Oceanologia No. 67 (1) / 25
Original research article
-
Vertical distribution of heterotrophic nanoflagellates in the Baltic Proper: Kasia Piwosz, Anetta Ameryk, Klaudia Wdówka, Marlena Mordec, Uroosa, Anastasiya Chuvakova, Sohrab Khan, Jared Vincent Lacaran
-
Impact of Indian Ocean Dipole on the mesoscale eddies and their energy in the Bay of Bengale: Navin Chandra, Vimlesh Pant
-
Attribution of alterations in coastal processes in the southern and eastern Baltic Sea to climate change-driven modifications of coastal drivers: Maris Eelsalu, Tarmo Soomere, Kevin Parnell, Maija Viška
-
Digital Information System for the Polish Marine Areas — Modelling of Structures and Dynamics of Physical Processes in the Southern Baltic: Lidia Dzierzbicka-Głowacka, Dawid Dybowski, Maciej Janecki, Artur Nowicki
-
Development and validation of a high-resolution hydrodynamic model for the Polish Marine Area: Dawid Dybowski, Maciej Janecki, Artur Nowicki, Jaromir Jakacki, Lidia Dzierzbicka-Głowacka
-
Note on estimating air-sea flux of CO2 using mean wind: Dag Myrhaug
-
Myoxocephalus scorpius – liver nematodes and diet (pilot studies from Polish waters): Katarzyna Nadolna-Ałtyn, Joanna Pawlak, Marcin Kuciński
-
Integrative biomarker approach to decode seasonal variation in biomarker responses of Scylla serrata and Penaeus monodon from Sundarbans estuarine system: Sritama Baag, Sumit Mandal
-
Carbonaceous aerosol particle sources in Manila North Port and the urban environment: Touqeer Gill, Simonas Kecorius, Kamilė Kandrotaitė, Vadimas Dudoitis, Leizel Madueño, Alfred Wiedensohler, Laurent Poulain, Edgar A. Vallar, Maria Cecilia D. Galvez, Steigvilė Byčenkienė, Kristina Plauškaitė
-
Elucidating the variation of phytoplankton pigments in estuarine ecosystem: Reshmitha Ramakrishnan, Keisham Sarjit Singh, Temjensangba Imchen
-
Climate change and its effects on marine food web with the concentration of pelagic fishes in the northern Arabian Sea: Imtiaz Kashani, Sher Khan Panhwar, Kishwar Kumar Kachhi
Original research article
Vertical distribution of heterotrophic nanoflagellates in the Baltic Proper
Oceanologia, 67 (1)/2025, 67101, 13 pp.
https://doi.org/10.5697/JMZS3739
Kasia Piwosz1,*, Anetta Ameryk1, Klaudia Wdówka1, Marlena Mordec1, Uroosa1,2, Anastasiya Chuvakova1, Sohrab Khan1, Jared Vincent Lacaran1
1Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: kpiwosz@mir.gdynia.pl
2Institute of Oceanology of Polish Academy of Sciences, Sopot, Poland
*corresponding author
Keywords:
Heterotrophic nanoflagellates; Microbial food web; Baltic Sea; Marine Stramenopiles (MAST); Cryptophytes CRY-1;
Kathablepharidacea; CARD-FISH; Fluorescence in situ hybridisation
Received: 14 August 2024; revised: 29 October 2024; accepted: 6 November 2024.
Highlights
- The abundance of heterotrophic nanoflagellates (HNFs) was the highest in May
- Cry1 cryptophytes, Marine Stramenopiles from MAST-2 lineage, and Katablepharideacea were the most abundant groups
- They were present in surface and anoxic bottom waters
Abstract
Heterotrophic nanoflagellates (HNF) are key players in marine microbial food webs, but their distribution remains
poorly understood. We investigated abundance patterns of eleven HNF lineages in the Baltic Proper from May to
September 2021 using Catalysed Reporter Deposition-Fluorescence In Situ Hybridisation (CARD-FISH). HNF were
most abundant in surface waters, where they reached above 12,000 cells ml−1, in May. Median cell size varied between 3.3–4.1 μm. CRY-1 cryptophytes, Marine Stramenopiles from MAST-2 lineage, and Kathablepharidacea dominated
the HNF community in surface and suboxic/sulphidic waters below the halocline. Our results make an important
contribution to the understanding of HNF ecology in the Baltic Sea.
References
Amann, R., Fuchs, B.M., 2008.
Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
Nat. Rev. Microbiol. 6,339–348.
https://doi.org/10.1038/nrmicro1888
Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl,
D.A., 1990.
Combination of 16S ribosomal-RNA-targeted oligonucleotide
probes with flowcytometry for analyzing mixed microbial populations. Appl.
Environ. Microbiol. 56, 1919–1925.
https:
//doi.org/10.1128/aem.56.6.1919-1925.1990
Ameryk, A., Podgorska, B., Witek, Z., 2005.
The dependence between
bacterial production and environmental conditions in the Gulf of Gdansk.
Oceanologia 47, 27-45.
Anderson, R., Winter, C., Jürgens, K., 2012.
Protist grazing and viral
lysis as prokaryotic mortality factors at Baltic Sea oxic–anoxic
interfaces. Mar. Ecol. Prog. Ser. 467, 1–14.
https://doi.org/10.3354/meps10001
Anderson, R., Wylezich, C., Glaubitz, S., Labrenz, M., Jurgens, K., 2013.
Impact of protist grazing on a key bacterial group for biogeochemical
cycling in Baltic Sea pelagic oxic/anoxic interfaces. Environ. Microbiol.
15, 1580–1594.
https://doi.org/10.1111/1462-2920.12078
Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L., Thingsted, F.,
1983.
The ecological role of water-column microbes in the sea. Mar.
Ecol. Prog. Ser. 10, 257–263.
Azam, F., Malfatti, F., 2007.
Microbial structuring of marine
ecosystems. Nature Rev. Microbiol. 5, 782–791.
https://doi.org/10.1038/nrmicro1747
Behrens, S., Ruhland, C., Inacio, J., Huber, H., Fonseca, A., Spencer-Martins,
I., Fuchs, B.M., 2003.
In Situ Accessibility of Small-Subunit rRNA of
Members of the Domains Bacteria, Archaea and Eucarya to Cy3-Labeled
Oligonucleotide Probes. Appl. Environ. Microbiol. 69, 1748–1758.
https://doi.org/10.1128/AEM.69.3.1748-1758.2003
Bennke, C.M., Reintjes, G., Schattenhofer, M., Ellrott, A., Wulf, J., Zeder,
M., Fuchs, B.M., 2016.
Modification of a High-Throughput Automatic
Microbial Cell Enumeration System for Shipboard Analyses. Appl. Environ.
Microbiol. 82, 3289–3296.
https://doi.org/10.1128/aem.03931-15
Bergen, B., Herlemann, D.P., Labrenz, M., Jürgens, K., 2014.
