019, combining in situ measurements from tide gauge stations with radar satellite altimetry data. The research is driven by developing new satellite products under the Baltic + SEAL project, specifically tailored for the Baltic Sea. These innovative products utilise advanced algorithms for sea level estimation, enhanced radar waveform processing, and high-resolution sea level data collected in Synthetic Aperture Radar (SAR) mode by multiple satellites during the analysed period. The study’s primary aim is to validate and assess the performance of the Baltic + SEAL product against the standard sea level data provided by the Copernicus Marine Environment Monitoring Service (CMEMS) and observations from nine tide gauges distributed along the Polish coast. The evaluation focuses on long-term trends, seasonal variations, and statistical metrics across various
time scales, from daily to decadal. The results underscore both the strengths and limitations of the Baltic + SEAL product in capturing spatial and temporal variations in sea levels. This study contributes valuable insights into sea level change dynamics along the Polish coast, providing essential information for coastal monitoring, management, and
future research in the Baltic Sea region.
References
Abdalla, S., Kolahchi, A.A., Ablain, M., Adusumilli, S., Bhowmick, S.A., et al.
[International Altimetry Team], 2021.
Altimetry for the future: Building on
25 years of progress. Adv. Space Res. 68, 319–363.
https://doi.org/10.1016/j.asr.2021.01.022
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais,
J.-F., Faugère, Y., Delepoulle,A., Chelton, D., Dibarboure, G., Picot, N.,
2019.
On the resolutions of ocean altimetry maps. Ocean Sci. 15,
1091–1109.
https://doi.org/10.5194/os-15-1091-2019
Benveniste, J., Cazenave, A., Vignudelli, S., Fenoglio-Marc, L., Shah, R.,
Almar, R., Andersen, O., Birol, F., Bonnefond, P., Bouffard, J., Calafat, F.,
Cardellach, E., Cipollini, P., Le Cozannet, G., Dufau, C., Fernandes, M.J.,
Frappart, F., Garrison, J., Gommenginger, C., Han, G., Høyer, J. L.,
Kourafalou, V., Leuliette, E., Li, Z., Loisel, H., Madsen, K.S., Marcos, M.,
Melet, A., Meyssignac, B., Pascual, A., Passaro, M., Ribó, S., Scharroo, R.,
Song, Y.T., Speich, S., Wilkin, J., Woodworth, P., Wöppelmann G., 2019.
Requirements for a Coastal Hazards Observing System. Front. Mar. Sci.
6.
https://doi.org/10.3389/fmars.2019.00348
Bugajny, N., Furmańczyk, K., Furmańczyk, K., 2024
. Statistics of
significant storm events using one- and two- dimensional analyses of the
natural and protected coasts of the Dziwnów Spit. Est. Coast. Shelf Sci.,
306, 108881.
https://doi.org/10.1016/j.ecss.2024.108881
Grinsted, A., Jevrejeva, S., Riva, R., Dahl-Jensen, D., 2015.
Sea level
rise projections for Northern Europe under RCP8.5. Clim. Res. Online
64(1), 15–23.
https://doi.org/10.3354/cr01309
IPCC, 2022. Annex IV: Contributors to the Working Group II Contribution to the
IPCC Sixth Assessment Report, 2023. In: Pörtner, H.-O., Roberts, D.C.,
Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegrı́a, A., Craig, M.,
Langsdorf, S., Löschke, S., Möller, V., Okem, A., Rama, B. (Eds.),
Climate Change 2022: Impacts, Adaptation and Vulnerability. Cambridge
Univ. Press, New York, 2939–2963.
https://doi.org/10.1017/9781009325844.031
Kapsi, I., Kall, T., Liibusk, A., 2023.
Sea Level Rise and Future
Projections in the Baltic Sea. J. Mar. Sci. Eng. 11, 1514.
https://doi.org/10.3390/jmse11081514
Karimi, A.A., Bagherbandi, M., Horemuz, M., 2021.
Multidecadal sea level
variability in the Baltic Sea and its impact on acceleration estimations.
Front. Mar. Sci. 8, 702512.
https://doi.org/10.3389/fmars.2021.702512
Kowalczyk, K., Pajak, K., Wieczorek, B., Naumowicz, B., 2021.
An Analysis
of Vertical Crustal Movements along the European Coast from Satellite
Altimetry, Tide Gauge, GNSS and Radar Interferometry. Remote Sens. 13
(11), 2173.
https://doi.org/10.3390/rs13112173
Leppäranta, M., Myrberg, K., 2009.
Physical oceanography of the Baltic
Sea. 1st edn., Springer, Berlin, Heidelberg, 401 pp.
https://doi.org/10.1007/978-3-540-79703-6
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G.,
Aarninkhof, S., 2018.
The State of the World’s Beaches. Scient. Rep.
8, 6641.
https://doi.org/10.1038/s41598-018-24630-6
Lyard, F.H., Allain, D.J., Cancet, M., Carrère, L., Picot, N., 2021.
FES2014 global ocean tide atlas: design and performance. Ocean Sci.
17, 615–649.
https://doi.org/10.5194/os-17-615-20
Madsen, K.S., Høyer, J.L., Suursaar, Ü., She, J., Knudsen, P., 2019.
Sea
Level Trends and Variability of the Baltic Sea From 2D Statistical
Reconstruction and Altimetry. Front. Earth Sci. 7, 67.
https://doi.org/10.3389/feart.2019.00243
Mostafavi, M., Ellmann, A., Delpeche-Ellmann, N., 2024.
Long-Term and
Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite
Altimetry. Remote Sens. 16(5), 760.
https://doi.org/10.3390/rs16050760
Müller, F., Passaro, M., Dettmering, D., 2020. Baltic + SEAL (Sea Level):
Algorithm Theoretical Baseline Document (ATBD), Version 2.1.
Technical
report delivered under the Baltic + SEAL project. Technische Universität
München, 20 pp.
https://doi.org/10.5270/esa.BalticSEAL.ATBDV2.1
Musielak, S., Furmańczyk, K., Bugajny, N., 2017.
Factors and processes
forming the Polish Southern Baltic Sea coast on various temporal and spatial
scales. In: Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline
Changes of the Baltic Sea From South to East, Past and Future Projection.
Coast. Res. Libr. vol. 19, Springer, 69–85.
Oelsmann, J., Passaro, M., Dettmering, D., et al., 2021.
The zone of
influence: matching sea level variability from coastal altimetry and tide
gauges for vertical land motion estimation. Ocean Sci. 17(1).
https://doi.org/10.5194/os-17-35-2021.
Oelsmann, J., Marcos, M., Passaro, M., et al., 2024.
Regional variations in
relative sea-level changes influenced by nonlinear vertical land motion.
Nat. Geosci. 17, 137–144.
https://doi.org/10.1038/s41561-023-01357-2
Pająk, K., Kowalczyk, K., 2019.
A comparison of seasonal variations of sea
level in the southern Baltic Sea from altimetry and tide gauge data.
Advan. Space Res. 63(5), 1768–1780.
https://doi.org/10.1016/j.asr.2018.11.022
Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G.D., Snaith, H.M., 2014.
ALES: A multimission adaptive subwaveform retracker for coastal and open
ocean altimetry. Remote Sens. Environ. 145, 173–189.
Passaro, M., Müller, F., Dettmering, D., Abulaitjiang, A., Rautiainen, L.,
Scarrott, R.G., Chalençon, E., Sweeney, M., 2021a.
Baltic + SEAL (Sea
Level): Product Handbook, Version 1.1. Report delivered under the Baltic + SEAL
project (ESA Contract: 4000126590/19/I/BG). Technische Universität
München, 58 pp.
Passaro, M., Müller, F.L., Oelsmann, J., Rautiainen, L., Dettmering, D.,
Hart-Davis, M.G., Abulaitijiang, A., Andersen, O.B., Høyer, J.L., Madsen,
K.S., Ringgaard, I.M., Särkkä, J., Scarrott, R., Schwatke, C., Seitz, F.,
Tuomi, L., Restano, M., Benveniste, J., 2021b.
Absolute Baltic Sea Level
Trends in the Satellite Altimetry Era: A Revisit. Front. Mar. Sci. 8,
647607.
https://doi.org/10.3389/fmars.2021.647607
Passaro, M., Restano, M., Sabatino, G., Orru, C., Benveniste, J., 2020.
The
ALES + SAR Service for Cryosat-2 and Sentinel-3 at ESA GPOD. OSTST 2020.
https://meetings.aviso.altimetry.fr/index.html
Passaro, M., Rose, S.K., Andersen, O.B., Boergens, E., Calafat, F.M.,
Dettmering, D., Benveniste, J., 2018.
ALES+: Adapt ing a homogenous ocean
retracker for satellite altimetry to sea ice leads, coastal and inland
waters. Remote Sens. Environ. 211, 456–471.
https://doi.org/10.1016/j.rse.2018.02.07
Rautiainen, L., Särkkä, J., Tuomi, L., Müller, F., Passaro, M., 2020.
Baltic + SEAL: Validation Report, Version 2.2.
Technical report delivered
under the Baltic + SEAL project. Technische Universität München, 36
pp
.
https://doi.org/10.5270/esa.BalticSEAL.VRV2.2
Pujol, I., 2023.
Product User Manual For Sea Level Altimeter products.
Issue 9.0, 2024/11.
https://documentation.marine.copernicus.eu/PUM/CMEMS-SL-PUM-008-032-068.pdf
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M.,
Picot, N., 2016.
DUACS DT2014: the new multimission altimeter data set
reprocessed over 20 years. Ocean Sci. 12, 1067–1090.
https://doi.org/10.5194/os-12-1067-2016
Ruiz Etcheverry, L.A., Saraceno, M., Piola, A.R., Valladeau, G.,. Möller,
O.O., 2015.
A comparison of the annual cycle of sea level in coastal areas
from gridded satellite altimetry and tide gauges. Cont. Shelf Res. 92,
87–97.
https://doi.org/10.1016/j.csr.2014.10.006
Stramska, M., 2013.
Temporal variability of the Baltic Sea level based on
satellite observations. Estuar. Coast. Shelf Sci. 133, 244–250.
https://doi.org/10.1016/j.ecss.2013.09.002
Stramska, M., Chudziak, N., 2013.
Recent multiyear trends in the Baltic Sea
level. Oceanologia 55 (2), 319–337.
https://doi.org/10.5697/oc.55-2.319
Taburet, G., Pujol, M., SL-TAC team, 2024.
Quality Information Document for
Sea Level TAC DUACS Products. Copernicus Marine service,
CMEMS-SL-QUID-008-032-068, Issue 110, 11 pp.
Uścinowicz, G., Uścinowicz, S., Szarafin, T., Maszloch, E., Wirkus, K.,
2024
. Rapid coastal erosion, its dynamics and cause – An erosional hot
spot on the southern Baltic Sea coast, Oceanologia 66 (2), 250–266.
https://doi.org/10.1016/j.oceano.2023.12.002
Weidemann, H., 2014.
Klimatologie der Ostseewasserstände: Eine
Rekonstruktion von 1948 bis 2011. Universität Hamburg, Hamburg, 132 pp.
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt,
A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021.
Sea level dynamics and coastal erosion in the Baltic Sea region. Earth
Syst. Dynam. 12, 871–898.
https://doi.org/10.5194/esd-12-871-2021
Wolski, T., Wiśniewski, B., 2020.
Geographical diversity in the
occurrence of extreme sea levels on the coasts of the Baltic Sea. J. Sea
Res. 159, 101890.
https://doi.org/10.1016/j.seares.2020.101890
Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H.,
Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaitė, Ž., 2014
.
Extreme sea levels at selected stations on the Baltic Sea coast.
Oceanologia 56 (2), 259–290.
https://doi.org/10.5697/oc.56-2.259
Vestøl, O., Ågren, J., Steffen, H., Kierulf, H., Tarasov, L., 2019.
NKG2016LU: a new land uplift model for Fennoscandia and the Baltic
Region. J Geod. 93, 1759–1779.
https://doi.org/10.1007/s00190-019-01280-8
Zalewska, T., Wilman, B., Łapeta, B., Marosz, M., Biernacik, D., Wochna, A.,
Saniewski, M., Grajewska, A., Iwaniak, M., 2023.
Seawater Temperature
Changes in the Southern Baltic Sea (1959–2019) Forced by Climate Change.
Oceanologia 66 (1), 37–55.
https://doi.org/10.1016/j.oceano.2023.08.001.
Zaucha, J., Matczak, M., 2015.
Studium uwarunkowań zagospodarowania
przestrzennego polskich obszarów morskich wraz z analizami
przestrzennymi. Instytut Morski w Gdańsku, Gdańsk, 356 pp.
Hydroacoustic technique for determination of the
orientation of aggregated Baltic herring
Oceanologia, 67 (2)/2025, 67203, 20 pp.
https://doi.org/10.5697/KAOE6308
Aleksander Żytko1,*, Natalia Gorska1,*, Dezhang Chu2, Beata Schmidt3,*
1Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: azytko@iopan.pl (A. Żytko), gorska@iopan.pl (N. Gorska)
2NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
3National Marine Fisheries Research Institute, ul. Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: bschmidt@mir.gdynia.pl (B. Schmidt)
*corresponding author
Keywords: Target Strength; Modified resonance scattering model; Fish orientation; Baltic herring
Received: 23 February 2024; revised: 4 December 2024; accepted: 24 February 2025.
Highlights
- Development of a modified resonance scattering model for backscattering by Baltic herring.
- An unimodal fish orientation distribution may result in their bimodal Target Strength distribution.
- Development of a new method to estimate the orientation distribution of aggregated Baltic herring.
Abstract
The distribution of fish orientation is a very important factor influencing their Target Strength (TS𝑆), and thus the hydroacoustic assessment of fish abundance. A technique has been developed to estimate the orientation distribution of aggregated Baltic herring (Clupea harengus) by fitting the TS histograms obtained from the theoretical backscattering model to the measured𝑇TS histograms. By using available morphometry data of Baltic herring, a modified resonance scattering model to describe the backscattering by Baltic herring has been developed. Using this model, TS histograms were generated for different probability density functions (PDFs) of fish orientation, and then compared with the measured histograms. Based on the best fit to the measured histograms, the most likely distribution of herring orientation can be inferred.
References
Alexander, C.K., 2013.
Fundamentals of electric circuits. McGraw-Hill.
Andreeva, I.B., 1964.
Scattering of sound by air bladders of fish in deep
sound-scattering ocean layers. Sov. Phys. Acoust. 10, 17–20.
Beltestad, A.K. 1973.
Feeding behavior and vertical migration in 0-group
herring (Clupea harengus) in relation to light intensity. Cand. Real.
thesis, Univ. Bergen (in Norwegian).
Blaxter, J.H.S., Batty, R.S., 1990.
Swimbladder “behaviour” and target
strength. Rap. Proces. 189, 233–244.
Blaxter, J.H.S., Hunter, J.R., 1982.
The biology of the clupeoid
fishes. Adv. Mar. Biol. 20, 1–223.
https://doi.org/10.1016/S0065-2881(08)60140-6
Boyar, H.C., 1961.
Swimming Speed of Immature Atlantic Herring with
Reference to the Passamaquoddy Tidal Project. T. Am. Fish. Soc. 90,
21–26.
https://doi.org/10.1577/1548-8659(1961)90[21:SSOIAH]2.0.CO;2
Burwen, D., Nealson, P., Fleischman, S., Mulligan, T., Horne J., 2007.
The
complexity of narrowband echo envelopes as a function of side-aspect
angle. ICES J. Mar. Sci. 64, 1066–1074.
https://doi.org/10.1093/icesjms/fsm074
Cardinale, M., Arrhenius, F., 2000.
Decreasing weight-at-age of Atlantic
herring (Clupea harengus) from the Baltic Sea between 1986 and 1996: a
statistical analysis. ICES J. Mar. Sci. 57, 882–893.
https://doi.org/10.1139/f00-221
Casini, M., Kornilovs, G., Cardinale, M., Möllmann, C., Grygiel, W., Jonsson,
P., Raid, T., Flinkman, J., Feldman, V., 2011.