Distribution of the verrucomicrobial clade Spartobacteria along a salinity
gradient in the Baltic Sea. Environ. Microbiol. Rep. 6, 625–630.
https://doi.org/10.1111/1758-2229.12178
Bochdansky, A., Clouse, M., Herndl, G., 2017.
Eukaryotic microbes,
principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic
marine snow. ISME J. 11, 362–373.
https://doi.org/10.1038/ismej.2016.113
Bochdansky, A.B., Huang, L., 2010.
Re-evaluation of the EUK516 probe for
the domain Eukarya results in a suitable probe for the detection of
kinetoplastids, an important group of parasitic and free-living
flagellates. J. Eukaryot. Microbiol. 57, 229–235.
https://doi.org/10.1111/j.1550-7408.2010.00470.x
Coleman, A.W., 1980.
Enhanced detection of bacteria in natural environments
by fluorochrome staining of DNA. Limnol. Oceanogr. 25, 948–951.
https://doi.org/10.4319/lo.1980.25.5.0948
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara,
E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac,
S., Colin, S., Aury, J.M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen,
S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O., LimaMendez, G., Lukes,
J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F.,
Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas,
S.G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone,
D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M.E., Speich, S.,
Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., Karsenti, E., Tara
Oceans, C., 2015.
Eukaryotic plankton diversity in the sunlit ocean.
Science 348, 1261605.
https://doi.org/10.1126/science.1261605
del Campo, J., Kolisko, M., Boscaro, V., Santoferrara, L.F., Nenarokov, S.,
Massana, R., Guillou, L., Simpson, A., Berney, C., de Vargas, C., Brown, M.W.,
Keeling, P.J., Wegener Parfrey, L., 2018.
EukRef: Phylogenetic curation of
ribosomal RNA to enhance understanding of eukaryotic diversity and
distribution. PLoS Biol. 16, e2005849.
https://doi.org/10.1371/journal.pbio.2005849
Flegontova, O., Flegontov, P., Malviya, S., Audic, S., Wincker, P., de Vargas,
C., Bowler, C., Lukeš, J., Horák, A., 2016
. Extreme diversity of
diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065.
https://doi.org/10.1016/j.cub.2016.09.031
Flegontova, O., Flegontov, P., Malviya, S., Poulain, J., de Vargas, C., Bowler,
C., Lukeš, J., Horák, A., 2018
. Neobodonids are dominant kinetoplastids
in the global ocean. Environ. Microbiol. 20, 878–889.
https://doi.org/10.1111/1462-2920.14034
Giner, C.R., Forn, I., Romac, S., Logares, R., de Vargas, C., Massana, R.,
2016.
Environmental sequencing provides reasonable estimates of the
relative abundance of specific picoeukaryotes. Appl. Environ. Microbiol.
82, 4757–4766.
https://doi.org/10.1128/aem.00560-16
Grasshoff, K., Ehrhardt, M., Kremling, K., 1983.
Methods for sea water
analysis. Verlag Chemie GmbH, 419 pp.
Grujčić, V., Nuy, J.K., Salcher, M.M., Shabarova, T., Kasalický, V.,
Boenigk, J., Jensen, M., Šimek, K., 2018. Cryptophyta as major
bacterivores in freshwater summer plankton. ISME J. 12, 1668–1681. https://doi.org/10.1038/s41396-018-0057-5
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte,
C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R.,
Dunthorn, M., Edvardsen, B.,Holzmann, M., Kooistra, W., Lara, E., Le Bescot,
N., Logares, R., Mahe, F., Massana, R., Montresor, M., Morard, R., Not, F.,
Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D.,
Zimmermann, P., Christen, R., 2013. The Protist Ribosomal Reference
database (PR2): a catalog of unicellular eukaryote Small Sub-UnitrRNA s
equences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160
Herlemann, D.P.R., Labrenz, M., Juergens, K., Bertilsson, S., Waniek, J.J.,
Andersson, A.F., 2011. Transitions in bacterial communities along the 2000
km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579. https://doi.org/10.1038/ismej.2011.41
Herlemann, D.P.R., Woelk, J., Labrenz, M., Jürgens, K., 2014. Diversity
and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity
gradient. Syst. Appl. Microbiol. 37, 601–604. https://doi.org/10.1016/j.syapm.2014.09.002
Hu, Y.O.O., Karlson, B., Charvet, S., Andersson, A.F., 2016. Diversity of
pico- to mesoplankton along the 2000 km salinity gradient of the Baltic
Sea. Front. Microbiol. 7, 679. https://doi.org/10.3389/fmicb.2016.00679
Jürgens, K., Massana, R., 2008. Protistan grazing in marine
bacterioplankton. [In:] Kirchman, D.L. (Ed.), Microbial Ecology of the
Oceans. Wiley-Blackwell, New Jersey, 383–441.
Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service:
multiple sequence alignment, interactive sequence choice and
visualization. Brief Bioinform. 20, 1160–1166. https://doi.org/10.1093/bib/bbx108
Kavagutti, V.S., Bulzu, P.-A., Chiriac, C.M., Salcher, M.M., Mukherjee, I.,
Shabarova, T., Grujčić, V., Mehrshad, M., Kasalický, V., Andrei, A.-S.,
Jezberová, J., Seďa, J., Rychtecký, P., Znachor, P., Šimek, K., Ghai,
R., 2023. High-resolution metagenomic reconstruction of the freshwater
spring bloom. Microbiome 11, 15. https://doi.org/10.1186/s40168-022-01451-4
Lapoussière, A., Michel, C., Starr, M., Gosselin, M., Poulin, M., 2011.
Role of free-living and particle-attached bacteria in the recycling and
export of organic material in the Hudson Bay system. J. Marine Syst. 88,
434–445. https://doi.org/10.1016/j.jmarsys.2010.12.003
Lim, E.L., Dennett, M.R., Caron, D.A., 1999. The ecology of Paraphysomonas
imperforata based on studies employing oligonucleotide probe identification in
coastal water samples and enrichment cultures. Limnol. Oceanogr. 44,
37–51. https://doi.org/10.4319/lo.1999.44.1.0037
Logares, R., Lindstrom, E.S., Langenheder, S., Logue, J.B., Paterson, H.,
Laybourn-Parry, J., Rengefors, K., Tranvik, L., Bertilsson, S., 2013.
Biogeography of bacterial communities exposed to progressive long-term
environmental change. ISME J. 7, 937–948.
https://doi.org/10.1038/ismej.2012.168
Lopez-Garcia, P., Rodriguez-Valera, F.,
Pedros-Alio, C., Moreira, D., 2001. Unexpected diversity of small eukaryotes in
deep-sea Antarctic plankton. Nature 409, 603–607. https://doi.org/10.1038/35054537
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar,
Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber,
S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A.,
Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R.,
Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A.,
Schleifer, K.H., 2004. ARB: a software environment for sequence data.
Nucleic Acids Res. 32, 1363–1371. https://doi.org/10.1093/nar/gkh293
Mangot, J.F., Lepere, C., Bouvier, C., Debroas, D., Domaizon, I., 2009.
Community structure and dynamics of small eukaryotes targeted by new
oligonucleotide probes: new insight into the lacustrine microbial food
web. Appl. Environ. Microbiol. 75, 6373–6381. https://doi.org/10.1128/AEM.00607-09
Massana, R., Gobet, A., Audic, S., Bass, D., Bittner, L., Boutte, C.,
Chambouvet, A., Christen, R., Claverie, J.-M., Decelle, J., Dolan, J.,
Dunthorn, M., Edvardsen, B., Forn, I., Forster, D., Guillou, L., Jaillon, O.,
Kooistra, W., Logares, R., de Vargas, C., 2015. Marine protist diversity in
European coastal waters and sediments as revealed by high-throughput
sequencing. Environ. Microbiol. 17, 4035–4049. https://doi.org/10.1111/1462-2920.12955
Massana, R., Guillou, L., Diez, B., Pedros-Alio, C., 2002. Unveiling the
Organisms behind Novel Eukaryotic Ribosomal DNA Sequences from the Ocean. Appl.
Environ. Microbiol. 68, 4554–4558. https://doi.org/10.1128/AEM.68.9.4554-4558.2002
Massana, R., Guillou, L., Terrado, R., Forn, I., Pedros-Alio, C., 2006a.
Growth of uncultured heterotrophic flagellates in unamended seawater
incubations. Aquat. Microb. Ecol. 45, 171–180. https://doi.org/10.3354/ame045171
Massana, R., Terrado, R., Forn, I., Lovejoy, C., Pedros-Alio, C., 2006b.
Distribution and abundance of uncultured heterotrophic flagellates in the
world oceans. Environ. Microbiol. 8, 1515–1522. https://doi.org/10.1111/j.1462-2920.2006.01042.x
Mazur-Marzec, H., Andersson, A.F., Błaszczyk, A., Dąbek, P., Górecka, E.,
Grabski, M., Jankowska, K., JurczakKurek, A., Kaczorowska, A.K., Kaczorowski,
T., Karlson, B., Kataržytė, M., Kobos, J., Kotlarska, E., Krawczyk, B.,
Łuczkiewicz, A., Piwosz, K., Rybak, B., Rychert, K., Sjöqvist, C., Surosz,
W., Szymczycha, B., Toruńska-Sitarz, A., Węgrzyn, G., Witkowski, A.,
Węgrzyn, A., 2024. Biodiversity of microorganisms in the Baltic Sea: the
power of novel methods in the identification of marine microbes. FEMS
Microbiol. Rev. 48(5), fuae024. https://doi.org/10.1093/femsre/fuae024
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von
Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: New Models and Efficient
Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol.
37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
Moon-van der Staay, S.Y., De Wachter, R., Vaulot, D., 2001. Oceanic 18S
rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity.
Nature 409, 607–610. https://doi.org/10.1038/35054541
Mukherjee, I., Grujčić, V., Salcher, M.M., Znachor, P., Seďa, J.,
Devetter, M., Rychtecký, P., Šimek, K., Shabarova, T., 2024.
Integrating depth-dependent protist dynamics and microbial interactions in
spring succession of a freshwater reservoir. Environ. Microbiome 19, 31.
https://doi.org/10.1186/s40793-024-00574-5
Mukherjee, I., Hodoki, Y., Nakano, S.-i., 2015. Kinetoplastid
flagellates overlooked by universal primers dominate in the oxygenated
hypolimnion of Lake Biwa, Japan. FEMS Microbiol. Ecol. 91, fiv083. https://doi.org/10.1093/femsec/fiv083
Mukherjee, I., Salcher, M.M., Andrei, A.-Ş., Kavagutti, V.S., Shabarova, T.,
Grujčić, V., Haber, M., Layoun, P., Hodoki, Y., Nakano, S.-i., Šimek, K.,
Ghai, R., 2020. A freshwater radiation of diplonemids. Environ.
Microbiol. 22, 4658–4668. https://doi.org/10.1111/1462-2920.15209
Piwosz, K., 2019. Weekly dynamics of abundance and size structure of
specific nanophytoplankton lineages in coastal waters (Baltic Sea).
Limnol. Oceanogr. 64, 2172–2186. https://doi.org/10.1002/lno.11177
Piwosz, K., Całkiewicz, J., Gołębiewski, M., Creer, S., 2018. Diversity
and community composition of pico- and nanoplanktonic protists in the Vistula
River estuary (Gulf of Gdańsk, Baltic Sea). Estuar. Coast. Shelf Sci.
207, 242–249. https://doi.org/10.1016/j.ecss.2018.04.013
Piwosz, K., Kownacka, J., Ameryk, A., Zalewski, M., Pernthaler, J., 2016.
Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon
(Vistula Lagoon, Baltic Sea). J. Phycol. 52, 626–637. https://doi.org/10.1111/jpy.12424
Piwosz, K., Mukherjee, I., Salcher, M.M., Grujčić, V., Šimek, K.,
2021. CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan
Ecology. Front. Microbiol. 12, 640066. https://doi.org/10.3389/fmicb.2021.640066
Piwosz, K., Pernthaler, J., 2010. Seasonal population dynamics and trophic role
of planktonic nanoflagellates in coastal surface waters of the Southern Baltic
Sea. Environ. Microbiol. 12, 364–377.
https://doi.org/10.1111/j.1462-2920.2009.02074.x
Piwosz, K., Pernthaler, J., 2011. Enrichment of omnivorous cercozoan
nanoflagellates from coastal Baltic Sea waters. PLoS ONE 6, e24415. https://doi.org/10.1371/journal.pone.0024415
Piwosz, K., Shabarova, T., Pernthaler, J., Posch, T., Šimek, K., Porcal, P.,
Salcher, M.M., 2020. Bacterial and eukaryotic small-subunit amplicon data
do not provide a quantitative picture of microbial communities, but they are
reliable in the context of ecological interpretations. mSphere 5,
e00052-00020. https://doi.org/10.1128/msphere.00052-20
Santoferrara, L., Burki, F., Filker, S., Logares, R., Dunthorn, M., McManus,
G.B., 2020. Perspectives from Ten Years of Protist Studies by
High-Throughput Metabarcoding. J. Eukaryot. Microbiol. 67, 612–622. https://doi.org/10.1111/jeu.12813
Schoenle, A., Hohlfeld, M., Hermanns, K., Mahé, F., de Vargas, C., Nitsche,
F., Arndt, H., 2021. High and specific diversity of protists in the
deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and
foraminiferans. Commun. Biol. 4, 501. https://doi.org/10.1038/s42003-021-02012-5
Steenwyk, J.L., Buida, T.J., 3rd, Li, Y., Shen, X.-X., Rokas, A., 2020. it
ClipKIT: A multiple sequence alignment trimming software for accurate
phylogenomic inference. PLoS Biol. 18, e3001007. https://doi.org/10.1371/journal.pbio.3001007
Strom, L.S., Morello, T.A., Kelley, J.B., 1998. Protozoan size influences
algal pigment degradation during grazing. Mar. Ecol. Prog. Ser. 164,
189–197.