Spatial and temporal density
dependence regulates the condition of central Baltic Sea clupeids: compelling
evidence using an extensive international acoustic survey. Popul. Ecol.
53, 511–523.
https://doi.org/10.1007/s10144-011-0269-2
Chapman, R., 2006.
A sea water equation of state calculator. APL Ocean
Remote Sensing. http://fermi.jhuapl.edu/denscalc.html
Chu, D., Foote, K., Stanton T., 1993.
Further analysis of target strength
measurements of Antarctic krill at 38 and 120 khz: Comparison with deformed
cylinder model and inference of orientation distribution. J. Acoust. Soc.
Am. 93 (5), 2985–2988.
https://doi.org/10.1121/1.405818
Didrikas, T., 2005.
Estimation of in situ target strength of the Baltic Sea
herring and sprat. Department of Systems Ecology. Stockholm University, 1
(5).
Didrikas, T., Hansson, S., 2004.
In situ target strength of the Baltic Sea
herring and sprat. ICES J. Mar. Sci. 61 (3), 378–382.
https://doi.org/10.1016/j.icesjms.2003.08.003
Edwards, J.I., Armstrong, F., Magurran, A.E., Pitcher, T.J., 1984.
Herring,
mackerel and sprat target strength experiments with behavioural
observations. ICES CM / B, 34.
Fässler, S.M.M., 2010.
Target strength variability in Atlantic herring
(Clupea harengus) and its effect on acoustic abundance estimates. PhD
thesis, University of St. Andrews.
https://doi.org/10.13140/2.1.1883.4247
Fässler, S.M.M., Gorska, N., 2009.
On the target strength of Baltic
clupeids. ICES J. Mar. Sci. 66, 1184–1190.
https://doi.org/10.1093/icesjms/fsp005
Fässler, S.M.M., Gorska, N., Ona, E., 2007.
Differences in swimbladder
volume between Baltic and Norwegian spring spawning herring: possible
consequences for mean target strength. ICES CM 2007/H, 3.
https://doi.org/10.1016/j.fishres.2008.01.013
Fässler, S.M.M., Gorska, N., Ona, E., Fernandes, P.G., 2008.
Differences
in swimbladder volume between Baltic and Norwegian spring-spawning herring:
Consequences for mean target strength. Fish. Res. 92, 314–321.
https://doi.org/10.1016/j.fishres.2008.01.013
Fofonoff, N.P., Millard Jr, R.C., 1983.
Algorithms for the computation of
fundamental properties of seawater. UN-ESCO Publ., Paris.
https://doi.org/10.25607/OBP-1450
Foote K.G., Francis D.T.I., 2002.
Comparing Kirchhoff-approximation and
boundary-element models for computing gadoid target strengths. J. Acoust.
Soc. Am. 111, 1644–1654.
https://doi.org/10.1121/1.1458939
Francis, D.T.I., 1993.
A gradient formulation of the Helmholtz integral
eąuation for acoustic radiation and scattering. J. Acoust. Soc. Am., 93,
1700–1709.
https://doi.org/10.1121/1.406735
Francis, D.T.I., Foote, K.G., 2003.
Depth-dependent target strengths of
gadoids by the boundary-element method. J. Acoust. Soc. Am. 114,
3136–3146. h
ttps://doi.org/10.1121/1.1619982.
Fréon, P., Misund, O.A., 1999.
Dynamics of pelagic fish distribution and
behaviour: effects on fisheries and stock assessment. Vol. 348, Fishing
News Books, Oxford. Gaunaurd, G.C., 1985. Sonar cross sections of bodies
partially insonified by finite sound beams. IEEE J. Ocean. Eng. 10, 213–230.
https://doi.org/10.1109/JOE.1985.1145097
Gorska, N., 2007.
On target strength of Baltic herring. ICES CM 2007/H
07, 17–21.
Gorska, N., Idczak, J., 2010.
On the acoustic backscattering by Baltic
herring and sprat. Hydroacoustics 13, 89–100.
http://pta.eti.pg.gda.pl/journal/paper.py?id=469
Gorska, N., Idczak, J., 2021.
On Baltic herring morphometry and its impact
on the backscattering properties. Oceanologia, 64 (1), 198–211.
https://doi.org/10.1016/j.oceano.2021.10.001
Gorska, N., Ona, E., 2003.
Modelling the acoustic effect of swimbladder
compression in herring. ICES J. Mar. Sci. 60, 548–554.
https://doi.org/10.1016/S1054-3139(03)00050-X
Grelowska, G., 2000.
Prevailing patterns of the sound speed distributions
in the environment of the Southern Baltic. Arch. Acoust. 25 (3).
Grygiel, W., Łączkowski, T., Podolska, M., Wodzinowski, T., 2011.
Research report from the Baltic International Acoustic Survey (BIAS) on
board of the Polish r.v. Baltica (20.09–08.10.2010). Working paper on
the WGBIFS meeting in Kaliningrad (Russia), 21–25.03.2011. [in:] ICES CM
2011/SSGESST:05, REF. SCICOM, WGISUR, ACOM; Annex 9; 396–429.
Grygiel, W., Wyszyński, M., 2003.
Temporal (1980–2001) and geographic
variation in the sexual maturity at age and length of herring and sprat
inhabiting the southern Baltic. Bull. Nat. Mar. Fish. Res. Inst. 159 (2),
3–34.
Hjellvik, V., Handegard, N.O., Ona, E., 2008.
Correcting for vessel
avoidance in acoustic-abundance estimates for herring. ICES J. Mar. Sci.
65 (6), 1036–1045. h
ttps://doi.org/10.1093/icesjms/fsn082
Holliday, D.V., 1972.
Resonance structure in echoes from schooled pelagic
fish. J. Acoust. Soc. Am. 51, 1322–1332.
https://doi.org/10.1121/1.1912978
Hornborg, S., 2023.
Follow the herring–A case study on the interplay
between management and markets for marine resource utilization. Mar.
Policy 158, 105874.
https://doi.org/10.1016/j.marpol.2023.105874
Huse, I., Korneliussen, R., 2000.
Diel variation in acoustic density
measurements of overwintering herring (Clupea harengus L.). ICES J. Mar.
Sci. 57 (4), 903–910.
https://doi.org/10.1006/jmsc.2000.0577
Huse, I., Ona, E., 1996.
Tilt angle distribution and swimming speed of
overwintering Norwegian spring spawning herring. ICES J. Mar. Sci. 53 (5),
863–873.
https://doi.org/10.1006/jmsc.1996.9999
ICES, 2017.
Manual for the International Baltic Acoustic Surveys
(IBAS). Ser. ICES Survey Protocols SISP 8 – IBAS, Version 2.0, 47.
http://www.ices.dk/sites/pub/Publication%20Reports/ICES%20Survey%20Protocols%20%28SISP%29
/2017/SISP%208%20IBAS%202017.pdf
Idczak, J., Gorska, N., 2016.
Modelling of acoustic backscattering by
southern Baltic herring. Hydroacoustics 19, 145–152.
http://pta.eti.pg.gda.pl/journal/paper.py?id=639
Idczak, J., Kniaź-Kubacka, N., 2012.
Backscattering properties of
southern Baltic herring. Hydroacoustics 15, 57–64.
http://pta.eti.pg.gda.pl/journal/paper.py?id=531
Jaffe, J.S., Roberts, P.L., 2011.
Estimating fish orientation from
broadband, limited-angle, multiview, acoustic reflections. J. Acoust. Soc.
Am. 129 (2), 670–680.
https://doi.org/10.1121/1.3523430
Jech, J.M., Horne, J.K., Chu, D., Demer, D.A., Francis, D.T.I., Gorska, N.,
Jones, B., Lavery, A.C., Stanton, T.K., Macaulay, G.J., Reeder, D.B., Sawada,
K., 2015.
Comparisons among ten models of acoustic backscattering used in
aquatic ecosystem research. J. Acoust. Soc. Am. 138, 3742–3764.
https://doi.org/10.1121/1.4937607
Kasatkina, S., 2007.
Target strength of Baltic herring and sprat in
relation to changes of their biological characteristics: effects on acoustic
abundance indices estimates. ICES CM /H, 06.
https://doi.org/10.17895/ices.pub.25257874.v2
Kasatkina, S.M., 2009.
The influence of uncertainty in target strength on
abundance indices based on acoustic surveys: examples of the Baltic Sea herring
and sprat. ICES J. Mar. Sci. 66, 1404–1409.
https://doi.org/10.1093/icesjms/fsp086
Kloser, R., Ryan, T., Sakov, P., Williams, A., Koslow, J.A., 2002.
Species
identification in deep water using multiple acoustic frequencies. Can. J.
Fish. Aquat. Sci. 59, 1065–1077.
Kulmala, S., Peltomäki, H., Lindroos, M., Söderkultalahti, P., Kuikka, S.,
2007.
Individual transferable quotas in the Baltic Sea herring fishery: a
socio-bioeconomic analysis. Fish. Res. 84 (3), 368–377.
https://doi.org/10.1016/j.fishres.2006.11.029
Lassen, H., Stæhr, K.J., 1985.
Target strength of Baltic herring and sprat
measured in-situ. ICES CM. B 41, 1–14.
Levine, I.N., 1978.
Physical Chemistry. University of Brooklyn,
McGraw-Hill.
Love, R.H., 1978.
Resonant acoustic scattering by swim-bladder-bearing
fish. J. Acoust. Soc. Am. 64 (2), 571–580.
https://doi.org/10.1121/1.382009
MacLennan, D.N., Fernandes, P.G., Dalen, J., 2002.
A consistent approach to
definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59,
365–369.
https://doi.org/10.1006/jmsc.2001.1158
Medwin, H., Clay, C.S., 1998.
Fundamentals of acoustical oceanography.
Acad. Press, New York, USA.
Mitson, R.B., (ed.) 1995.
Underwater Noise of Research Vessels: Review and
Recommendations. ICES Cooperative Res. Rep., 209 pp.
Mitson, R.B., Knudsen, H.P., 2003.
Causes and effects of underwater noise
on fish abundance estimation. Aquat. Living Resour. 16 (3), 255–263.
https://doi.org/10.1016/S0990-7440(03)00021-4
Nakken, O., Olsen, K., 1977.
Target strength measurements of fish.
Rap. Proces. 170, 52–69.
Nero, R.W., Thompson, C.H., Jech, J.M., 2004.
In situ acoustic estimates of
the swimbladder volume of Atlantic herring (Clupea harengus). ICES J. Mar.
Sci. 61, 323–337.
Nøttestad, L., 1998.
Extensive gas bubble release in Norwegian spring
spawning herring (Clupea harengus) during predator avoidance. ICES J. Mar.
Sci. 55 1133–1140.
https://doi.org/10.1006/jmsc.1998.0416
Ojaveer, E., 1988.
Baltic Herrings. Biology and Management.
Agropromizdat, Moscow, Russia, 204 pp.
Olsen, K., Angell, J., Pettersen, F., Løvik, A., 1983.
Observed fish
reactions to a surveying vessel with special reference to herring, cod, capelin
and polar cod. FAO Fish. 300, 131–138.
Ona, E., 1984.
Tilt angle measurements on herring. ICES C.M. 1984/B,
19.
Ona, E., 1990.
Physiological factors causing natural variations in acoustic
target strength of fish. J. Mar. Biol. Assoc. UK 70, 107–127.
Ona, E., 2001.
Herring tilt angles, measured through target tracking.
[in:] Herring: Expectations for a New Millennium, 509–519.
Ona, E., Godø, O.R., Handegard, N.O., Hjellvik, V., Patel, R., Pedersen, G.,
2007.
Silent research vessels are not quiet. J. Acoust. Soc. Am. 121,
145–150.
https://doi.org/10.1121/1.2710741
Pele, O., Werman, M., 2010.
The quadratic-chi histogram distance
family. [in:] Computer Vision–ECCV 2010: 11th European Conference on
Computer Vision, Heraklion, Crete, Greece, September 5–11, 2010 Proceedings,
Part II, Springer, Berlin, Heidelberg, 749–762.
Peltonen, H., Balk, H., 2005.
The acoustic target strength of herring
(Clupea harengus L.) in the northern Baltic Sea. ICES J. Mar. Sci. 62,
803–808.
https://doi.org/10.1016/j.icesjms.2005.02.001
Rudstam, L.G., Hansson, S., Lindem, T., Einhouse, D.W., 1999.
Comparison of
target strength distributions and fish densities obtained with split- and
single-beam echosounders. Fish. Res. 42, 207–214.
https://doi.org/10.1016/S0165-7836(99)00047-8
Rudstam, L., Lindem, T., Hansson, S., 1988.
Density and in situ target
strength of herring and sprat: a comparison between two methods of analyzing
single beam sonar data, Fish. Res. 6, 305–315.
https://doi.org/10.1016/0165-7836(88)90001-X
Sawada, K., Furusawa, M., Williamson, N.J., 1993.
Conditions for the
precise measurement of fish target strength in situ. J. Mar. Acoust. Soc.
Jpn. 20 (2), 73–79.
https://doi.org/10.3135/jmasj.20.73
Sawicki, T., Juszczak, M., Szymczak, M., 2019.
Ichthyology and economic
importance of baltic herring in polish fish industry. Folia Pomeranae
Universitatis Technologiae Stetinensis. Agricultura, Alimentaria, Piscaria et
Zootechnica 348(49)1, 131–144.
https://doi.org/10.21005/AAPZ2019.49.1.14
Scoulding, B., Chu, D., Ona, E., Fernandes, P.G., 2015.
Target strengths of
two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137 (2),
989–1000.
https://doi.org/10.1121/1.4906177
Scoulding, B., Gastauer, S., MacLennan, D.N., Fässler, S.M., Copland, P.,
Fernandes, P.G., 2017.
Effects of variable mean target strength on
estimates of abundance: the case of Atlantic mackerel (Scomber scombrus).
ICES J. Mar. Sci. 74 (3), 822–831.
https://doi.org/10.1093/icesjms/fsw212
Scoulding, B., Chu, D., Ona, E., Fernandes, P.G. 2022.
Erratum: Target
strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am.
151, 3398.
https://doi.org/10.1121/10.0011465
Simmonds, J., MacLennan, D.N., 2005.
Fisheries Acoustics: Theory and
Practice. 2nd Edn., Blackwell Publ., London.
Schmidt, B., Gorska, N., Szczucka, J., 2011.
Target strength relationship
for herring and sprat in the southern Baltic Sea. ICES 1129 Annual Science
Conference, Gdańsk, Poland, 19–23 September, 2011, ICES Council Meeting
2011/R:15.
Stanton, T.K., 1988a.
Sound scattering by cylinders of finite length. I.
Fluid cylinders. J. Acoust. Soc. Am. 83, 55–63.
https://doi.org/10.1121/1.396184
Stanton, T.K., 1988b.
Sound scattering by cylinders of finite length. II.
Elastic cylinders. J. Acoust. Soc. Am. 83, 64–67.
https://doi.org/10.1121/1.396185
Stanton, T.K., 1989.
Sound scattering by cylinders of finite length. III.
Deformed cylinders. J. Acoust. Soc. Am. 86, 691–705.
https://doi.org/10.1121/1.398193
Stanton, T.K., Reeder, D.B., Jech, J.M. 2003.
Inferring fish orientation
from broadband-acoustic echoes. ICES J. Mar. Sci. 60 (3), 524–531. h
ttps://doi.org/10.1016/S1054-3139(03)00032-8
Teacher, A.G., André, C., Jonsson, P.R., Merilä, J., 2013
.
Oceanographic connectivity and environmental correlates of genetic structuring
in Atlantic herring in the Baltic Sea. Evol. Appl. 6 (3), 549–567.
https://doi.org/10.1111/eva.12042
Thorne, R.E., Thomas, G.L., 1990.
Acoustic observations of gas bubble
release by Pacific herring (Clupea harengus pallasi). Can. J. Fish. Aquat.
Sci. 47, 1920–1928.
https://doi.org/10.1139/f90-216
Martin Traykovski, L.V., O’Driscoll, R.L., McGehee, D.E., 1998.
Effect of
orientation on broadband acoustic scattering of Antarctic krill Euphausia
superba: Implications for inverting zooplankton spectral acoustic signatures
for angle of orientation. J. Acoust. Soc. Am. 104 (4), 2121–2135.