Tedersoo, L., Hosseyni Moghaddam, M.S., Mikryukov, V., Hakimzadeh, A., Bahram,
M., Nilsson, R.H., Yatsiuk, I., Geisen, S., Schwelm, A., Piwosz, K., Prous, M.,
Sildever, S., Chmolowska, D., Rueckert, S., Skaloud, P., Laas, P., Tines, M.,
Jung, J.-H., Choi, J.H., Alkahtani, S., Anslan, S., 2024. EUKARYOME: the
rRNA gene reference database for identification of all eukaryotes.
Database 2024, baae043. https://doi.org/10.1093/database/baae043
Telesh, I., Schubert, H., Skarlato, S., 2013. Life in the salinity
gradient: Discovering mechanisms behind a new biodiversity pattern.
Estuar. Coast. Shelf Sci. 135, 317–327. https://doi.org/10.1016/j.ecss.2013.10.013
Telesh, I.V., Schubert, H., Skarlato, S.O., 2011. Revisiting Remane’s
concept: evidence for high plankton diversity and a protistan species maximum
in the horohalinicum of the Baltic Sea. Mar. Ecol. Prog. Ser. 421, 1–11.
https://doi.org/10.3354/meps08928
Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., et al., A
communal catalogue reveals Earth’s multiscale microbial diversity.
Nature 551, 457–463. https://doi.org/10.1038/nature24621
Vaulot, D., Geisen, S., Mahé, F., Bass, D., 2022. pr2-primers: An 18S
rRNA primer database for protists. Mol. Ecol. Resour. 22, 168–179. https://doi.org/10.1111/1755-0998.13465
Villarino, E., Watson, J.R., Jönsson, B., Gasol, J.M., Salazar, G., Acinas,
S.G., Estrada, M., Massana, R., Logares, R., Giner, C.R., Pernice, M.C.,
Olivar, M.P., Citores, L., Corell, J., Rodrı́guez-Ezpeleta, N., Acuña,
J.L., Molina-Ramı́rez, A., González-Gordillo, J.I., Cózar, A., Martı́,
E., Cuesta, J.A., Agustı́, S., Fraile-Nuez, E., Duarte, C.M., Irigoien, X.,
Chust, G., 2018. Large-scale ocean connectivity and planktonic body
size. Nat. Commun. 9, 142. https://doi.org/10.1038/s41467-017-02535-8
Weber, F., Anderson, R., Foissner, W., Mylnikov, A.P., Jürgens, K., 2014.
Morphological and molecular approaches reveal highly stratified protist
communities along Baltic Sea pelagic redox gradients. Aquat. Microb. Ecol.
73, 1–16. https://doi.org/10.3354/ame01702
Witek, Z., Ochocki, S., Maciejowska, M., Pastuszak, M., Nakonieczny, J.,
Podgorska, B., Kownacka, J.M., Mackiewicz, T., Wrzesinska-Kwiecien, M., 1997.
Phytoplankton primary production and its utilization by the pelagic
community in the coastal zone of the Gulf of Gdańsk (southern Baltic).
Mar. Ecol. Prog. Ser. 148, 169–186. https://doi.org/10.3354/meps148169
Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E.,
Keeling, P.J., 2015. Rethinking the marine carbon cycle: Factoring in the
multifarious lifestyles of microbes. Science 347, 1257594. https://doi.org/10.1126/science.1257594
Wylezich, C., Herlemann, D.P.R., Jürgens, K., 2018. Improved 18S rDNA
amplification protocol for assessing protist diversity in oxygen-deficient
marine systems. Aquat. Microb. Ecol. 81, 83–94. https://doi.org/10.3354/ame01864
Wylezich, C., Juergens, K., 2011. Protist diversity in suboxic and sulfidic
waters of the Black Sea. Environ. Microbiol. 13, 2939–2956. https://doi.org/10.1111/j.1462-2920.2011.02569.x
Zillén, L., Conley, D.J., Andrén, T., Andrén, E., Björck, S., 2008.
Past occurrences of hypoxia in the Baltic Sea and the role of climate
variability, environmental change and human impact. Earth-Sci. Rev. 91,
77–92. https://doi.org/10.1016/j.earscirev.2008.10.001
Impact of Indian Ocean Dipole on the mesoscale eddies and their energy in the Bay of Bengal
Oceanologia, 67 (1)/2025, 67102, 15 pp.
https://doi.org/10.5697/LOZC6742
https://doi.org/10.5697/ygvi7171
Navin Chandra1,2, Vimlesh Pant1,*
1Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India;
e-mail: vimlesh@cas.iitd.ac.in (V. Pant)
2National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India
*corresponding author
Keywords:
Mesoscale eddies; Indian Ocean Dipole; Bay of Bengal; Numerical Ocean model; Eddy kinetic energy
Received: 19 January 2024; revised: 2 November 2024; accepted: 6 November 2024.
Highlights
- Indian Ocean Dipole enhances several eddies in the Bay of Bengal.
- The contribution of eddies to the Bay of Bengal total energy doubles in IOD.
- Eddie’s lifespan reduces during IOD years more than in normal years.
Abstract
Oceanic mesoscale eddies and their physical and dynamical characteristics are studied using a high-resolution numerical model in the Bay of Bengal (BoB), a semi-enclosed bay based in the northeast Indian Ocean (IO). The formation, duration, and kinetic energy of these eddies are primarily influenced by the intensity of surface currents, upper-ocean stratification, and regional bathymetry. The Indian Ocean Dipole (IOD) is a dominant mode of interannual variability in the IO, which influences ocean currents in the BoB apart from the well-known dipole observed in sea surface temperature between eastern and western IO. The high-resolution numerical experiments with positive and negative phases of IOD atmospheric forcing reveal the influence of anomalous circulation prevailing in the negative IOD (nIOD) and positive IOD (pIOD) on mesoscale eddies and their kinetic energy in the BoB. A notable disparity in the eddies’
characteristics was observed in both nIOD and pIOD and compared to normal years. In pIOD or nIOD, the number of eddies enhanced but their average lifespan reduced in the BoB. The increase in eddies was higher (38%) in nIOD than pIOD (11.2%) when compared to normal (non-IOD) years. The contribution of eddies to the total eddy kinetic energy
(EKE) of the BoB increased from about 10% in normal years to about 25% in either of the IOD phases. The largest influence of IOD is seen at the thermocline depth. Within the BoB, the Andaman Sea region experienced the largest variations in eddies during IOD years.
References
Anila, S., Gnanaseelan, C., 2023.
Coupled feedback between the tropics and
subtropics of the Indian Ocean with emphasis on the coupled interaction between
IOD and SIOD. Glob. Planet. Change 223, 104091.
https://doi.org/10.1016/j.gloplacha.2023.104091
Aparna, S.G., McCreary, J.P., Shankar, D., Vinayachandran, P.N., 2012.