Vabø, R., Olsen, K., Huse, I., 2002.
The effect of vessel avoidance of
wintering Norwegian spring spawning herring. Fish. Res. 58, 59–77.
https://doi.org/10.1016/S0165-7836(01)00360-5
Von Dorrien, C., Hammer, C., Zimmermann, C., Stepputtis, D., Stuermer, I.W.,
Kotterba, P., Polte, P., 2013.
A review on herring, Clupea harengus
(Actinopterygii: Clupeiformes: Clupeidae) recruitment and early life stage
ecology in the western Baltic Sea. Acta Ichthyol. Piscat. 43, 169–182.
Wyszyński, M., 1997.
Charakterystyka biologiczno-technologiczna śledzia
południowego Bałtyku, Stud. Mat. Nat. Mar. Fish. Inst. Gdynia, Poland,
Ser. B 69, 94–123.
Ye, Z., 1997.
Low-frequency acoustic scattering by gas-filled prolate
spheroids in liquids. J. Acoust. Soc. Am. 101 (4), 1945–1952.
https://doi.org/10.1121/1.418225
Zampolli, M., Tesei, A., Jensen, F., Malm, N., Blottman, J., 2007.
A
computationally efficient finite element model with perfectly matched layers
applied to scattering from axially symmetric objects. J. Acoust. Soc. Am.
122, 1472–1485.
https://doi.org/10.1121/1.2764471
Żytko A., 2021.
Measurements and determination of fish orientation:
Review of different methods. [in:] Mieloszyk, M., Sagan, S., Ochrymiuk, T.
(Eds.), Selected problems in Earth and related environmental sciences. Monogr.
PAN, Wydawnictwo Instytutu Maszyn Przepływowych PAN.
Thornthwaite method based climate classifying and generation of GIS based climate boundary maps: a case of Kozlu District on the Western Black Sea coast of Turkey
Oceanologia, 67 (2)/2025, 67204, 17 pp.
https://doi.org/10.5607/MSGL7170
Hulya Keskin Citiroglu1, Deniz Arca 2,*
1Directorate of Aydın Investment Monitoring and Coordination, Aydın YIKOB, Aydın, Turkey;
2Department of Architecture and Urban Planning, Izmir Vocational School, Dokuz Eylul University, Izmir, Turkey
e-mail: deniz.arca@deu.edu.t (D. Arca)
*corresponding author
Keywords: Black Sea coast; Thornthwaite method; Kriging interpolation method; GIS; Climate border map
Received: 17 May 2024; revised: 28 January 2025; accepted: 3 March 2025.
Highlights
- Climate classes and border maps are essential for addressing climate-related problems.
- Kozlu is situated on the Black Sea coast, where mining, fishing, sea tourism, and agriculture are prevalent.
-
Water balance and climate classes were found, and GIS-based climate border maps were created.
-
According to the summer concentration index, the entire Kozlu is dominated by a marine climate.
-
Climate boundary maps will contribute to monitoring climate change in the district.
Abstract
It is necessary to know the climatic conditions and classes in order to address a region’s climate-related problems and ensure its sustainability. Kozlu, located on the Black Sea coast in the Black Sea region of Turkey, is a district where underground mining, fishing, sea tourism and agricultural activities are conducted. The district faces challenges due to geo-environmental factors, including landslides, subsidence, and floods, necessitating the identification of climate classes and characteristics to support sustainable development. For this reason, data for the last thirty years from four
meteorological stations representing the Kozlu district were obtained. It was associated with the location, and then the Kriging interpolation method was applied. After this, water balances were calculated by applying the Thornthwaite climate classification method, and GIS-based climate boundary maps were generated using the same method. In the
climate classification made by the Thornthwaite method, it was observed that the humid climate characteristic was dominant throughout the district. The drought index indicates moderate summer water deficiency in the north and the south of the district. In the south of the district, it is characterized by little or no water deficiency. Considering
that the annual precipitation amounts at the stations located in the south of the district are higher than in the other areas, and the time interval in which water deficiency occurs is shorter, the fact that the climate feature of little or no
water deficiency is seen moving south in the study area shows that the results are quite compatible with each other. In addition, according to the results of the summer concentration index, the entire study area was observed to be dominated by a marine climate. Climate boundary maps consisting of precipitation efficiency, temperature efficiency, drought and summer concentration index maps will contribute to monitoring climate change in the district.
References
Aalto, J., Pirinen, P., Heikkinen, J., Venäläinen, A. 2013
. Spatial
interpolation of monthly climate data for Finland: comparing the performance of
kriging and generalized additive models. Theor. Appl. Climatol.
112(1–2), 99–111.
Akinci, H., 2022.
Assessment of rainfall-induced landslide susceptibility
in Artvin, Turkey using machine learning techniques. J. Afr. Earth Sci.
191, 104535.
https://doi.org/10.1016/j.jafrearsci.2022.104535
Arca, D., Keskin Citiroglu, H., 2022.
Geographical information
systems-based analysis of site selection for wind power plants in Kozlu
District (Zonguldak-NW Turkey) by multi-criteria decision analysis method.
Energy Sources Pt. A – Recovery Util. Environ. Eff. 44(4),
10720–10732.
https://doi.org/10.1080/15567036.2020.1834030
Arca, D., Keskin Citiroglu, H., 2024.
Determining climate classifications
and producing climate border maps with GIS of Muğla province on the southern
Aegean Sea coast of Türkiye. Theor. Appl. Climatol. 155(7), 5745–5757.
https://doi.org/10.1007/s00704-024-04954-2
Arca, D., Keskin Citiroglu, H., Kutoğlu, H.S., Mekik, C., Deguchi, T.,
2017.
Assessment of geo-environmental properties depressing urban
development with GIS: a case study of Kozlu settlement, Turkey. Nat.
Hazards 87(1), 307–322.
Arca, D., Kutoglu, S.H., Becek, K., 2018.
Landslide susceptibility mapping
in an area of underground mining using the multicriteria decision analysis
method. Environ. Monit. Assess. 190, 725.
https://doi.org/10.1007/s10661-018-7085-5
Arslan, O., 2021.
Ankara ili içme suyu kalite parametrelerinin coğrafi
bilgi sistemleri (CBS) ortamında farklı enterpolasyon yöntemleri
kullanılarak modellenmesi, (M.Sc. Thesis), Nevşehir Hacı Bektaş Veli
Üniv., Turkey.
Bajjali, W., 2017.
ArcGIS for environmental and water issues. Springer
Int. Publ., 353 pp.
Behera, S.K., Shukla, A.K., 2015.
Spatial distribution of surface soil
acidity, electrical conductivity, soil organic carbon content and exchangeable
potassium, calcium and magnesium in some cropped acid soils of India. Land
Degrad. Dev. 26 (9), 71–79.
Belda, M., Holtanová, E., Halenka, T., Kalvová, J., 2014
. Climate
classification revisited: From Köppen to Trewartha. Clim. Res. 59,
1–13.
http://dx.doi.org/10.3354/cr01204
Bidinger, F.R., 1979.
Transfer of agricultural technology. Develop.
Transfer Tech., p. 71.
Bieniek, P.A., Bhatt, U.S., Thoman RL. 2012.
Climate divisions for Alaska
based on objective methods. J. Appl. Meteor. Climatol. 51, 1276–1289.
Bolat, İ., Kara, Ö., Tok, E., 2018
. Global warming and climate change:
a practical study on Bartin, Zonguldak and Düzce. J. Bartin Facult.
Forestry (BAROFD) 20(1), 116–127.
https://doi.org/10.24011/barofd.374840
Bostan, P., 2017.
Basic Kriging methods in geostatistics. J. Agricult.
Sci. 27(1), 10–20 (Yüzüncü Yıl Univ.).
Boz, A.Ö., Dönmez, Y., Özyavuz, M., 202
0. Use of climate maps in
determining sustainable agriculture areas. J. Environ. Protec. Ecol.
21(3), 1062–1071.
Calda, B., An, N., Turp, M.T., Kurnaz, M.L., 2020.
Effects of climate
change on the wildfires in the Mediterranean Basin. Int. J. Adv. Eng. Pure
Sci. 1, 15–32.
https://dx.doi.org/10.7240/jeps.571001
Camargo, A.P. de., 1991.
Classificação climática para zonea- mento de
aptidão agroclimática. Rev. Brasil. Agrometeorol. 8, 126–131.
Carmin, J., Anguelovski, I., Roberts, D., 2012.
Urban climate adaptation in
the global south: planning in an emerging policy domain. J. Plan. Edu.
Res. 32(1), 18–32.
https://doi.org/10.1177/0739456X11430951
Can, E., Mekik, C., Kuscu, S., Akcin, H., 2011.
Subsidence occurring in
mining regions and a case study of Zonguldak-Kozlu Basin. Sci. Res.
Essays. 6(6), 1317–1327.
Climate Data, 2024.
Climate data for cities around the world. Climate Data.
https://tr.climate-data.org/
Colak, H. E., Memisoglu, T., 2021.
Thornthwaite iklim sınıflandırma
yöntemine göre Karadeniz Bölgesi iklim sınır haritasının CBS ile
üretilmesi. Geomatik 6(1), 31–43.
https://doi.org/10.29128/geomatik.651702
Coumou, D., Rahmstorf, S.A., 2012.
Decade of weather
extremes.Nat. Clim. Change 2(7),
491–49
Cui, D., Liang, S., Wang, D., 2021.
Observed and projected changes in
global climate zones based on Köppen climate classification. WIREs Clim.
Change 12:e701.
https://doi.org/10.1002/wcc.701
de Castro, M., Gallardo, C., Jylha, K., Tuomenvirta, H., 2007.
The use of a
climate-type classification for assessing climate change effects in Europe from
an ensemble of nine regional climate models. Clim. Chang. 81 (Suppl. 1),
329–341.
https://doi.org/10.1007/s10584-006-9224-1
de Oliveira Aparecido, L.E., de Meneses, K.C., Lorençone, P.A. et al., 2023.
Climate classification by Thornthwaite (1948) humidity index in future
scenarios for Maranhão State, Brazil. Environ. Dev. Sustain. 25,
855–878.
https://doi.org/10.1007/s10668-021-02082-9
Elguindi, N., Grundstein, A., Bernardes, S., Turuncoglu, U., Feddema, J., 2014.
Assessment of CMIP5 global model simulations and climate change projections
for the 21st century using a modified Thornthwaite climate classification.
Clim. Chang. 122, 523–538.
https://doi.org/10.1007/s10584-013-1020-0
Erinç, S., 1984.
Klimatoloji ve metodları. I.U. Publ. 3278, Deniz
Bilimleri ve Coğ. Enst. 2, Istanbul.
Flohn, H., 1950.
Neue Anschauungen über die allgemeine zirkulation der
atmosphareund ihre klimatische bedeutung. Erdkunde 4, 141–162.
Gallardo, C., Gil, V., Hagel, E., Tejeda, C., Castro, M., 2013.
Assessment
of climate change in Europe from an ensemble of regional climate models by the
use of Köppen–Trewartha classification. Int. J. Climatol. 33,
2157–2166.
Gariano, S.L., Guzzetti, F., 2016.
Landslides in a changing climate.
Earth-Sci. Rev. 162, 227–252.
Gregory, W.L., Duran, A., 2001.
Scenarios and acceptance of forecasts.
[in:] Principles of forecasting: a handbook for researchers and
practitioners. J. Scott Armstrong (ed.), Springer Sci., Business Media
Inc., New York.
Gürkan, H., Arabaci, H., Demircan, M., Eskioğlu, O., Şenso, S., Yazici,
B., 2016.
Temperature and precipitation projections based on GFDL-ESM2M
using RCP4.5 and RCP8.5 scenarios for Turkey. Coğrafi Bilimler Dergisi
CBD 14 (2), 77–88.
Holdridge, L.R., 1967.
Life zone ecology. Tropical Science Center, San Jose,
Costa Rica, 266 pp.
IPCC, 2013. Climate change 2013.
The Physical Science Basis. Working Group
I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge Univ. Press, England.
IPCC, 2000.
Special report on emissions scenarios. Cambridge
University Press, England. Işlem GIS., 2005. ArcGIS 9 uygulama dökümanı.
İşlem Coğrafi Bilgi Sistemleri Mühendislik ve Eğitim Ltd. Şti. Sinan
Ofset Matbaacılık, Ankara.
Jacobeit, J., 2010.
Classifications in climate research. Phys. Chem.
Earth 35, 411–421.
Jylhä, K., Tuomenvirta, H., Ruosteenoja, K., Niemi-Hugaerts, H., Keisu, K.,
Karhu, J.A., 2010.
Observed and projected future shifts of climatic zones
in Europe and their use to visualize climate change information. Weather
Climate Soc. 2, 148–167.
https://doi.org/10.1175/2010WCAS1010.1
Kazancı Altınok, G., 2022.
Kentsel büyüme dinamiklerinin iklim
değişikliği etkileri çerçevesinde yeniden irdelenmesi. Çevre Şehir
Ve İklim Dergisi 1(1), 174–198.
Keskin Citiroglu, H., 2024.
Determining climate classifications and
producing climate border maps with GIS of Safranbolu district, Karabük,
Türkiye. Environ. Monit. Assess. 196, 402.
https://doi.org/10.1007/s10661-024-12562-w
Keskin Çıtıroğlu, H., Arca, D., 2024.
Bartın ilinin iklim
sınıflarının belirlenmesi ve CBS tabanlı iklim sınır haritalarının
oluşturulması. Doğ. Afet. Çev. Derg. 10(2), 282–294.
https://doi.org/10.21324/dacd.1427198
Keskin Citiroglu, H., Baysal, G., 2011.
Effects of geological and
hydrological factors on the creation of flooding in Kozlu, Zonguldak, NW
Turkey. Int. J. Physic. Sci. 6(6), 1360–1373.
Koç, C., 2024.
Kentsel büyüme ve iklim değişikliğinin Yalova
örneğinde değerlendirilmesi. DÜFED 13, 11–44.
https://doi:10.55007/dufed.1246371
Kozlu District Governorship, 2024.
Kozlu.
http://www.kozlu.gov.tr/ilcemiz
Kozlu Municipality, 2024. Life in Kozlu. https://www.kozlu.bel.tr/kozluda-yasam
Köppen, W., Geiger, R., 1928. Klimate der Erde, Justus Perthes,
Gotha.
Krige, D.G., 1951. A statistical approach to some mine valuations and
Witwatersrand. Witwatersrand.
Lakshmi, R., Thomas, J., Joseph, S., 2024. Impacts of recent rainfall
changes on agricultural productivity and water resources within the Southern
Western Ghats of Kerala, India. Environ. Monit. Assess. 196, 115. https://doi.org/10.1007/s10661-023-12270-x
Mahlstein, I., Daniel, J.S., Solomon, S., 2013. Pace of shifts in climate
regions increases with global temperature. Nat. Clim. Chang. 3, 739–743.
MGM, 2024. Climate classification, Zonguldak. Ministry of Environment,
Urbanization and Climate Change, General Directorate of Meteorology. https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=ZONGULDAK
MGM, 2025. Klimatoloji-II. Ministry of Environment, Urbanization and
Climate Change, General Directorate of Meteorology. https://www.mgm.gov.tr/FILES/iklim/klimatoloji2.pdf
Orhan, O., Dadaser-Celik, F., Ekercin, S., 2019. Investigating land surface
temperature changes using Landsat-5 data and real-time infrared thermometer
measurements at Konya Closed Basin in Turkey. Int. J. Eng. Geosci. (IJEG)
4(1), 16–27. https://doi.org/10.26833/ijeg.417151
Özüpekçe, S., 2021. Drought analysis and relationship with water
resources of Western Mediterrenean Basins closed area. Int.J. Geogr. &
Geogr. Edu. IGGE 43, 317–337.
Rahimi, J., Ebrahimpour, M., Khalili, A., 2013. Spatial changes of extended
De Martonne climatic zones affected by climate change in Iran. Theor.
Appl. Climatol. 112, 409–418.