Signatures of Indian Ocean Dipole and El Niño–Southern Oscillation
events in sea level variations in the Bay of Bengal. J. Geophys. Res.
Oceans 117, 2012JC008055.
https://doi.org/10.1029/2012JC008055
Arakawa, A., Lamb, V.R., 1977.
Computational Design of the Basic Dynamical
Processes of the UCLA General Circulation Model, [in:] Methods in
Computational Physics: Advances in Research and Applications. Elsevier,
173–265.
https://doi.org/10.1016/B978-0-12-460817-7.50009-4
Ashok, K., Guan, Z., Saji, N.H., Yamagata, T., 2004.
Individual and
Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer
Monsoon. J. Clim. 17, 3141–3155.
https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2
Behera, S.K., Krishnan, R., Yamagata, T., 1999.
Unusual ocean–atmosphere
conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett.
26, 3001–3004.
https://doi.org/10.1029/1999GL010434
Behera, S.K., Ratnam, J.V., 2018.
Quasi-asymmetric response of the Indian
summer monsoon rainfall to opposite phases of the IOD. Sci. Rep. 8, 123.
https://doi.org/10.1038/s41598-017-18396-6
Carton, J.A., Chepurin, G.A., Chen, L., 2018.
SODA3: A New Ocean Climate
Reanalysis. J. Clim. 31, 6967–6983.
https://doi.org/10.1175/JCLI-D-18-0149.1
Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., Pizarro, O., 2011.
Vertical structure of mesoscale eddies in the eastern South Pacific Ocean:
A composite analysis from altimetry and Argo profiling floats. J. Geophys.
Res. Oceans 116, 2011JC007134.
https://doi.org/10.1029/2011JC007134
Chanda, A., Das, S., Mukhopadhyay, A., Ghosh, A., Akhand, A., Ghosh, P., Ghosh,
T., Mitra, D., Hazra, S., 2018.
Sea surface temperature and rainfall
anomaly over the Bay of Bengal during the El Niño-Southern Oscillation and the
extreme Indian Ocean Dipole events between 2002 and 2016. Remote Sens.
Appl. Soc. Environ. 12, 10–22.
https://doi.org/10.1016/j.rsase.2018.08.001
Chassignet, E.P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel,
D.B., Ma, C.-C., Mehra, A., Paiva, A.M., Sirkes, Z., 2000.
DAMÉE-NAB: the
base experiments. Dynam. Atmos. Oceans 32, 155–183.
https://doi.org/10.1016/S0377-0265(00)00046-4
Chatterjee, A., Shankar, D., Shenoi, S.S.C., Reddy, G.V., Michael, G.S.,
Ravichandran, M., Gopalkrishna, V.V., Rama Rao, E.P., Udaya Bhaskar, T.V.S.,
Sanjeevan, V.N., 2012.
A new atlas of temperature and salinity for the
North Indian Ocean. J. Earth Syst. Sci. 121, 559–593.
https://doi.org/10.1007/s12040-012-0191-9
Chelton, D.B., Schlax, M.G., Samelson, R.M., 2011.
Global observations of
nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167–216.
https://doi.org/10.1016/j.pocean.2011.01.002
Chelton, D.B., Schlax, M.G., Samelson, R.M., De Szoeke, R.A., 2007.
Global
observations of large oceanic eddies. Geophys. Res. Lett. 34,
2007GL030812.
https://doi.org/10.1029/2007GL030812
Chen, G., Han, G., 2019.
Contrasting Short? Lived With Long? Lived
Mesoscale Eddies in the Global Ocean. J. Geophys. Res. Oceans 124,
3149–3167.
https://doi.org/10.1029/2019JC014983
Chen, G., Li, Y., Xie, Q., Wang, D., 2018.
Origins of Eddy Kinetic Energy
in the Bay of Bengal. J. Geophys. Res. Oceans 123, 2097–2115.
https://doi.org/10.1002/2017JC013455
Chen, X., Qiu, B., Chen, S., Qi, Y., Du, Y., 2015.
Seasonal eddy kinetic
energy modulations along the North Equatorial Countercurrent in the western
Pacific. J. Geophys. Res. Oceans 120, 6351–6362.
https://doi.org/10.1002/2015JC011054
Copernicus Climate Change Service, 2023.
Complete ERA5 global atmospheric
reanalyis. https://doi.org/10.24381/CDS.143582CF
Dai, A., 2017.
Dai and Trenberth Global River Flow and Continental
Discharge Dataset. https://doi.org/10.5065/D6V69H1T
Dandapat, S., Chakraborty, A., Kuttippurath, J., 2018.
Interannual
variability and characteristics of the East India Coastal Current associated
with Indian Ocean Dipole events using a high resolution regional ocean
model. Ocean Dynam. 68, 1321–1334.
https://doi.org/10.1007/s10236-018-1201-5
Eigenheer, A., Quadfasel, D., 2000.
Seasonal variability of the Bay of
Bengal circulation inferred from TOPEX/Poseidon altimetry. J. Geophys.
Res. Oceans 105, 3243–3252.
https://doi.org/10.1029/1999JC900291
Epps, B., 2017.
Review of Vortex Identification Methods. 55th AIAA
Aerospace Sciences Meeting.
https://doi.org/10.2514/6.2017-0989
Guo, H., Zhan, C., Ning, L., Li, Z., Hu, S., 2022.
Evaluation and
comparison of CMIP6 and CMIP5 model performance in simulating the runoff.
Theor. Appl. Climatol. 149, 1451–1470.
https://doi.org/10.1007/s00704-022-04118-0
Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di
Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J.,
McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F.,
Sherwood, C.R., Signell, R.P., Warner, J.C., Wilkin, J., 2008.
Ocean
forecasting in terrain-following coordinates: Formulation and skill assessment
of the Regional Ocean Modeling System. J. Comput. Phys. 227, 3595–3624.
https://doi.org/10.1016/j.jcp.2007.06.016
Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli,
P., Shchepetkin, A.F., 2000.
Model evaluation experiments in the North
Atlantic Basin: simulations in nonlinear terrain-following coordinates.
Dynam. Atmos. Oceans 32, 239–281.
https://doi.org/10.1016/S0377-0265(00)00049-X
Halo, I., 2012.
The Mozambique Channel eddies: Characteristics and
mechanisms of formation. Univ. Cape Town.
Halo, I., Backeberg, B., Penven, P., Ansorge, I., Reason, C., Ullgren, J.E.,
2014.
Eddy properties in the Mozambique Channel: A comparison between
observations and two numerical ocean circulation models. Deep Sea Res. Pt.
II 100, 38–53.
https://doi.org/10.1016/j.dsr2.2013.10.015
Hormann, V., Centurioni, L.R., Gordon, A.L., 2019.