Rolim, G. de S., Paes, de Camargo M.B., Lania, D.G., Leite de Moraes, J.F.,
2007. Climatic classification of Köppen and Thornthwaite sistems and their
applicability in the determination of agroclimatic zonning for the state of
São Paulo, Brazil. Bragantia 66(4), 711–720.
Santos, C.N., Santos, A.A.R., Abreu, M.C. et al., 2024. Monthly potential
evapotranspiration estimated using the Thornthwaite method with gridded climate
datasets in Southeastern Brazil. Theor. Appl. Climatol. 155, 3739–3756.
https://doi.org/10.1007/s00704-024-04847-4
Schendel, U., 1968. Messungen mit grundwasser lysimeter über den
wasserverbrauch aus oberflachennahem grunwasser. Z. Grundwasser 9,
Kulturtechnik Flurbereich, Berlin//Hamburg, 314–326.
Schmidt, S., 2010. Kruskal–wallis test. [in:] Encyclopedia of
Research Design, 674–676. SAGE Publ. Inc. https://doi.org/10.4135/9781412961288
Shanmugam, M., Lim, S., Hosan, M.L., Shrestha, S., Babel, M. S., Virdis,
S.G.P., 2024. Lapse rate-adjusted bias correction for CMIP6 GCM
precipitation data: An application to the Monsoon Asia Region. Environ.
Monit. Assess. 196, 49. https://doi.org/10.1007/s10661-023-12187-5
Singh, P., Khan, I., 2011. Ground water quality assessment of Dhankawadi
ward of Pune by using GIS. Int. J. Geomatics Geosci. (IJGAGS), 688–703.
Spinoni, J., Vogt, J., Naumann, G., Carrao, H., Barbosa, P., 2014. Towards
identifying areas at climatological risk of desertification using the
Köppen–Geiger classification and FAO aridity index. Int. J. Climatol.
35, 2210–2222.
Taylan, E.D., Damçayırı, D., 2016. Isparta Bölgesi Yağış
değerlerinin IDW ve Kriging Enterpolasyon Yöntemleri ile tahmini. İMO
Teknik Dergi. 459.
Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2012. An overview of CMIP5
and the experiment design. Bull. Am. Meteorol. Soc. (BAMS) 93(4),
485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Thornthwaite, C.W., 1948. An approach toward a rational classification of
climate. Geogr. Rev. 38(1), 55–94.
TUIK, 2024. Address based population census. Türkiye İstatistik
Kurumu. https://www.tuik.gov.tr/
URL-1, 2024. Türkiye mülki idare haritaları. Coğrafya-Harita. http://cografyaharita.com/haritalarim/4l-zonguldak-ili-haritasi.png
Uyan, M., Cay, T., 2013. Spatial analyses of groundwater level differences
using geostatistical modeling. Environ. Ecol. Stat. 20(4), 633–646.
Üstüntaş, T., 2006. Sayısal arazi modellerinde bazı enterpolasyon
yöntemlerinin karşılaştırılması. Selçuk Univ. Tech., Voc. School
Tech. Sci. 5(2), 41–48 (online).
Valjarević, A., Milanović, M., Gultepe, I., Filipović, D., Lukić, T.,
2022. Updated Trewartha climate classification with four climate change
scenarios. Geogr. J. 188, 506–517. https://doi.org/10.1111/geoj.12458
Van Delden, H., Stuczynski, T., Ciaian, P., Paracchini, M.L., Hurkens, J.,
Lopatka, A., Shi, Yu-e., Prieto, O.G., Calvo, S., van Vliet, J., Vanhout, R.,
2010. Integrated assessment of agricultural policies with dynamic land use
change modelling. Ecol. Modell. 221(18), 2153–2166.
Yalcin, F., Arca, D., 2024. Investigation and comparison of climate
boundary maps generated with various climate classifications. [in:]
Interdisciplinary studies on contemporary research practices in engineering in
the 21st century, K. Kaygusuz (ed.), Gaziantep, Ozgur Press, 33–88.
Yaprak, S., Arslan, E., 2008. Kriging yöntemi ve geoit yüksekliklerinin
enterpolasyonu. Jeodezi, Jeeinformasyon ve Arazi Yönetimi Dergisi, JGG
1(98), 36–42.
Yılmaz, G., 2023. Kuraklık ve sıcak hava dalgasının tarımsal üretim
üzerine etkileri. Doğ. Afet. Çev. Derg. 9(2), 240–257. https://doi.org/10.21324/dacd.1220462
Coupling pattern of estuarine and surf zone longshore currents at tidal frequencies: Case study of S. E. coast of Nigeria
Oceanologia, 67 (2)/2025, 67205, 12 pp.
https://doi.org/10.5697/DMFV7237
Effiom E. Antia
Department of Physical Oceanography, Faculty of Oceanography, University of Calabar, PMB 1115 Calabar, Cross River State, Nigeria;
e-mail: e_antia@yahoo.co.uk (E. Antia)
Keywords: Longshore current; Estuarine flow; Surf zone; Tidal cycle; Nigerian coast
Received: Received: 6 June 2024; revised: 15 March 2025; accepted: 17 March 2025.
Highlights
- Flows in the estuary and adjoining surf zones are reversing at tidal frequencies.
- The hydrodynamic coupling is more significant during ebb than flood tidal stage.
-
Estuarine outflow is associated with surf zone flow divergence.
-
Decreased residual flow asymmetry coastwise reflects the weakening of estuary outflow.
-
Lunar tidal cycle forcing is expressed in the estuarine and surf zone hydrodynamics.
Abstract
Within the coastal flow-field system, the hydrodynamic coupling between the tidal channel and surf zone is among the most important, implicated in shoreline morphodynamics, river mouth bar dynamics, and the recreational quality of nearshore waters. The nature of the coupling has seldom been empirically evaluated at tidal frequencies spanning lunar cycles. This investigation is directed at filling this gap in information based on 50-day successive tidal cycle flow monitoring in an estuary–surf zone setting, S. E. coast of Nigeria. Results show a reversing flow pattern at all monitoring stations at tidal frequencies. The estuary indicated ebb-asymmetric tidal cycle residual flow velocities which at spring tide (30–38 cm/s range) act as an expanding jet relative to the flanking surf zone residual longshore current counterparts (typically ≤ 5 cm/s). The western and eastern flanking surf zones showed westward- and eastward-asymmetric tidal
cycle residual flows, respectively with coastwise decreasing asymmetry reflecting the weakening impact of the estuary outflow. Coupling of surf zone – estuarine residual flow vectors indicated a higher frequency of threshold coefficient (r ≥ 0.7) at ebb than at flood stage. The observed pattern of strong estuarine residual outflow velocities and modally divergent weak surf zone flows is a favourable condition for the estuary mouth bar development. However, the eastward-skewed bar configuration fits more to the effect of eastward-directed momentum flux associated with water mass transport of the obliquely-shoaling southwesterly waves given that breaking wave-generated longshore currents in the western surf zone display a westward-asymmetry over a tidal cycle.
References
Anthony, E. J., 2015.
Wave influence in the construction, shaping and
destruction of river deltas: a review. Mar. Geol. 361, 53–78.
https://doi.org/10.1016/j.margeo.2014.12.004
Antia E. E., 2024.
On reversal of wave-generated longshore currents at
tidal frequencies on dissipative beaches contiguous to a mesotidal
estuary, S. E coast of Nigeria. Mar. Geol. 477(5):107389.
https://doi.org/10.1016/j.margeo.2024.107389
Chao, S.–Y., 1990.
Tidal modulation of estuarine plumes. J. Phys.
Oceanogr. 20(7), 1115–1123.
Davis, R. A., Fox, W.T., 1981.
Interaction between waveand tide-generated
processes at the mouth of a microtidal estuary: Matanzas River, Florida
(USA). Mar. Geol. 40(1–2), 49–68.
https://doi.org/10.1016/0025-3227(81)90042-6
Dodet, G., Bertin, X., Bruneau, N., Fortuato, A. B., Nahon, A., Roland, A.,
2013.
Wave-current interactions in a wavedominated tidal inlet. J.
Geophys Res.-Oceans 118, 1597–1605.
https://doi.org/10.1002/jgrc.20146.2013
Finley, R. J., 1978.
Ebb-tidal delta morphology and sediment supply in
relation to seasonal wave energy flux, North Inlet, South Carolina. J.
Sediment. Res. 48 (1), 227–238.
https://doi.org/10.1306/212F743C-2B24-11D7-8648000102C1865D
FitzGerald, D. M., 1984.
Interactions between the ebb-tidal delta and
landward shoreline: Price Inlet, South Carolina. J. Sediment. Petrol.
54(4), 1303–1318.
Guillou N., Chapalain, G., 2012.
Effects of tide on waves in the outer
seine estuary and the harbor of Le Havre. Coast Eng. Proc. 1(33).
https://doi.org/10.9753/ice.v33.waves.47
Hansen, J. E., Elias, E., List, J. H., Erikson, L. H., Barnard, P. L., 2013.
Tidally influenced alongshore circulation at an inlet-adjacent
shoreline. Cont. Shelf Res. 56, 26–38.
Hayes, M. O., 1979.
Barrier island morphology as a function of tidal and
wave regime, [in:] Leatherman, S. P. (ed.), Barrier Islands from the Gulf
of St. Lawrence to the Gulf of Mexico. Acad. Press, New York, 1–27.
Hayes, M. O., 1980.
General morphology and sediment patterns in tidal
inlets. Sediment. Geol. 26, 139–156.
Hughes, S. A., 2002.
Estimating surface currents near coastal structure
using dye and drogues. EDC/CL CHETN-V1-37, U.S. Army Eng. Res. Dev. Ctr,
Vicksburg, MS. 14 pp.
http://chl.wes.army.mil/library/publications/chetn
Joshi, P. B., 1982.
Hydromechanics of tidal jets. J. Waterw, Port
C-ASCE 108(3), 239–253.
Oertel, G. F.,1975.
Ebb tidal deltas of Georgia estuaries, [in:]
Cronin, L. E. (ed.), Estuarine Research, Acad. Press, New York, San Francisco,
London, 267–276.
Olabarrieta, M., Geyer, R., Kumar. N., 2014.
The role of morphology and
wave-current interaction at tidal inlets: an idealized modeling analysis.
J. Geophys. Res.-Oceans 119(12), 8818–8837.
Ozsoy, E., Unluata, U., 1982.
Ebb-tidal flow characteristics near
inlets. Estuar. Coast Shelf Sci. 14(3), 251–263.
Rusu, L., Bernardino, M., Guedes, S. C., 2011.
Modelling the influence of
currents on wave propagation at the entrance of Tagus estuary. Ocean Eng.
38, 1174–1183.
Sha, L. P., van der Berg, J. H., 1993.
Variation in ebb-tidal delta
geometry along the coast of the Netherlands and the German Bight. J.
Coast. Res. 9, 730–746.
Todd, T. W., 1968.
Dynamic diversion: influence of longshore current-tidal
flow interaction on chernier and barrier island plains. J. Sediment.
Petrol. 38, 734–746.
Zainescu, F., Anthony, E. J., Vespremeanu-Stroe, A., 2021.
River jets
versus wave-driven longshore currents at river mouths. Front. Mar. Sci. 8, 708258.
https://doi.org/10.3389/fmars.2021.708258
Bering Sea climate dynamics forecast by novel multivariate natural hazard assessment method, utilizing self-deconvolution scheme
Oceanologia, 67 (2)/2025, 67206, 10 pp.
https://doi.org/10.5697/EUFR9367
Alia Ashraf1, Oleg Gaidai1,*, Jinlu Sheng2, Yan Zhu3, Zirui Liu1
1Shanghai Ocean University, Shanghai, China;
e-mail: o_gaidai@just.edu.cn (O. Gaidai)
2Chongqing Jiao Tong University, Chongqing, China
3Jiangsu University of Science and Technology, Zhenjiang, China
*corresponding author
Keywords: Climate; Dynamic system; Global warming; Stochastics; Windspeed
Received: 6 May 2024; revised: 3 November 2024; accepted: 13 May 2025.
Highlights
- Study introduces novel reliability approach for multi-dimensional nonlinear systems risk assessment.
- First, novel multi-dimensional reliability method, particularly suitable for multi-dimensional dynamic systems is introduced.
- Second, novel extrapolation deconvolution method is presented.
- Cross-validation versus independent method has been done.
Abstract
This case study advocates a generic state-of-the-art multidimensional natural hazards evaluation methodology, applied to windspeeds and wave heights, measured in different offshore locations. Due to complex nonlinear spatiotemporal cross-correlations between different environmental system components and covariates, it is challenging to assess associated environmental risks, utilizing existing reliability techniques. Hence, it is necessary to develop novel multimodal reliability and risk assessment methods for natural hazards prognostics further, given global climate variability. Advocated
multivariate risk assessment methodology being particularly suitable for both environmental and offshore/ocean structural systems, which have been either physically measured or numerically simulated over a representative period. National Oceanic and Atmospheric Administration (NOAA) buoys, operating in the central Bering Sea, provided the
raw in situ measurements of windspeeds and wave heights, utilized in this case study. A relatively limited amount of underlying data had been analyzed – only 4 months between June and September 2024. The presented multimodal natural hazards prognostics methodology has a generic nature, hence, large amounts of measured data can be analyzed
if available. A novel non-parametric deconvolution extrapolation scheme has been utilized to accurately forecast in situ extreme environmental climate dynamics events. System’s quasi-stationarity was assumed; otherwise, for nonstationary multidimensional dynamic systems with underlying multivariate trend, this trend has to be identified first, before the advocated reliability methodology to be applied.
Distinct advantage of presented multivariate reliability methodology versus existing ones lies within its ability to overcome “curse of dimensionality”, namely ability to treat systems with dimensionality above two.
References
Cook, N.J., 2023.
Reliability of Extreme Wind Speeds Predicted by
Extreme-Value Analysis, Meteorology 2 (3), 344–367.
https://doi.org/10.3390/meteorology2030021
Ditlevsen, O., Madsen, H.O., 1996.
Structural reliability methods.
John Wiley & Sons, Inc., Chichester (UK).
Gaidai, O., 2024.
Pacific Ocean Windspeeds Prediction by Gaidai
Multivariate Risks Evaluation Method, Utilizing Self-Deconvolution, ASME
Open J. Eng. 3, 031025.
https://doi.org/10.1115/1.4066682
Gaidai, O., 2025a.
Israel COVID-19 data verification by multimodal Gaidai
reliability method. ASME J. Eng. Sci. Med. Diagn. Ther. JESMDT-25-1003.
https://doi.org/10.1115/1.4068499
Gaidai, O., 2025b.
Emotional excess prognostics by multimodal Gaidai
reliability methodology, using thorax respiration signal, ASME J. Eng.
Sci. Med. Diagn. Ther. JESMDT-24-1103.
https://doi.org/10.1115/1.4068500
Gaidai, O., Ashraf, A., Cao, Y., Sheng, J., Zhu, Y., Liu, Z., 2024a.
Lifetime assessment of semi-submersible wind turbines by Gaidai risk
evaluation method. J. Mater. Sci.: Mater. Eng. 19 (2).
https://doi.org/10.1186/s40712-024-00142-2
Gaidai, O., Ashraf, A., Cao, Y., Sheng J., Li, H., Liu, Z., Zhu, Y., 2024b,
Gaidai multimodal risk evaluation methodology based on cargo vessel onboard
measurements, given structural damage accumulation. Discover Oceans 1
(28).
https://doi.org/10.1007/s44289-024-00030-9
Gaidai, O., Ashraf, A., Sheng, J. et al., 2024c.
Onboard multi- variate
hazard assessment for UIKKU chemical tanker by Gaidai reliability method.
Discov. Oceans 1 (26).
https://doi.org/10.1007/s44289-024-00027-4
Gaidai, O., Cao, Y., Ashraf, A., Sheng, J., Zhu, Y., Liu, Z., 2024d,
FPSO/LNG hawser system lifetime assessment by multimodal Gaidai risk
assessment method. Energy Inform. 7 (51).
https://doi.org/10.1186/s42162-024-00350-2
Gaidai, O., Cao, Y., Li, H., Liu, Z., Ashraf, A., Zhu, Y., Sheng, J., 2024e,
Multivariate Gaidai hazard assessment method in combination with
deconvolution scheme to predict extreme wave heights. Res. Eng. 22,
102326.
https://doi.org/10.1016/j.rineng.2024.102326
Gaidai, O., Cao, Y., Wang, F., Zhu, Y., 2024f.
Applying the multivariate
Gaidai reliability method in combination with an efficient deconvolution scheme
to prediction of extreme ocean wave heights. Mar. Syst. Ocean Tech. 19,
165–178.
https://doi.org/10.1007/s40868-024-00145-w
Gaidai, O., Cao, Y., Xing, Y., Wang, J., 2023a.
Piezoelectric Energy
Harvester Response Statistics. Micromachines 14 (2), 271. h
ttps://doi.org/10.3390/mi14020271
Gaidai, O., Cao, Y., Zhu, Y., Zhang, F., Li, H., 2024g.
Multi- variate Risk
Assessment for Offshore Jacket Platforms by Gaidai Reliability Method. J.
Mar. Sci. Appl. 24, 428–436.
https://doi.org/10.1007/s11804-024-00542-y
Gaidai, O., Cao, Y., Zhu, Y., Zhang, F., Liu, Z., Wang, K., 2024h.
Limit
hypersurface state of the art multimodal Gaidai risk evaluation approach for
offshore Jacket. Mech. Based Des. Struc. 53, 1–16.
https://doi.org/10.1080/15397734.2024.2379523
Gaidai, O., He, S., Ashraf, A., Sheng, J., Zhu, Y., 2024i.
Green- land
Wind-Wave Bivariate Dynamics by Gaidai Natural Hazard Spatiotemporal Evaluation
Approach, Atmosphere 15 (11), 1357.
https://doi.org/10.3390/atmos15111357
Gaidai, O., He, S., Wang, F., 2024j.
State-of-the-art nonsta- tionary
hypersurface damage assessment approach for energy harvesters. Renew.
Energ. 121824.
https://doi.org/10.1016/j.renene.2024.121824
Gaidai, O., Li, H., Cao, Y., Ashraf, A., Zhu, Y., Liu, Z., 2024k.
Shuttle
tanker operational reliability study by multimodal Gaidai risk assessment
method, utilizing deconvolution scheme. Transport. Res. Interdiscip. 26,
101194.
https://doi.org/10.1016/j.trip.2024.101194
Gaidai, O., Li, H., Cao, Y., Liu, Z., Zhu, Y., Sheng, J., 2024l.
Wind
turbine gearbox reliability verification by multivariate Gaidai reliability
method. Results Eng. 23. h
ttps://doi.org/10.1016/j.rineng.2024.102689
Gaidai O., Liu Z., Cao Y., Zhang F., Zhu Y., Sheng J., 2024m.
Limit
hypersurface state-of-the-art damage assessment approach for a galloping energy
harvester, accounting for memory effects. J. Vib. Control
https://doi.org/10.1177/10775463241279993
Gaidai, O., Sheng, J., Cao, Y. Zhu, Y., Wang, K., Liu, Z., 2024n. Limit
hypersurface state of art Gaidai risk assessment approach for oil tankers
Arctic operational safety. J. Ocean Eng. Mar. Energ. 10, 351–364.
https://doi.org/10.1007/s40722-024-00316-2
Gaidai, O., Sheng, J., Cao, Y., Zhang, F., Zhu, Y., Liu, Z., 2024o.
Gaidaimultivariateriskassessmentmethodforcargoshipdynamics. Urban,
Planning and Transport Research.12, 1.
https://doi.org/10.1080/21650020.2024.2327362
Gaidai, O., Sheng, J., Cao, Y., Zhang, F., Zhu, Y., Liu, Z., 2024p.
Design
of floating wind turbine gearboxes using Gaidai risk assessment method.
Procedia CIRP, 128, 120–125. h
ttps://doi.org/10.1016/j.procir.2024.06.011
Gaidai, O., Sheng, J., Cao, Y., Zhu, Y., Liu, Z., 2024q.
Evaluating Areal
Windspeeds and Wave Heights by Gaidai Risk Evaluation Method. Nat. Hazards
Rev. 25 (4).
https://doi:10.1061/NHREFO.NHENG-2184
Gaidai, O., Sun, J. Cao, Y., 2024r.
FPSO/FLNG mooring system evaluation by
Gaidai reliability method. J. Mar. Sci. Tech.-Japan. 29, 546–555.
https://doi.org/10.1007/s00773-024-01001-7
Gaidai, O., Wang, F., Wu, Y., Xing Y., Rivera Medina, A., Wang, J., 2022a.
Offshore renewable energy site correlated wind-wave statistics.
Probabilistic Engineering Mechanics, 68.
https://doi.org/10.1016/j.probengmech.2022.103207
Gaidai, O., Wang, F., Cao, Y. et al., 2024s.
4400 TEU cargo ship dynamic
analysis by Gaidai reliability method. J. Shipp. Trd. 9, 1.
https://doi.org/10.1186/s41072-023-00159-4
Gaidai, O., Wang, F., Yakimov, V., Sun, J., Balakrishna, R., 2023b,
Lifetime assessment for riser systems. Green Tech. Res. Sustain. 3.
https://doi.org/10.1007/s44173-023-00013-7
Gaidai, O., Wang, K., Wang, F., Xing, Y., Yan, P., 2022b.
Cargo ship aft
panel stresses prediction by deconvolution. Mar. Struct. 88.
https://doi.org/10.1016/j.marstruc.2022.103359
Gaidai, O., Xing, Y., 2022.
Novel reliability method validation for
offshore structural dynamic response. Ocean. 266 (5).
https://doi.org/10.1016/j.oceaneng.2022.113016
Gaidai, O., Xing, Y., Xu, X., 2023c,
Novel methods for coupled prediction
of extreme windspeeds and wave heights. Sci. Rep. UK. 13, 1119.
https://doi.org/10.1038/s41598-023-28136-8
Gaidai, O., Xu, J., Hu, Q., Xing, Y., Zhang, F., 2022.
Offshore tethered
platform springing response statistics. Sci. Rep. UK. 12.
http://www.nature.com/articles/s41598-022-25806-x
Gaidai, O., Xu, J., Xing, Y., Hu, Q., Storhaug, G., Xu, X., Sun, J., 2022d.
Cargo vessel coupled deck panel stresses reliability study. Ocean Eng.
268, 113318. https://doi.org/10.1016/j.oceaneng.2022.113318
Gaidai, O., Xu, J., Yakimov, V., Wang, F., 2023d.
Liquid carbon storage
tanker disaster resilience , Environment Systems and Decisions.
https://doi.org/10.1007/s10669-023-09922-1
Gaidai, O., Xu, J., Yan, P., Xing, Y., Zhang, F., Wu, Y., 2022e.
Novel
methods for windspeeds prediction across multiple locations. Sci. Rep. UK,
12, 19614.
https://doi.org/10.1038/s41598-022-24061-4
Gaidai, O., Yakimov, V., Wang, F., Cao, Y., 2024t.
Gaidai Multivariate Risk
assessment Method for Energy Harvester Operational Safety, Given Manufacturing
Imperfections. Int. Precis Eng. Man. 25, 1011–1025.
https://doi.org/10.1007/s12541-024-00977-x
Gaidai, O., Yakimov, V., Wang, F., Hu, Q., Storhaug, G., 2023e.
Lifetime
assessment for container vessels. Appl. Ocean. Res.
https://doi:10.1016/j.apor.2023.103708
Gaidai, O., Yakimov, V., Wang, F., Sun, J., Wang, K., 2024u.
Bivariate
reliability analysis for floating wind turbines. Int. J. Low-Carbon Tec.
Vol. 19, 55–64.
https://doi.org/10.1093/ijlct/ctad108
Gaidai, O., Yakimov, V., Wang, F., Zhang, F., 2023f.
Safety design study
for energy harvesters. Sustainable Energy Research, Vol. 10 (1).
https://doi.org/10.1186/s40807-023-00085-w
Gaidai, O., Yakimov, V., Wang, F., Zhang, F., Balakrishna, R. 2023g.
Floating wind turbines structural details fatigue life assessmen. Sci.
Rep. UK 13 (1).
https://doi:10.1038/s41598-023-43554-4
Glukhovskii, B., 1966.
Investigation of sea wind waves.
Gidrometeoizdat (in Russian).
Haghayeghi, Z., Ketabdari, M., 2018.
A long-term joint probability model
for metocean circular and linear characteristics. Appl. Ocean Res. 75,
143–152.
https://doi.org/10.1016/j.apor.2018.03.009
Han, C., Gaidai, O., El-Wazery, M., He, S., Ashraf, A., Sheng, J., Zhu, Y.,
2024a.
Bivariate validation of the Gaidai natural hazard evaluation method
for climate dynamics. Ocean Eng. 313 (3), 119630.
https://doi.org/10.1016/j.oceaneng.2024.119630
Han, C., Gaidai, O., Zhu, Y., Ashraf, A., Qin, P., Sheng, J., 2024b.
Multivariate Gaidai reliability methodology for marine riser dynamics in
the Red Sea with memory effects included. Ocean Eng. 313 (2), 119437.
https://doi.org/10.1016/j.oceaneng.2024.119437
Haring, R., Osborne, A., Spencer, L., 1976.
Extreme wave parameters based
on continental shelf storm wave records. Proc. 15th Int. Conf. Coastal
Engineering, Honolulu, HI , 151–170.
Ishihara, T., Yamaguchi, A., 2015.
Prediction of the extreme windspeed in
the mixed climate region by using Monte Carlo simulation and
measure-correlate-predict method. Wind Energ. 18 (1), 171–186.
https://doi.org/10.1002/we.1693
Jahns, H., Wheeler, J., 1973.
Long-term wave probabilities based on
hindcasting of severe storms. J. Petrol. Technol. 25, 473–486.
Mackay, E., Murphy-Barltrop, C., Jonathan, P., 2024.
The SPAR model: a new
paradigm for multivariate extremes. application to joint distributions of
metocean variables. Proc. ASME 2024 43rd Int. Conf., Ocean, Offshore &
Arctic Eng. OMAE 2024, June 9–14, 2024, Singapore EXPO.
https://ore.exeter.ac.uk/repository/handle/10871/136413
Madsen, H.O., Krenk, S., Lind, N.C., 1986.
Methods of structural
safety. Prentice-Hall Inc., Englewood Cliffs.
NAG Toolbox for Matlab. NAG Ltd., Oxford, UK.
NOAA, 2024.
National Oceanic and Atmospheric Administration.
https://www.ndbc.noaa.gov
Nwankwo, W., Ukhurebor, K., 2021.
Big data analytics: A single window
IoT-enabled climate variability system for all-year-round vegetable
cultivation. IOP Conf. Ser.: Earth Environ. Sci. 655, 012030.
https://doi10.1088/1755-1315/655/1/012030
Phillips, O., 1957.
On the generation of waves by turbulent wind. J.
Fluid Mech. 2, 417–445.
Phillips, O., 1958.
The equilibrium range in the spectrum of wind-generated
waves. J. Fluid. Mech. 4, 426–434.
Phillips, O., 1985.
Spectral and statistical properties of the equilibrium
range in wind-generated gravity waves. J. Fluid. Mech. 156, 505–531.
Pierson, W.J., Marks, W., 1952.
The power spectrum analysis of ocean-wave
records. T. Am. Geophys. Union 33, 834–844.
Pierson, W.J., Moskowitz, L., 1964.
A proposed spectral form for fully
developed wind seas based on the similarity theory of S. A.
Kitaigorodskii. J. Geophys. Res. 69, 5181–5190.
Qin, P., Gaidai, O., Sheng, J., Zhu, Y., Li, H., Cao, Y., Liu, Z., 2024.
Multivariate risk assessment for offshore structures by Gaidai risk
evaluation method under an accumulation of fatigue damage, utilizing novel
deconvolution scheme. Structures, 70, 107691.
https://doi.org/10.1016/j.istruc.2024.107691
Rice, S.O., 1944.
Mathematical analysis of random noise. Bell System
Tech. J. 23, 282–332.
Ross, E., Astrup, O., Bitner-Gregersen, E., Bunn, N., Feld, G., Gouldby, B.,
Huseby, A., Liu, Y., Randell, D., Vanem, E., Jonathan, P., 2020.
On
environmental contours for marine and coastal design. Ocean Eng. 195,
106194.
https://doi.org/10.1016/j.oceaneng.2019.106194
Siloko, I., Ukhurebor, K., Siloko, E., Enoyoze, E., Bobadoye, A., Ishiekwene,
C., Uddin, O., Nwankwo, W., 2021.
Effects of some meteorological variables
on cassava production in Edo State, Nigeria via density estimation. Sci.
Afr. 13, e00852.
https://doi.org/10.1016/j.sciaf.2021.e00852
Stansell, P., 2004.
Distribution of freak wave heights measured in the
North Sea. Appl. Ocean Res. 26, 35–48.
Sun, J., Gaidai, O., Wang, F., Yakimov, V., 2023a.
Gaidai reliability
method for fixed offshore structures. J. Braz. Soc. Mech. Sci. Eng. 46,
27.
https://doi.org/10.1007/s40430-023-04607-x
Sun, J., Gaidai, O., Xing, Y., Wang, F., Liu, Z., 2023b.
On safe offshore
energy exploration in the Gulf of Eilat. Qual. Reliab. Eng. Int. 39 (7),
2957–2966. h
ttps://doi.org/10.1002/qre.3402
Tayfun, M.A., 1980.
Narrow-band nonlinear sea waves. J. Geophys. Res.
85, 1548–1552.
Tayfun, M.A., Fedele, F., 2007.
Wave-height distributions and nonlinear
effects. Ocean Eng. 34, 1631–1649.
Ukhurebor, K., Azi, S., Aigbe, U., Onyancha, R., Emegha, J., 2020.
Analyzing the uncertainties between reanalysis meteorological data and
ground measured meteorological data. Measurement, 165, 108110.
https://doi.org/10.1016/j.measurement.2020.108110
Ukhurebor, K.E., Aidonojie, P.A., 2021a.
The influence of climate change on
food innovation technology: review on topical developments and legal
framework. Agric & Food Secur 10, 50.
https://doi.org/10.1186/s40066-021-00327-4
Ukhurebor, K., Singh, K., Nayak, V., Eghonghon, G., 2021b.
Influence of the
SARS-CoV-2 pandemic: a review from the climate change perspective.
Environ. Sci.-Proc. Imp. 8.
https://doi.org/10.1039/D1EM00154J
Vega-Bayo, M., Pérez-Aracil, J., Prieto-Godino, L., Salcedo- Sanz, S., 2023.
Improving the prediction of extreme wind speed events with generative data
augmentation techniques. Renew Energ. 221, 119769.
https://doi.org/10.1016/j.renene.2023.119769
Yakimov, V., Gaidai, O., Wang, F., Wang, K., 2023a.
Arctic naval launch and
recovery operations, under ice impact interactions. Appl. Eng. Sci. 15,
100146.
https://doi.org/10.1016/j.apples.2023.100146
Yakimov, V., Gaidai, O., Wang, F., Xu, X., Niu, Y., Wang, K., 2023b.
Fatigue assessment for FPSO hawsers. Int. J. Nav. Arch. Ocean. 15,
100540.
https://doi.org/10.1016/j.ijnaoe.2023.100540
Yayık, A., Kutlu, Y., Altan, G., 2019.
Regularized HessELM and Inclined
Entropy Measurement for Congestive Heart Failure Prediction. Cornell
University.
https://arxiv.org/abs/1907.05888
Zhang, H., Reynolds, R. Bates, J., 2006.
Blended and Gridded High
Resolution Global Sea Surface Windspeed and Climatology from Multiple
Satellites: 1987–Present. American Meteorological Society.
Zhang, J., Benoit, M., Kimmoun, O., Chabchoub, A., Hsu, H.C., 2019.
Statistics of extreme waves in coastal waters: Large scale experiments and
advanced numerical simulations. Fluids 4.