Freshwater export
pathways from the Bay of Bengal. Deep Sea Res. Pt. II 168, 104645.
https://doi.org/10.1016/j.dsr2.2019.104645
Isern-Fontanet, J., Garcı́a-Ladona, E., Font, J., 2006.
Vortices of the
Mediterranean Sea: An Altimetric Perspective. J. Phys. Oceanogr. 36,
87–103.
https://doi.org/10.1175/JPO2826.1
Jensen, T., Wijesekera, H., Nyadjro, E., Thoppil, P., Shriver, J., Sandeep,
K.K., Pant, V., 2016.
Modeling Salinity Exchanges Between the Equatorial
Indian Ocean and the Bay of Bengal. Oceanography 29, 92–101.
https://doi.org/10.5670/oceanog.2016.42
Ji, J., Ma, J., Dong, C., Chiang, J., Chen, D., 2020.
Regional Dependence
of Atmospheric Responses to Oceanic Eddies in the North Pacific Ocean.
Remote Sens. 12, 1161.
https://doi.org/10.3390/rs12071161
Large, W.G., McWilliams, J.C., Doney, S.C., 1994.
Oceanic vertical mixing:
A review and a model with a nonlocal boundary layer parameterization. Rev.
Geophys. 32, 363–403.
https://doi.org/10.1029/94RG01872
Lian, Z., Sun, B., Wei, Z., Wang, Y., Wang, X., 2019.
Comparison of Eight
Detection Algorithms for the Quantification and Characterization of Mesoscale
Eddies in the South China Sea. J. Atmospheric Ocean. Technol. 36,
1361–1380.
https://doi.org/10.1175/JTECH-D-18-0201.1
Lin, P., Liu, H., Ma, J., Li, Y., 2019.
Ocean mesoscale structureinduced
air–sea interaction in a high–resolution coupled model. Atmospheric
Ocean Sci. Lett. 12, 98–106.
https://doi.org/10.1080/16742834.2019.1569454
Marchesiello, P., McWilliams, J.C., Shchepetkin, A., 2003.
Equilibrium
Structure and Dynamics of the California Current System. J. Phys.
Oceanogr. 33, 753–783.
https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2
Nigam, T., Pant, V., Prakash, K.R., 2018.
Impact of Indian ocean dipole on
the coastal upwelling features off the southwest coast of India. Ocean
Dynam. 68, 663–676.
https://doi.org/10.1007/s10236-018-1152-x
Okubo, A., 1970.
Horizontal dispersion of floatable particles in the
vicinity of velocity singularities such as convergences. Deep Sea Res.
Oceanogr. Abstr. 17, 445–454.
https://doi.org/10.1016/0011-7471(70)90059-8
Penven, P., Echevin, V., Pasapera, J., Colas, F., Tam, J., 2005.
Average
circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System:
A modeling approach. J. Geophys. Res. Oceans 110, 2005JC002945.
https://doi.org/10.1029/2005JC002945
Rao, R.R., Girish Kumar, M.S., Ravichandran, M., Rao, A.R., Gopalakrishna,
V.V., Thadathil, P., 2010.
Interannual variability of Kelvin wave
propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay
of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea
Res. Part Oceanogr. Res. Pap. 57, 1–13.
https://doi.org/10.1016/j.dsr.2009.10.008
Sadhukhan, B., Chakraborty, A., 2023.
Role of local and remote forcing on
the decadal variability of Mixed Layer Depth in the Bay of Bengal. Dynam.
Atmospheres Oceans 102, 101349.
https://doi.org/10.1016/j.dynatmoce.2022.101349
Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999.
A
dipole mode in the tropical Indian Ocean. Nature 401, 360–363.
https://doi.org/10.1038/43854
Sandeep, K.K., Pant, V., 2018.
Evaluation of Interannual Simulations and
Indian Ocean Dipole Events During 2000–2014 from a Basin Scale General
Circulation Model. Pure Appl. Geophys. 175, 4579–4603.
https://doi.org/10.1007/s00024-018-1915-9
Shankar, D., Shetye, S.R., 1999.
Are interdecadal sea level changes along
the Indian coast influenced by variability of monsoon rainfall? J.
Geophys. Res. Oceans 104, 26031–26042.
https://doi.org/10.1029/1999JC900218
Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002.
The monsoon
currents in the north Indian Ocean. Prog. Oceanogr. 52, 63–120.
https://doi.org/10.1016/S0079-6611(02)00024-1
Shchepetkin, A.F., McWilliams, J.C., 2005.
The regional oceanic modeling
system (ROMS): a split–explicit, free– surface,
topography–following-coordinate oceanic model. Ocean Model. 9,
347–404.
https://doi.org/10.1016/j.ocemod.2004.08.002
Shchepetkin, A.F., McWilliams, J.C., 2003.
A method for computing
horizontal pressure–gradient force in an oceanic model with a nonaligned
vertical coordinate. J. Geophys. Res. Oceans 108, 2001JC001047.
https://doi.org/10.1029/2001JC001047
Shchepetkin, A.F., McWilliams, J.C., 1998.
Quasi-Monotone Advection
Schemes Based on Explicit Locally Adaptive Dissipation. Mon. Weather Rev.
126, 1541–1580.
https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2
Sherin, C.K., Sarma, V.V.S.S., Rao, G.D., Viswanadham, R., Omand, M.M., Murty,
V.S.N., 2018.
New to total primary production ratio (f-ratio) in the Bay of
Bengal using isotopic composition of suspended particulate organic carbon and
nitrogen. Deep Sea Res. Oceanogr. Res. Pap. 139, 43–54.
https://doi.org/10.1016/j.dsr.2018.06.002
Shetye, S.R., Gouveia, A.D., Shenoi, S.S.C., Sundar, D., Michael, G.S.,
Nampoothiri, G., 1993.
The western boundary current of the seasonal
subtropical gyre in the Bay of Bengal. J. Geophys. Res. Oceans 98,
945–954.
https://doi.org/10.1029/92JC02070
Smagorinsky, J., 1963.
General circulation experiments with the primitive
equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164.
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Song, Y., Haidvogel, D., 1994.
A Semi-implicit Ocean Circulation Model
Using a Generalized Topography-Following Coordinate System. J. Comput.
Phys. 115, 228–244.
https://doi.org/10.1006/jcph.1994.1189
Thompson, B., Gnanaseelan, C., Salvekar, P.S., 2006.
Variability in the
Indian Ocean circulation and salinity and its impact on SST anomalies during
dipole events. J. Mar. Res. 64, 853–880.
https://doi.org/10.1357/002224006779698350
Varna, M., Jithin, A.K., Francis, P.A., 2023.
Characteristics and dynamics
of mesoscale eddies in the eastern Arabian Sea. Deep Sea Res. Pt. II 207,
105218.
https://doi.org/10.1016/j.dsr2.2022.105218
Weiss, J., 1991.
The dynamics of enstrophy transfer in twodimensional
hydrodynamics? Phys. Nonlinear Phenom. 48, 273–294.
https://doi.org/10.1016/0167-2789(91)90088-Q
Wunsch, C., 2020.