Analyzing Ogurja Island’s shoreline changes in response
to the Caspian Sea water level decline
Oceanologia, 67 (2)/2025, 67207, 17 pp.
https://doi.org/10.5697/QPUN2882
Rahimeh Shamsaie1, Danial Ghaderi2,3,*
1Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
2Center Providing Consultation and Simulation Services For Coastal And Marine Environments (NPDS Company), Bandar Abbas, Iran;
e-mail: d.ghaderi@irseas.ir, danialghaderi1@gmail.com (D. Ghaderi)
3Physical Oceanography, Shahid Rajaee Port Complex, Ports and Maritime Organization, Bandar Abbas, Iran
*corresponding author
Keywords: Ogur Chinsky; Caspian Sea; Shoreline Changes; Decreasing Water Levels; DSAS
Received: 30 July 2024; revised: 8 May 2025; accepted: 12 May 2025.
Highlights
- Validated Sentinel-2 imagery and DSAS as cost-effective tools for detecting and quantifying shoreline changes.
-
Established a strong correlation between the declining Caspian Sea water level and shoreline retreat
on Ogurja Island, with shoreline shifts reaching 80 m/year.
-
Recommend incorporating shoreline changes into the Caspian Sea level prediction models to enhance accuracy and consider environmental factors.
Abstract
Shorelines are vital and dynamic components of the coastal zone, constantly changing due to various environmental factors. These areas hold significant recreational, economic, and ecological importance, making the understanding of shoreline alterations critical. Unlike open oceans, the Caspian Sea (CS) has experienced a noticeable decline in water
level since the late 1990s due to a combination of climatic variability, reduced riverine inflow, increased evaporation, and anthropogenic factors. This decline in water level is expected to drive morphological changes in the shorelines, with an overall trend of shorelines retreating seaward. In this study, the shoreline changes of Ogurja Island, the largest island in the CS, were analyzed using Sentinel-2 satellite imagery from 2015 to 2023, covering a total of 9 images, and the Digital Shoreline Analysis System tool. The study aimed to establish a relationship between these shoreline changes and the decline in the Caspian Sea water level (CSL). The results reveal a strong correlation, with shoreline movements reaching up to 80 m/year in some areas, and significant changes are expected with the projected CSL decline. This research offers an initial attempt to connect shoreline dynamics with water level fluctuations, highlighting the importance of considering shoreline changes in future water level predictions. The study recommends that future research focus on integrating advanced models, such as hydrodynamic simulations and machine learning techniques, to refine shoreline predictions and enhance understanding of the CS’s dynamic coastal environment.
References
Alharbi, O.A., Hasan, S.S., Fahil, A.S., Mannaa, A., Rangel- Buitrago, N.,
Alqurashi, A.F., 2023.
Shoreline change rate detection applying the DSAS
technique on low and medium resolution data: Case study along Ash Sh’aybah-
Al Mujayrimah coastal Area of the Eastern Red Sea, Saudi Arabia. Reg.
Stud. Mar. Sci. 66, 103118.
https://doi.org/10.1016/j.rsma.2023.103118
Ataei H., S., Adjami, M., Neshaei, S.A., 2018.
The Effects of Sea Level
Fall on the Caspian Sea Shoreline Changes. Int. J. Coast. offshore Eng. 2,
1–12.
https://doi.org/10.29252/ijcoe.2.3.1
Ayadi, K., Boutiba, M., Sabatier, F., Guettouche, M.S., 2016.
Detection and
analysis of historical variations in the shoreline, using digital aerial
photos, satellite images, and topographic surveys DGPS: case of the Bejaia bay
(East Algeria). Arab. J. Geosci. 9, 26.
https://doi.org/10.1007/s12517-015-2043-9
Barsi, J.A., Alhammoud, B., Czapla-Myers, J., Gascon, F., Haque, M.O.,
Kaewmanee, M., Leigh, L., Markham, B.L., 2018.
Sentinel-2A MSI and
Landsat-8 OLI radiometric cross comparison over desert sites. Eur. J.
Remote Sens.
https://doi.org/10.1080/22797254.2018.1507613
Boak, E.H., Turner, I.L., 2005.
Shoreline Definition and Detection: A
Review. J. Coast. Res. 214, 688–703.
https://doi.org/10.2112/03-0071.1
Brockmann, C., Doerffer, R., Peters, M., Kerstin, S., Embacher, S., Ruescas,
A., 2016.
Evolution of the C2RCC neural network for Sentinel 2 and 3 for
the retrieval of ocean colour products in normal and extreme optically complex
waters. ESASP 740, 54.
Chen, J., Cazenave, A., Wang, S.-Y., Li, J., 2023.
Caspian Sea Level Change
Observed by Satellite Altimetry. Remote Sens. 15, 703.
https://doi.org/10.3390/rs15030703
Chen, J.L., Pekker, T., Wilson, C.R., Tapley, B.D., Kostianoy, A.G., Cretaux,
J. -F., Safarov, E.S., 2017.
Long-term Caspian Sea level change.
Geophys. Res. Lett. 44, 6993–7001.
https://doi.org/10.1002/2017GL073958
Crétaux, J.-F., Arsen, A., Calmant, S., Kouraev, A., Vuglinski, V.,
Bergé-Nguyen, M., Gennero, M.-C., Nino, F., Abarca Del Rio, R., Cazenave, A.,
Maisongrande, P., 2011. SOLS:
A lake database to monitor in the Near Real
Time water level and storage variations from remote sensing data. Adv. Sp.
Res. 47, 1497–1507.
https://doi.org/10.1016/j.asr.2011.01.004
Davidson-Arnott, R., Bauer, B., Houser, C., 2019.
Introduction to Coastal
Processes and Geomorphology. Cambridge Univ. Press.
https://doi.org/10.1017/9781108546126
Dmitrieva, L., Jüssi, M., Jüssi, I., Kasymbekov, Y., Verevkin, M.,
Baimukanov, M., Wilson, S., Goodman, S., 2016.
Individual variation in
seasonal movements and foraging strategies of a land-locked, ice-breeding
pinniped. Mar. Ecol. Prog. Ser. 554, 241–256.
https://doi.org/10.3354/meps11804
Do, A.T.K., Vries, S. de, Stive, M.J.F., 2019.
The Estimation and
Evaluation of Shoreline Locations, Shoreline-Change Rates, and Coastal Volume
Changes Derived from Landsat Images. J. Coast. Res. 35, 56.
https://doi.org/10.2112/JCOASTRES-D-18-00021.1
ESA, 2020.
Copernicus Open Access Hub of the ESA. https://scihub.copernicus.eu/
(accessed 8.2.20).
Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J.,
Lonjou, V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F.,
Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L.,
Trémas, T., Cadau, E., De Bonis, R., Isola, C., Martimort, P., Fernandez, V.,
2017.
Copernicus Sentinel-2A calibration and products validation
status. Remote Sens.
https://doi.org/10.3390/rs9060584
Ghaderi, D., Rahbani, M., 2025.
A Long-Term Survey on the Shoreline Changes
of Gulf of Oman Coasts (Makran). Ocean Sci. J. 60, 11.
https://doi.org/10.1007/s12601-025-00208-y
Ghaderi, D., Rahbani, M., 2024.
Evaluating the shoreline vulnerability of
eastern coast of Makran employing geomorphological and hydrodynamic
parameters. J. Earth Syst. Sci. 133, 48.
https://doi.org/10.1007/s12040-024-02266-7
Ghaderi, D., Rahbani, M., 2023.
Simultaneous employment of hydrodynamical
simulation and RS imageries for analyzing the influence of an anthropogenic
construction on shoreline transformation. J. Hydraul. Struct. 9, 14–31.
Ghaderi, D., Rahbani, M., 2022.
Mud volcano as a feature of emergence in
Caspian Sea. Oceanologia 64(3), 503–513.
https://doi.org/10.1016/j.oceano.2022.03.006
Ghaderi, D., Rahbani, M., 2021.
Tracing suspended matter in Tiab estuary
applying ANN and Remote sensing. Reg. Stud. Mar. Sci. 44, 101788.
https://doi.org/10.1016/j.rsma.2021.101788
Ghaderi, D., Rahbani, M., 2020a.
Detecting shoreline change employing
remote sensing images (Case study: Beris Port – east of Chabahar, Iran).
Int. J. Coast. Offshore Eng. 3, 1–8. h
ttps://doi.org/10.29252/ijcoe.3.4.1
Ghaderi, D., Rahbani, M., 2020b.
Shoreline change analysis along the coast
of Bandar Abbas city, Iran using remote sensing images. Int. J. Coast.
Offshore Environ. Eng. 4, 51–64.
https://doi.org/10.22034/ijcoe.2020.149346
Ghanavati, E., Shah-Hosseini, M., Marriner, N., 2021.
Analysis of the
Makran Coastline of Iran’s Vulnerability to Global Sea-Level Rise. J.
Mar. Sci. Eng. 9, 891.
https://doi.org/10.3390/jmse9080891
Godwyn-Paulson, P., Jonathan, M.P., Roy, P.D., Rodrı́guez- Espinosa, P.F.,
Muthusankar, G., Muñoz-Sevilla, N.P., Lakshumanan, C., 2021.
Evolution of
southern Mexican Pacific coastline: Responses to meteo-oceanographic and
physiographic conditions. Reg. Stud. Mar. Sci. 47, 101914.
https://doi.org/10.1016/j.rsma.2021.101914
Gunasinghe, G.P., Ruhunage, L., Ratnayake, N.P., Ratnayake, A.S.,
Samaradivakara, G.V.I., Jayaratne, R., 2021.
Influence of manmade effects
on geomorphology, bathymetry and coastal dynamics in a monsoon-affected river
outlet in Southwest coast of Sri Lanka. Environ. Earth Sci. 80, 238.
https://doi.org/10.1007/s12665-021-09555-0
Haghani, S., Leroy, S.A.G., Wesselingh, F.P., Rose, N.L., 2016.
Rapid
evolution of coastal lagoons in response to human interference under rapid sea
level change: A south Caspian Sea case study. Quat. Int. 408, 93–112.
https://doi.org/10.1016/j.quaint.2015.12.005
Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., Farris, A.S., 2018.
Digital shoreline analysis system (DSAS) version 5.0 user guide. https://doi.org/https://doi.org/10.3133/ofr20181179
Hossen, M.F., Sultana, N., 2023.
Shoreline change detection using DSAS
technique: Case of Saint Martin Island, Bangladesh. Remote Sens. Appl.
Soc. Environ. 30, 100943.
https://doi.org/10.1016/j.rsase.2023.100943
Hsu, T.-W., Lin, T.-Y., Tseng, I.-F., 2007.
Human Impact on Coastal Erosion
in Taiwan. J. Coast. Res. 234, 961–973.
https://doi.org/10.2112/04-0353R.1
Isaie Moghaddam, E., Allahdadi, M.N., Ashrafi, A., Chaichitehrani, N., 2021.
Coastal system evolution along the southeastern Caspian Sea coast using
satellite image analysis: response to the sea level fall during
1994–2015. Arab. J. Geosci. 14, 771.
https://doi.org/10.1007/s12517-021-07106-2
Johnston, W.G., Cooper, J.A.G., Olynik, J., 2023.
Shoreline change on a
tropical island beach, Seven Mile Beach, Grand Cayman: The influence of
beachrock and shore protection structures. Mar. Geol. 457, 107006.
https://doi.org/10.1016/j.margeo.2023.107006
Jumb, V., Sohani, M., Shrivas, A., 2014. Color Image Segmentation Using K-Means
Clustering and Otsu’s Adaptive Thresholding. Kakroodi, A.A., Kroonenberg,
S.B., Goorabi, A., Yamani, M., 2014.
Shoreline Response to Rapid 20th
Century Sea- Level Change along the Iranian Caspian Coast. J. Coast. Res.
298, 1243–1250.
https://doi.org/10.2112/JCOASTRES-D-12-00173.1
Khakhim, N., Kurniawan, A., Pranowo, W.S., Khasanah, E.U., Halilintar, P.,
2024.
Shoreline morphological change prognostic model based on
spatiotemporal framework imagery data on the northern coast of Java,
Indonesia. Kuwait J. Sci. 51, 100274.
https://doi.org/10.1016/j.kjs.2024.100274
Lahijani, H., Azizpour, J., Arpe, K., Abtahi, B., Rahnama, R., Ghafarian, P.,
Hamzeh, M.A., Hamzehpour, A., Penchah, M.M., Mahmoudof, S.M., 2023a.
Tracking of sea level impact on Caspian Ramsar sites and potential
restoration of the Gorgan Bay on the southeast Caspian coast. Sci. Total
Environ. 857, 158833.
https://doi.org/10.1016/j.scitotenv.2022.158833
Lahijani, H., Leroy, S.A.G., Arpe, K., Crétaux, J.-F., 2023b.
Caspian Sea
level changes during instrumental period, its impact and forecast: A
review. Earth-Science Rev. 241, 104428.
https://doi.org/10.1016/j.earscirev.2023.104428
Leroy, S.A.G., Gracheva, R., Medvedev, A., 2022.
Natural hazards and
disasters around the Caspian Sea. Nat. Hazards 114, 2435–2478.
https://doi.org/10.1007/s11069-022-05522-5
Li, Y., Wu, H., 2012.
A Clustering Method Based on K-Means Algorithm.
Phys. Procedia.
https://doi.org/10.1016/j.phpro.2012.03.206
Mageswaran, T., Sachithanandam, V., Sridhar, R., Mahapatra, M., Purvaja, R.,
Ramesh, R., 2021.
Impact of sea level rise and shoreline changes in the
tropical island ecosystem of Andaman and Nicobar region, India. Nat.
Hazards 109, 1717–1741.
https://doi.org/10.1007/s11069-021-04895-3
Mariotti, G., Hein, C.J., 2022.
Lag in response of coastal barrier-island
retreat to sea-level rise. Nat. Geosci. 15, 633–638.
https://doi.org/10.1038/s41561-022-00980-9
McFEETERS, S.K., 1996.
The use of the Normalized Difference Water Index
(NDWI) in the delineation of open water features. Int. J. Remote Sens. 17,
1425–1432.
https://doi.org/10.1080/01431169608948714
Medvedev, I.P., Kulikov, E.A., Fine, I. V., 2020.
Numerical modelling of
the Caspian Sea tides. Ocean Sci. 16, 209–219.
https://doi.org/10.5194/os-16-209-2020
Medvedev, I.P., Kulikov, E.A., Rabinovich, A.B., 2017.
Tidal oscillations
in the Caspian Sea. Oceanology 57(3), 360–375.
https://doi.org/10.1134/S0001437017020138
Mishra, M., Guria, R., Paul, S., Baraj, B., Santos, C.A.G., dos Santos, C.A.C.,
Silva, R.M. da, 2024.
Geo-ecological, shoreline dynamic, and flooding
impacts of Cyclonic Storm Mocha: A geospatial analysis. Sci. Total
Environ. 917, 170230.
https://doi.org/10.1016/j.scitotenv.2024.170230
Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S., Evans, M., 2023.
Monitoring Shoreline Changes along the Southwestern Coast of South Africa
from 1937 to 2020 Using Varied Remote Sensing Data and Approaches. Remote
Sens. 15, 317.
https://doi.org/10.3390/rs15020317
Nassar, K., Mahmod, W.E., Fath, H., Masria, A., Nadaoka, K., Negm, A., 2019.
Shoreline change detection using DSAS technique: Case of North Sinai coast,
Egypt. Mar. Geores. Geotechnol. 37, 81–95.
https://doi.org/10.1080/1064119X.2018.1448912
NAVIONICS, 2023.
Navionics ChartViewer. https://webapp.navionics.com/?lang=en#boating
(accessed 3.25.24).
Nijamir, K., Ameer, F., Thennakoon, S., Herath, J., Iyoob, A.L., Zahir, I.L.M.,
Sabaratnam, S., Fathima Jisna, M.V., Madurapperuma, B., 2023.
Geoinformatics application for estimating and forecasting of periodic
shoreline changes in the east coast of Ampara District, Sri Lanka. Ocean
Coast. Manag. 232, 106425.
https://doi.org/10.1016/j.ocecoaman.2022.106425
Parthasarathy, K.S.S., Deka, P.C., 2019.
Remote sensing and GIS application
in assessment of coastal vulnerability and shoreline changes: a review.
ISH J. Hydraul. Eng. 27, 1–13. h
ttps://doi.org/10.1080/09715010.2019.1603086
Pereira-Sandoval, M., Ruescas, A., Urrego, P., Ruiz-Verdú, A., Delegido, J.,
Tenjo, C., Soria-Perpinyà, X., Vicente, E., Soria, J., Moreno, J., 2019.
Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters
for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 11, 1469.
https://doi.org/10.3390/rs11121469
Pisanti, A., Magrı̀, S., Ferrando, I., Federici, B., 2022.
Sea water
turbidity analysis from sentinel-2 images: atmospheric correction and bands
correlation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
XLVIII-4/W, 371–378.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-371-2022
Prange, M., Wilke, T., Wesselingh, F.P., 2020.
The other side of sea level
change. Commun. Earth Environ. 1, 69.
https://doi.org/10.1038/s43247-020-00075-6
Rahbani, M., Ghaderi, D., 2024.
Long term investigation on shoreline
changes of an Island, inside a Gulf (Hormuz Island). Reg. Stud. Mar. Sci.
71, 103399.
https://doi.org/10.1016/j.rsma.2024.103399
Rahbani, M., Ghaderi, D., Shamsaie, R., Salari, Z., Permas, A., 2023a.
Investigation on the seasonal transformation of Tiab estuary’s shoreline
using RS and GIS techniques. Int. J. Coast. Offshore Environ. Eng. 8,
56–64.
https://doi.org/10.22034/ijcoe.2023.395872.1029
Rahbani, M., Ghaderi, D., Shamsaie, R., Zarafshan, S., Razi, A., 2023b.
Investigating the impact of earthquakes on manmade structures in the
vicinity of coastlines (Case study, earthquake on 2nd of July 2022,
Sayekhosh). J. Earth Sp. Phys.
https://doi.org/10.22059/jesphys.2023.353910.1007494
Rajasree, B.R., Deo, M.C., Sheela Nair, L., 2016.
Effect of climate change
on shoreline shifts at a straight and continuous coast. Estuar. Coast.
Shelf Sci. 183, 221–234.
https://doi.org/10.1016/j.ecss.2016.10.034
Rashmi, C., Chaluvaiah, S., Kumar, G.H., 2016.
An Efficient Parallel Block
Processing Approach for K -Means Algorithm for High Resolution Orthoimagery
Satellite Images. Procedia Comput. Sci.
https://doi.org/10.1016/j.procs.2016.06.0252
Renssen, H., Lougheed, B.C., Aerts, J.C.J.H., de Moel, H., Ward, P.J., Kwadijk,
J.C.J., 2007.
Simulating long-term Caspian Sea level changes: The impact of
Holocene and future climate conditions. Earth Planet. Sci. Lett. 261,
685–693.
https://doi.org/10.1016/j.epsl.2007.07.0372
Rezaee, S.M., Golshani, A., Abedi, S., 2022.
Shoreline changes at
Fereydounkenar Port in light of Caspian Sea’s water level fluctuations.
Reg. Stud. Mar. Sci. 53, 102393.
https://doi.org/10.1016/j.rsma.2022.1023932
Roshan, G., Moghbel, M., Grab, S., 2012.
Modeling Caspian Sea water level
oscillations under different scenarios of increasing atmospheric carbon dioxide
concentrations. Iranian J. Environ. Health Sci. Eng. 9, 24.
https://doi.org/10.1186/1735-2746-9-242
Samant, R., Prange, M., 2023.
Climate-driven 21st century Caspian Sea level
decline estimated from CMIP6 projections. Commun. Earth Environ. 4, 357.
https://doi.org/10.1038/s43247-023-01017-82
Santos, C.A.G., do Nascimento, G.R., Freitas, L.M.T., Batista, L.V., Zerouali,
B., Mishra, M., Silva, R.M. da, 2024.
Coastal evolution and future
projections in Conde County, Brazil: A multi-decadal assessment via remote
sensing and sea-level rise scenarios. Sci. Total Environ. 915, 169829.
https://doi.org/10.1016/j.scitotenv.2023.1698292
Santos, C.A.G., Nascimento, T.V.M. do, Mishra, M., Silva, R.M. da, 2021.
Analysis of long- and short-term shoreline change dynamics: A study case of
João Pessoa city in Brazil. Sci. Total Environ. 769, 144889.
https://doi.org/10.1016/j.scitotenv.2020.1448892
Seenath, A., 2022.
On simulating shoreline evolution using a hybrid
2D/one-line model. Coast. Eng. 178, 104216.
https://doi.org/10.1016/j.coastaleng.2022.1042162
Shamsaie, R., Ghaderi, D., 2025.
Comparison of efficiency of spectral
(NDWI) and SAR (GRD) method in shoreline detection: A novel method of
integrating GRD and SLC products of sentinel-1 satellite. Reg. Stud. Mar.
Sci. 84, 104132.
https://doi.org/10.1016/j.rsma.2025.104132
Shirazi, A.S., Qashqaei, A.T., Faezi, S., Khaleghi, S., Moghaddamipour, N.,
Ebrahimi, T., Hassan, S.K., Chilvers, B.L., 2023.
First confirmed records
of white-coat pups of the Endangered Caspian seal Pusa caspica on the coast of
Iran. Oryx 57, 784–787.
https://doi.org/10.1017/S003060532200148X
Soriano-González, J., Urrego, E.P., Sòria-Perpinyà, X., Angelats, E.,
Alcaraz, C., Delegido, J., Ruı́z-Verdú, A., Tenjo, C., Vicente, E., Moreno,
J., 2022
. Towards the Combination of C2RCC Processors for Improving Water
Quality Retrieval in Inland and Coastal Areas. Remote Sens. 14, 1124.
https://doi.org/10.3390/rs14051124
Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., Ergul, A., 2009.
The
Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for
calculating shoreline change. https://doi.org/10.3133/ofr20081278
Toorani, M., Kakroodi, A.A., Yamani, M., Naderi Beni, A., 2021.
Monitoring
shoreline shift under rapid sea-level change on the Caspian Sea observed over
60 years of satellite and aerial photo records. J. Great Lakes Res. 47,
812–828.
https://doi.org/10.1016/j.jglr.2021.02.006
Toure, S., Diop, O., Kpalma, K., Maiga, A., 2019.
Shoreline Detection using
Optical Remote Sensing: A Review. IS- PRS Int. J. Geo-Information 8, 75.
https://doi.org/10.3390/ijgi8020075
Vallarino Castillo, R., Negro Valdecantos, V., Moreno Blasco, L., 2022.
Shoreline Change Analysis Using Historical Multispectral Landsat Images of
the Pacific Coast of Panama. J. Mar. Sci. Eng. 10, 1801.
https://doi.org/10.3390/jmse10121801
Weerasingha, W.A.D.B., Ratnayake, A.S., 2022.
Coastal landform changes on
the east coast of Sri Lanka using remote sensing and geographic information
system (GIS) techniques. Remote Sens. Appl. Soc. Environ. 26, 100763.
https://doi.org/10.1016/j.rsase.2022.100763
Yan, D., Yao, X., Li, J., Qi, L., Luan, Z., 2021.
Shoreline Change
Detection and Forecast along the Yancheng Coast Using a Digital Shoreline
Analysis System. Wetlands 41, 47.
https://doi.org/10.1007/s13157-021-01444-3
Yum, S.-G., Park, S., Lee, J.-J., Adhikari, M. Das, 2023.
A quantitative
analysis of multi-decadal shoreline changes along the East Coast of South
Korea. Sci. Total Environ. 876, 162756.
https://doi.org/10.1016/j.scitotenv.2023.162756
Zambrano-Medina, Y.G., Plata-Rocha, W., Monjardin- Armenta, S.A., Franco-Ochoa,
C., 2023.
Assessment and Forecast of Shoreline Change Using Geo-Spatial
Techniques in the Gulf of California. Land 12, 782.
https://doi.org/10.3390/land12040782
Zanganeh, M., Chaji, A., 2024.
A new aspect of the ApEn application to
improve the PSO-ANFIS model to forecast Caspian Sea levels. Reg. Stud.
Mar. Sci. 69, 103347.
https://doi.org/10.1016/j.rsma.2023.103347
Short Communications
Climate change threatens shallow Arctic macrofaunal blue carbon stocks
Oceanologia, 67 (2)/2025, 07208, 6 pp.
https://doi.org/10.5697/HOHD9156
Marc J. Silberberger1,2
1Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Hugo Kołłątaja 1, 81–332
Gdynia, Poland;
e-mail: msilberberger@mir.gdynia.pl (M. Silberberger)
2Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland
*corresponding author
Keywords: Mollusca; Infauna; Biomass; Latitudinal gradient; Ecosystem functioning
Received: 5 August 2024; revised: 5 May 2025; accepted: 19 May 2025.
Highlights
- Study sampled mollusks across fjords in Arctic, sub-Arctic, and temperate zones.
- Biomass and traits analyzed to assess benthic blue carbon across climate zones.
- Shallow Arctic fjord habitats host large, long-lived taxa with high carbon storage.
- Climate change threatens existing blue carbon stocks in shallow Arctic fjord habitats.
Abstract
This study examines mollusk communities in shallow (< 150 m) and deep (> 200 m) zones of Arctic, sub-Arctic, and temperate fjords to assess macrofaunal blue carbon storage under climate change. Biomass and trait-based analyses show that shallow Arctic habitats support long-lived, large suspension feeders with high carbon storage potential. In contrast, warmer regions host smaller, short-lived taxa, indicating reduced carbon storage and altered climate feedbacks.
These findings underscore the vulnerability of existing zoobenthic carbon stocks and highlight the need to expand research to other taxa and full benthic communities across the European Arctic.
References
Barnes, D.K.A., 2017.
Polar zoobenthos blue carbon storage increases with
sea ice losses, because across-shelf growth gains from longer algal blooms
outweigh ice scour mortality in the shallows. Glob. Change Biol. 23,
5083–5091.
https://doi.org/10.1111/gcb.13772
Barnes, D.K.A., Sands, C.J., Paulsen, M.L., Moreno, B., Moreau, C., Held, C.,
Downey, R., Bax, N., Stark, J.S., Zwerschke, N., 2021.
Societal importance
of Antarctic negative feedbacks on climate change: blue carbon gains from sea
ice, ice shelf and glacier losses. Sci. Nat. 108, 43.
https://doi.org/10.1007/s00114-021-01748-8
Barnes, D.K.A., Sands, C.J., Richardson, A., Smith, N., 2019.
Extremes in
Benthic Ecosystem Services; Blue Carbon Natural Capital Shallower Than 1000 m
in Isolated, Small, and Young Ascension Island’s EEZ. Front Mar Sci 6.
https://doi.org/10.3389/fmars.2019.00663
Benjamini, Y., Hochberg, Y., 1995.
Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. J. Roy. Stat. Soc. B
Met. 57, 289–300.
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Brattegard, T., 2011.
Endringer i norsk marin bunnfauna 1997–2010.
DN-utredning.
Campanyà-Llovet, N., Snelgrove, P.V.R., Parrish, C.C., 2017.
Rethinking
the importance of food quality in marine benthic food webs. Prog.
Oceanogr. 156, 240–251.
https://doi.org/10.1016/j.pocean.2017.07.006
Clare, D.S., Bolam, S.G., McIlwaine, P.S.O., Garcia, C., Murray, J.M.,
Eggleton, J.D., 2022.
Biological traits of marine benthic invertebrates in
Northwest Europe. Sci Data 9, 339.
https://doi.org/10.1038/s41597-022-01442-y
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B.,
Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R.G., Sutton,
P., van den Belt, M., 1997.
The value of the world’s ecosystem services
and natural capital. Nature 387, 253–260.
https://doi.org/10.1038/387253a0
Degen, R., Faulwetter, S., 2019.
The Arctic Traits Database – A
repository of Arctic benthic invertebrate traits. Earth Syst. Sci. Data
11, 301–322.
https://doi.org/10.5194/essd-11-301-2019
Dray, S., Choler, P., Dolédec, S., Peres-Neto, P.R., Thuiller, W., Pavoine,
S., ter Braak, C.J.F., 2014.
Combining the fourth-corner and the RLQ
methods for assessing trait responses to environmental variation. Ecology
95, 14–21.
https://doi.org/10.1890/13-0196.1
Dunn, O.J., 1964.
Multiple Comparisons Using Rank Sums. Technometrics
6, 241–252.
https://doi.org/10.1080/00401706.1964.10490181
Griffiths, J.R., Kadin, M., Nascimento, F.J.A., Tamelander, T., Törnroos, A.,
Bonaglia, S., Bonsdorff, E., Brüchert, V., Gårdmark, A., Järnström, M.,
Kotta, J., Lindegren, M., Nordström, M.C., Norkko, A., Olsson, J., Weigel,
B., Žydelis, R., Blenckner, T., Niiranen, S., Winder, M., 2017.
The
importance of benthic–pelagic coupling for marine ecosystem functioning in a
changing world. Global Change Biol. 23, 2179–2196.
https://doi.org/10.1111/gcb.13642
Jordà Molina, È., Silberberger, M.J., Kokarev, V., Reiss, H., 2019
.
Environmental drivers of benthic community structure in a deep sub-arctic fjord
system. Estuar. Coast. Shelf Sci. 225.
https://doi.org/10.1016/j.ecss.2019.05.021
Kruskal, W.H., Wallis, W.A., 1952.
Use of Ranks in One- Criterion Variance
Analysis. J. Am. Stat. Assoc. 47, 583–621.
https://doi.org/10.1080/01621459.1952.10483441
Lavorel, S., Garnier, E., 2002.
Predicting changes in community composition
and ecosystem functioning from plant traits: revisiting the Holy Grail.
Funct. Ecol. 16, 545–556.
https://doi.org/10.1046/j.1365-2435.2002.00664.x
Mazurkiewicz, M., Górska, B., Renaud, P.E., Włodarska-Kowalczuk, M., 2020.
Latitudinal consistency of biomass size spectra – benthic resilience
despite environmental, taxonomic and functional trait variability. Sci.
Rep. 10, 4164.
https://doi.org/10.1038/s41598-020-60889-4
Ridgway, I.D., Richardson, C.A., Austad, S.N., 2011.
Maximum Shell Size,
Growth Rate, and Maturation Age Correlate With Longevity in Bivalve
Molluscs. J. Gerontol. A-Biol. 66A, 183–190.
https://doi.org/10.1093/gerona/glq172
Silberberger, M.J., 2024.
Infaunal mollusca in 4 fjord along a long
latitudinal gradient (v1.0.0) [Data set]. https://doi.org/10.5281/zenodo.11261016
Silberberger, M.J., Koziorowska-Makuch, K., Reiss, H., Kędra, M., 2024.
Trophic niches of macrobenthos: Latitudinal variation indicates climate
change impact on ecosystem functioning. Global Change Biol. 30, e17100.
https://doi.org/https://doi.org/10.1111/gcb.17100
Snelgrove, P.V.R., 1999.
Getting to the Bottom of Marine Biodiversity:
Sedimentary Habitats. Bioscience 49, 129.
https://doi.org/10.2307/1313538
Souster, T.A., Barnes, D.K.A., Hopkins, J., 2020.
Variation in zoobenthic
blue carbon in the Arctic’s Barents Sea shelf sediments. Philos. T. R.
Soc. A, 378, 20190362.
https://doi.org/10.1098/rsta.2019.0362
Souster, T.A., Barnes, D.K.A., Primicerio, R., Jørgensen, L.L., 2024.
Quantifying zoobenthic blue carbon storage across habitats within the
Arctic’s Barents Sea. Front. Mar. Sci. 10.
https://doi.org/10.3389/fmars.2023.1260884
Wanninger, A., Wollesen, T., 2019.
The evolution of molluscs. Biol.
Rev. 94, 102–115.
https://doi.org/10.1111/brv.12439
Włodarska-Kowalczuk, M., Renaud, P., Węsławski, J., Cochrane, S., Denisenko,
S., 2012.