Is the Ocean Speeding Up? Ocean Surface Energy
Trends. J. Phys. Oceanogr. 50, 3205–3217.
https://doi.org/10.1175/JPO-D-20-0082.1
Yadidya, B., Rao, A.D., 2022.
Interannual variability of internal tides in
the Andaman Sea: an effect of Indian Ocean Dipole. Sci. Rep. 12, 11104.
https://doi.org/10.1038/s41598-022-15301-8
Yu, L., O’Brien, J.J., Yang, J., 1991.
On the remote forcing of the
circulation in the Bay of Bengal. J. Geophys. Res. Oceans 96,
20449–20454.
https://doi.org/10.1029/91JC02424
Zeytounian, R., 1990.
The Boussinesq Approximation, in: Asymptotic Modeling
of Atmospheric Flows. Springer, Berlin, Heidelberg, 142–176.
https://doi.org/10.1007/978-3-642-73800-5_8
Zhao, W.-W., Wang, J.-H., Wan, D.-C., 2020.
Vortex identification methods
in marine hydrodynamics. J. Hydrodynamics 32, 286–295.
https://doi.org/10.1007/s42241-020-0022-4
Attribution of alterations in coastal processes in the southern and eastern Baltic Sea to climate change-driven modifications of coastal drivers
Oceanologia, 67 (1)/2025, 67103, 38 pp.
https://doi.org/10.5697/LXTZ5389
Maris Eelsalu 1,*, Tarmo Soomere1,2, Kevin Parnell1, Maija Viška3
1Department of Cybernetics, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia;
e-mail: maris.eelsalu@taltech.ee (M. Eelsalu)
2Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
3Latvian Institute of Aquatic Ecology, Riga, Latvia
*corresponding author
Keywords: Baltic Sea; Climate change; Coastal drivers; Coastal changes
Received: 18 March 2024; revised: 8 August 2024; accepted: 19 November 2024.
Highlights
- The impact of climate change is highly variable along the coast of the Baltic Sea
- The patterns of coastal drivers exhibit spatial variation
- Different drivers have dominant roles in different coastal domains
- Several changes in coastal processes are attributed to climate change
Abstract
The main drivers of coastal processes, such as wave activity, variations in the water level, ice cover, and wind drift, may act differently in different segments of marginal seas with complex shapes. We analyse how the relative role of these
drivers on the evolution of sedimentary shores changes along the southern and eastern Baltic Sea. While changes in the average water level have a strong impact along the southern shores of the Baltic Sea, rapid increases in the water level extremes affect most of the eastern subbasins of the Gulf of Finland and Gulf of Riga. The presence of a two-peak structure of predominant winds creates a fragile balance of alongshore sediment transport on the northeastern part of the Baltic proper and the Gulf of Riga. This balance could be changed by a rotation of predominant wave directions
by a few degrees. Severe waves usually occur on the southern shores of the sea during water levels that are close to the long-term mean, while synchronisation of strong waves and high-water level is common on the eastern shore.
The presence of sea ice is uncommon and insignificantly damps coastal processes in the southern part of the sea but the frequent presence of ice cover and freezing temperatures during the windy season stabilise the beaches of the
north-eastern shores. Climate driven changes in ice cover duration may lead to erosion of many beaches in this part of the sea. The core message is that the impact of a single manifestation of climate change may vary greatly in different parts of the Baltic Sea and the reaction of coastal processes to this impact is substantially site-specific.
References
Ågren, J., Svensson, R., 2007.
Postglacial land uplift model and system
definition for the new swedish height system RH 2000. Reports in Geodesy
and Geographical Information Systems, Gävle.
Andrée, E., Su, J., Dahl Larsen, M.A., Drews, M., Stendel, M., Skovgaard
Madsen, K., 2023.
The role of preconditioning for extreme storm surges in
the western Baltic Sea. Natural Hazards Earth Syst. Sci. 23, 1817–1834.
https://doi.org/10.5194/nhess-23-1817-2023
Angnuureng, D.B., Almar, R., Senechal, N., Castelle, B., Addo, K.A., Marieu,
V., Ranasinghe, R. 2017.
Shoreline resilience to individual storms and
storm clusters on a mesomacrotidal barred beach. Geomorphology 290, 265–
276.
https://doi.org/10.1016/j.geomorph.2017.04.007
Averkiev, A.S., Klevannyy, K.A., 2010.
A case study of the impact of
cyclonic trajectories on sea-level extremes in the Gulf of Finland. Cont.
Shelf Res. 30, 707–714.
https://doi.org/10.1016/j.csr.2009.10.010
Babakov, A.N., Chubarenko, B.V., 2019.
The structure of the net alongshore
sediment transport in the eastern Gulf of Gdansk. Water Res. 46 (4),
515–529.
https://doi.org/10.1134/S0097807819040031
BACC, 2015.
Second Assessment of Climate Change for the Baltic Sea
Basin. The BACC II Author Team. Regional Climate Studies. Springer, Cham,
Heidelberg, New York, Dordrecht, London.
https://doi.org/10.1007/978-3-319-16006-1
Badur, J., Cieślikiewicz, W., 2018.
Spatial variability of longterm
trends in significant wave height over the Gulf of Gdańsk using System
Identification techniques. Oceanol. Hydrobiol. Studies 47 (2), 190–201.
https://doi.org/10.1515/ohs-2018-0018
Badyukova, E.N., Zindarev, L.A., Lukyanova, S.A., Solovieva, G.D., 2018.
Structure of the south-western part of the Curonian Spit. Arch.
Hydro-Eng. Environ. Mech. 65 (2), 109–122.
https://doi.org/10.1515/heem-2018-0008
Bagdanavičiūtė, I., Kelpšaitė, L., Daunys, D., 2012.
Assessment
of shoreline changes along the Lithuanian Baltic Sea coast during the period
1947–2010. Baltica 25 (2),171–184.
https://doi.org/10.5200/baltica.2012.25.17
Bagdanavičiūtė, I., Kelpšaitė, L., Soomere, T., 2015.
Multicriteria evaluation approach to coastal vulnerability index
development in micro-tidal low-lying areas. Ocean Coast Manage. 104,
124–135.
https://doi.org/10.1016/j.ocecoaman.2014.12.011
Baldock, T.E., Birrien, F., Atkinson, A., Shimamoto, T., Callaghan, D.P.,
Nielsen, P., 2017.
Morphological hysteresis in the evolution of beach
profiles under sequences of wave climates – Part 1; observations. Coast.
Eng. 128, 92–105.
https://doi.org/10.1016/j.coastaleng.2017.08.005
Barnes, P.W., Kempema, E.W., Reimnitz, E., McCormick, M., 1994.
The
influence of ice on southern Lake-Michigan coastal erosion. Great Lakes
Res. 20 (1), 179–195.
https://doi.org/10.1016/S0380-1330(94)71139
Barnes, P.W., Kempema, E.W., Reimnitz, E., McCormick, M., Weber, W.S., Hayden,
E.C., 1993.