Species diversity, functional complexity and rarity in Arctic
fjordic versus open shelf benthic systems. Mar. Ecol. Prog. Ser. 463,
73–87.
https://doi.org/10.3354/meps09858
Zwerschke, N., Sands, C.J., Roman-Gonzalez, A., Barnes, D.K.A., Guzzi, A.,
Jenkins, S., Muñoz-Ramı́rez, C., Scourse, J., 2022.
Quantification of
blue carbon pathways contributing to negative feedback on climate change
following glacier retreat in West Antarctic fjords. Global Change Biol.
28, 8–20.
https://doi.org/10.1111/gcb.15898
First report on the entanglement of Yellow Sea Snake
Hydrophis spiralis (Shaw, 1802) in plastic debris in the
Northwestern Bay of Bengal
Oceanologia, 67 (2)/2025, 67209, 7 pp.
https://doi.org/10.5697/EIWU6540
Pratyush Das1,2,3,*, Pratap Kumar Mohanty2, Krishnan Silambarasan1,*, Sujit Kumar Pattnayak1, Gunamaya Patra3, Digambar Swain3, Annada Bhusan Kar1, Rebecca Jade Nicholls4
1Fishery Survey of India, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India, Visakhapatnam, India;
e-mail: pratyush.das@fsi.gov.in,
silambuplankton@hotmail.com ((P. Das; K. Silambarasan)
2Department of Marine Sciences, Berhampur University, Odisha, India
3Department of Fisheries, Ministry of Fisheries, Animal Husbandry and Dairying, New Delhi – 110001
4Thomson Environmental Consultants, Compass House, Surrey Research Park, Guildford, GU2 7AG, United Kingdom
*corresponding author
Keywords: Bay of Bengal; India; Hydrophis spiralis; Marine plastic debris; Trawling; Entanglement
Received: 29 November 2024; revised: 28 April 2025; accepted: 19 May 2025.
Highlights
- Hydrophis spiralis mortality due to entanglement in derelict fishing gear in Indian waters.
-
Net constriction caused severe tissue damage, likely leading to starvation and death.
-
Highlights the vulnerability of sea snakes to marine debris and bycatch.
- Recommends gear marking, ghost net retrieval, and fisher awareness to reduce entanglements.
- Urges sustainable fishing, marine pollution control, and protection under Indian wildlife laws.
Abstract
A common cause of unnatural death in marine organisms is entanglement in derelict fishing gear and other marine debris. Such incidents involving marine birds, mammals, turtles and fish are regularly reported. However, few documented cases of entangled sea snakes (Hydrophiinae) exist. This report details the findings of a dead yellow sea snake (Hydrophis spiralis) in the northwestern Bay of Bengal. The sea snake was found with a section of fishing net mesh constricting its neck, causing damage to the underlying tissue and exposing the muscle. The twine was located anterior to the stomach, and necropsy revealed no food in the stomach or intestines. This is the first recorded case of sea snake mortality due to marine debris entanglement or entrapment in Indian waters.
References
Carr, A., Harris, J., 1997.
Ghost-fishing gear: have fishing practices
during the past few years reduced the impact? [In:] Coe, J.M., Rogers,
A.B. (eds.), Marine Debris. Sources, Impacts and Solutions. Springer-Verlag,
New York, 141–151.
Chandrasekar, K., Balakrishnan, S., Arun, G., Satyanarayana, Ch., Venkataraman,
K., 2018.
New observation of Intertwined Annulated Sea Snake Hydrophis
cyanocinctus (Reptilia: Elaphidae: Hydrophiinae) from Pirotan Island, Gulf of
Katchchh. Indian J. Marine Sci. 47 (12), 2465–2468.
Choy, C. A., Drazen, J. C., 2013.
Plastic for dinner? Observations of
frequent debris ingestion by pelagic predatory fishes from the central North
Pacific. Marine Ecol. Progress Ser. 485, 155–163.
Claro, F., Fossi, M.C., Ioakeimidis, C., Baini, M., Lusher, A.L., Mcfee, W.,
Mcintosh, R.R., Pelamatti, T., Sorce, M., Galgani, F., Hardesty, B.D., 2019.
Tools and constrains in monitoring interactions between marine litter and
megafauna: insights from case studies around the world. Marine Pollut.
Bull. 141, 147–160.
Čulin, J., Bielić T., 2016
. Plastic Pollution from Ships.
Pomorskizbornik 51, 57–66.
Davison, P., Asch, R. G., 2011.
Plastic ingestion by mesopelagic fishes in
the North Pacific Subtropical Gyre. Marine Ecol. Progress Ser. 432,
173–180.
Derraik, J. G. B., 2002.
The pollution of the marine environment by plastic
debris: a review. Marine Pollut. Bull. 44, 842–852.
Dunson, W.A., 1975.
Sea snakes of tropical Queensland between 18 and 20
degrees South latitude. [In:], Dunison W.A. (ed.), The Biology of Sea
Snakes. Univ. Park Press Baltimore, 151–162.
Elfes, C., Livingstone, S. R., Lane, A., Guillot, C., Lukoschek, V., Sanders,
K., Courtney, A., Gatus, J., Carpenter, K., 2010.
Hydrophis spiralis.
The IUCN Red List of Threatened Species 2010: e.T176738A7297563.
Eriksen, M., Lebreton, L. C.M., Carson, H. S., Thiel, M., Moore, C. J.,
Borerro, J. C., Galgani, F., Ryan, P. G., Reisser, J., 2014.
Plastic
pollution in the world’s oceans: more than 5 trillion plastic pieces weighing
over 250,000 tons afloat at sea. PLoS One 1–15.
https://doi.org/10.1371/journal.pone.0111913
Farrell, P., Nelson, K., 2013.
Trophic level transfer of microplastic:
Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 177, 1–3.
https://doi.org/10.1016/j.envpol.2013.01.046
Fuehrer, J., Kong, E., Murphy-Lavoie H., 2020.
Sea Snake Toxicity.
StatPearls. Treasure Island (FL), StatPearls Publ.,
https://www.ncbi.nlm.nih.gov/books/NBK532973/ (Accessed: Jan. 2020)
Gall, S. C., Thompson, R. C., 2015.
The impact of debris on marine
life. Marine Pollut. Bull. 92(1–2), 170–179.
Ganesh, S. R., Nandhini, T., Samuel, V. D., Sreeraj, C. R., Abhilash, K. R.,
Purvaja, R., Ramesh, R., 2019.
Marine snakes of Indian coasts: historical
resume, systematic checklist, toxinology, status, and identification key.
J. Threatened Taxa 11(1), 13132–13150.
https://doi.org/10.11609/jott.3981.11.1.13132-13150
Gregory, M. R., 2009.
Environmental implications of plastic debris in
marine settings-entanglement, ingestion, smothering, hangers-on, hitch-hiking
and alien invasions. Philosoph. Transact. Royal Soc. B, 364, 2013–2025.
Guinea, M. L., 1994.
Sea snakes of Fiji and Niue. [In:] P.
Gopalakrishnakone (ed.), Sea snake toxinology, Singa- pore Univ. Press,
212–233.
Heatwole, H., 1997.
Marine snakes: are they a sustainable resource?
Wildlife Soc. Bull., 766–772.
Heatwole, H., Cogger, H., 1994.
Sea snakes of Australia. [In:]
Gopalakrishnakone, P. (ed.) Sea snake toxinology, Singapore Univ. Press,
167–205.
Herre, A.W.C.T., 1942.
Notes on Philippine Sea snakes. Copeia, 7–9.
Kardong, K., 2015.
Vertebrates: Comparative Anatomy, Function,
Evolution, 7th edn.
Karthikeyan, R., Balasubramanian, T., 2007.
Species diversity of Sea Snake
(Hydrophiidae) distributed in the Coramandal Coast (East Coast of India).
Int. J. Zool. Res. 3(3), 107–131.
Karthikeyan, R., Vijayalakshmi, S., Balasubramanian, T., 2008.
Feeding and
parturition of female annulated sea snake Hydrophiscyanocinctus in
captivity. Current Sci. 94 (5), 660–664.
Kühn, S., Van Franeker, J.A., 2020.
Quantitative overview of marine
debris ingested by marine megafauna. Marine Pollut. Bull. 151, 110858.
Laist, D. W., 1987.
Overview of biological effects of lost and discarded
plastic debris in the marine environment. Marine Pollut. Bull. 18,
319–326.
Laist, D. W., 1997.
Impacts of Marine Debris: Entanglement of Marine Life
in Marine Debris Including a Comprehensive List of Species with Entanglement
and Ingestion Records. [In:] Coe, J. M. et al. (eds.), Marine Debris,
Springer-Verlag, New York, 1997, 99–139.
https://doi.org/10.1007/978-1-4613-8486-1_10
Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., Leonard,
G. H., 2020.
The United States’ contribution of plastic waste to land and
ocean. Sci. Advances 6(44), eabd0288.
Lebreton, L.C.M., Vanderzwet, J., Damsteeg, J.W., Slat, B., Andrady, A.,
Reisser, J., 2017.
River plastic emissions to the world’s ocean.
Nat. Communicat. 8, 1–10.
Lobo, A. S., 2006.
Sea snakes of the Gulf of Mannar Marine National
Park. The species and their conservation. Tech. rep., Rufford Foundation
(submitted).
Lobo, A. S., Vasudevan, K., Pandav, B., 2005.
Trophic ecology of
Lapemiscurtus (Hydrophiinae) along the western coast of India. Copeia
2005(3), 637–641.
Lobo, A., Pandav, B., Vasudevan, K., 2004.
Weight-length relationships in
two species of marine snakes along the coast of Goa, Western India.
Hamadryad 29, 89–93.
Lusher, A. L., Mchugh, M., Thompson, R. C., 2013.
Occurence of
microplastics in the gastrointestinal tract of pelagic and demersal fish from
the English Channel. Marine Pollut. Bull. 67, 94–99.
Manupriya, 2019.
Threatened and undocumented sea snakes of India. https://india.mongabay.com/2019/03/threatened-and-undocumented-sea-snakes-of-india/
Milton, D.A., 2001.
Assessing the susceptibility to fishing of populations
of rare trawl bycatch: sea snakes caught by Australia’s Northern Prawn
Fishery. Biol. Conserv. 101(3), 281–290.
Murthy, T. S. N., 1977.
On sea snakes occurring in Madras waters. J.
Marine Biol. Assoc. India 19, 68–72.
Murthy, T. S. N., Rao, K. R., 1988.
Snake of the Chilka lake. Orissa,
India. The Snake 20, 67–73.
Muthukumaran, M., Rao, A. B. V., Alexander, R., 2015.
Threats of passive
fishing activities on sea snakes, Enhydrinaschistosa (Daudin, 1803) of Pudu
cherry coast, India. Int. J. Pure Appl. Zool. 3 (1), 53–58.
Padate, V. P., Baragi, L. V., Rivonker, C. U. 2009.
Biological aspects of
sea snakes caught incidentally by commercial trawlers off Goa, west coast of
India. J. Threatened Taxa 1(12), 609–616.
Palot, M. J., Radhakrishnan, C. 2010.
First record of Yellowbellied Sea
Snake Pelamisplaturus (Linnaeus, 1766) (Reptilia: Hydrophiidae) from a riverine
tract in northern Kerala, India. J. Threatened Taxa 2(9), 1175–1176.
Rees, G., Pond, K., 1995.
Marine litter monitoring programmes – a review
of methods with special reference to national surveys. Marine Pollut.
Bull. 30, 103–108.
https://doi.org/10.1016/0025-326X(94)00192-C
Reid, H.A., Lim, K.J., 1957.
Sea-snake Bite. British Med. J. 2(5056),
p. 1266.
Rezaie-Atagholipour, M., Ghezellou, P., Hesni, M. A., Dakhteh, S.M.H.,
Ahmadian, H., Vidal, N., 2016.
Sea snakes (Elapidae, Hydrophiinae) in their
westernmost extent: an updated and illustrated checklist and key to the species
in the Persian Gulf and Gulf of Oman. Zoo Keys 622, 129–164.
https://doi.org/10.3897/zookeys.622.9939
Ribic, C.A., Johnson, S.W., Cole, C.A., 1997.
Distribution, type,
accumulation, and source of marine debris in the United States,
1989–1993. [In:] Coe, J., Rogers, D. (eds.), Marine Debris: Sources,
Impacts, and Solutions. Springer-Verlag, New York, 35–47.
Rochman, C. M., Lewison, R. L., Eriksen, M., Allen, H., Cook, A. M., Teh, S, J,
2014.
Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an
indicator of plastic contamination in marine habitats. Sci. Total Environ.
476–477, 622–633.
Ryan, P.G., 2018.
Entanglement of birds in plastics and other synthetic
materials. Marine Pollut. Bull. 135, 159–164.
Ryan, P.G., Moore, C.J., Vanfraneker, J.A., Moloney, C.L., 2009.
Monitoring
the abundance of plastic debris in the marine environment. Philosoph.
Transac. Royal Soc. B 364, 1999–2012.
Sherratt, E., Rasmussen, A.R. And Sanders, K.L., 2018.
Trophic
specialization drives morphological evolution in sea snakes. Royal Soc.
Open Sci. 5(3), 172141.
Thushari, G. G. N., Senevirathna, J. D. M., 2020.
Plastic pollution in the
marine environment. Heliyon 6(8), e04709.
https://doi.org/10.1016/j.heliyon.2020.e04709
Toriba, M., 1994.
Sea snakes of Japan. [In:] Gopalakrishnakone, P.
(ed.), Sea snake toxinology, Singapore Univ. Press, 206–211.
Udyawer, V., Goiran, C., Shine, R., 2021.
Peaceful coexistence between
people and deadly wildlife: Why are recreational users of the ocean so rarely
bitten by sea snakes? People and Nature.
Udyawer, V., Read, M. A., Hamann, M., Simpfendorfer, C.A., Heupel, M.R., 2013.
First record of sea snake (Hydrophis elegans, Hydrophiinae) entrapped in
marine debris. Marine Pollut. Bull. 73(1), 336–8.
https://doi.org/10.1016/j.marpolbul.2013.06.023
Udyawer, V., Read, M., Hamann, M., Heupel, M.R., Simpfendorfer, C.A., 2016.
Importance of shallow tidal habitats as refugia from trawl fishing for sea
snakes. J. Herpetology 50(4), 527–533.
Van Cauwenberghe, L., Vanreusel, A., Mees, J., Janssen, C. R., 2013.
Microplastic pollution in deep-sea sediments. Environ. Pollut. 182,
495–499.
https://doi.org/10.1016/j.envpol.2013.08.013
Wallace, N., 1985.
Debris entanglement in the marine environment: A
review. Proc. Workshop on the Fate and Impact of Marine Debris, 259–277.
NOAA Technical Memorandum, NMFS, SWFC 54. Warrel, D.A., 1994.
Sea snake
bites in the Asia-Pacific region. [In:] Gopalakrishnakone, P. (ed.), Sea
snake toxinology, Singapore Univ. Press, 1–36.
Werner, S., Budziak, A., Van Franeker, J.A., Galgani, F., Hanke, G., Maes, T.,
Matiddi, M., Nilsson, P., Oosterbaan, L., Priestland, E., Thompson, R., 2016.
Harm caused by marine litter. MSFD GES TG Marine Litter – Thematic
Rep. No. EUR 28317. European Union.
https:doi.org/10.2788/690366
Wilcox, C., Van Sebille, E., Hardesty, B. D., 2018.
Marine debris modeling:
How the movement of debris connects ocean plastics to ecological impacts.
Front. Ecol. Environ. 16(3), 145–152.
Wright, S. L., Thompson, R. C., Galloway, T. S., 2013.
The physical impacts
of microplastics on marine organisms: a review. Environ. Pollut. 178,
483–492.
https://doi.org/10.1016/j.envpol.2013.02.031
Corrigendum
Corrigendum to "Some probabilistic properties of surf parameter" by Dag Myrhaug [Oceanologia 62(3) 2020, 395-401. https://doi.org/10.1016/j.oceano.2020.02.003]
Oceanologia, 67 (2)/2025, 67210, 7 pp.
Dag Myrhaug
Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway;
e-mail: dag.myrhaug@ntnu.no (D. Myrhaug)