Beach profile modification and sediment transport by ice – An
overlooked process on Lake-Michigan. J. Coast. Res. 9 (1), 65–86.
Barnhart, K.R., Overeem, I., Anderson, R.S., 2014.
The effect of changing
sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8 (5),
1777–1799.
https://doi.org/10.5194/tc-8-1777-2014
Bärring, L., von Storch, H., 2004.
Scandinavian storminess since about
1800. Geophys. Res. Lett. 31 (20), L20202.
https://doi.org/10.1029/2004GL020441
Bidorn, B., Sok, K., Bidorn, K., Burnett, W., 2021.
An analysis of the
factors responsible for the shoreline retreat of the Chao Phraya Delta
(Thailand). Sci. Total Environ. 769, 145253. h
ttps://doi.org/10.1016/j.scitotenv.2021.145253
Bierstedt, S.E., Hünicke, B., Zorita, E., 2015.
Variability of wind
direction statistics of mean and extreme wind events over the Baltic Sea
region. Tellus A 67, 29073.
https://doi.org/10.3402/tellusa.v67.29073
Bird, E.C.F., 2008.
Coastal Geomorphology: An Introduction. 2nd ed.,
Wiley and Sons, Chichester, 436 pp.
Birkemeier, W.A., Nicholls, R.J., Lee, G.H., 1999.
Storms, storm groups and
nearshore morphologic change, [in:] Kraus, N.C., McDougal, W.G. (eds.),
4th International Symposium on Coastal Engineering and Science of Coastal
Sediment Processes, Hauppauge, NY, June 21–23, 1999. Coastal Sediments ’99,
1–3, 1109–1122.
Björkqvist, J.V., Lukas, I., Alari, V., van Vledder, G.P., Hulst, S.,
Pettersson, H., Behrens, A., Männik, A., 2018
. Comparing a 41-year model
hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng.
152, 57–71. h
ttps://doi.org/10.1016/j.oceaneng.2018.01.048
Blum, M.D., Roberts, H.H., 2009.
Drowning of the Mississippi Delta due to
insufficient sediment supply and global sea level rise. Nat. Geosci. 2
(7), 488–491. h
ttps://doi.org/10.1038/ngeo553
Bobykina, V.P. Stont, Zh.I., 2015.
Winter storm activity in 2011–2012 and
its consequences for the southeastern Baltic coast. Water. Resour. 42 (3),
371–377.
https://doi.org/10.1134/S0097807815030021
Bobykina, V.P., Stont, Zh.I., Kileso, A.W., 2021.
Deformations of the sea
shore of the Curonian Spit (southeastern Baltic) under the influence of storms
autumn-winter season 2018–2019. Vestnik of IKBFU. Series: Natural and
Medical Sciences 2 (C), 73–83 (in Russian).
Boldyrev, V.L., Teplyakov, G.N., 2003.
Formation, condition and problems of
preservation of landscapes of the Curonian spit, [in:] Problems of
studying and protection of natural and cultural heritage, Moscow, 20–40 (in
Russian).
Boldyrev, V.L., Lashenkov, V.M., Ryabkova, O.I., 1990.
Storm deformation of
coasts of the Kaliningrad region, Baltic Sea, [in:] Issues of Coastal
Dynamics and Paleogeography of the Baltic Sea Coastal Zone, 1, 97–129 (in
Russian).
Boniecka, H., Kubacka, M., 2024.
Artificial nourishment schemes along the
Polish coast and lagoon shores between 1980 and 2020, with a particular focus
on the Hel Peninsula. Water 16(7), 1005.
https://doi.org/10.3390/w16071005
Brenninkmeyer, B.M., 1982.
Cut and fill. In: Beaches and Coastal
Geology. [in:] Encyclopedia of Earth Science. Springer, Boston, MA.
https://doi.org/10.1007/0-387-30843-1
Broman, B., Hammarklint, T., Rannat, K., Soomere, T., Valdmann, A., 2006.
Trends and extremes of wave fields in the north-eastern part of the Baltic
Proper. Oceanologia, 48 (S), 165–184.
Cai, F., Su, X., Liu, J., Li, B., Lei, G., 2009.
Coastal erosion in China
under the condition of global climate change and measures for its
prevention. Prog. Nat. Sci. 19 (4), 415–426.
https://doi.org/10.1016/j.pnsc.2008.05.034
Čepienė, E., Dailidytė, L., Stonevičius, E., Dailidienė, I. 20
22.
Sea level rise impact on compound coastal river flood risk in Klaipeda City
(Baltic coast, Lithuania). Water 14 (3), 414. h
ttps://doi.org/10.3390/w14030414
Coco, G., Senechal, N., Rejas, A., Bryan, K.R., Capo, S., Parisot, J.P., Brown,
J.A., MacMahan, J.H.M., 2014.
Beach response to a sequence of extreme
storms. Geomorphology 204, 493–501.
https://doi.org/10.1016/j.geomorph.2013.08.028
Chechko, V.A., Chubarenko, B.V., Boldyrev, V.L., Bobykina, V.P., Kurchenko,
V.Y., Domnin, D.A., 2008.
Dynamics of the marine coastal zone of the sea
near the entrance moles of the Kaliningrad seaway channel. Water Res. 35
(6), 652–661.
https://doi.org/10.1134/S0097807808060043
Cieślikiewicz, W., Paplińska-Swerpel B., 2008.
A 44-year hindcast of
wind wave fields over the Baltic Sea. Coast.Eng. 55, 894–905.
https://doi.org/10.1016/j.coastaleng.2008.02.017
Dailidienė, I., Davulienė, L., Tilickis, B., Stankevičius, A., Myrberg,
K., 2006.
Sea level variability at the Lithuanian coast of the Baltic
Sea. Boreal Environ. Res. 11, 109 –121.
Davis, R.A., 2011.
Sea-level Change in the Gulf of Mexico. Texas
A&M University Press, College Station, TX, USA. Dean, R., Dalrymple, R.,
2002. Coastal Processes with Engineering Applications. Cambridge University
Press, Cambridge, 475 pp.
Deng, J., Harff, J., Zhang, W., Schneider, R., Dudzińska-Nowak, J., Giza, A.,
Terefenko, P., Furmańczyk, K., 2017.
The Dynamic Equilibrium Shore Model
for the Reconstruction and Future Projection of Coastal Morphodynamics,
[in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of
the Baltic Sea from South to East. Coast. Res. Library, 19, Springer, Cham,
87–106.
https://doi.org/10.1007/978-3-319-49894-2_6
Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015.
Effects of
storm clustering on beach/dune evolution. Mar. Geol. 370, 63–75.
https://doi.org/10.1016/j.margeo.2015.10.010
Divinsky, B.V., Ryabchuk, D.V., Kosyan, R.D., Sergeev, A.Y., 2021.
Development of the sandy coast: Hydrodynamic and morphodynamic conditions
(on the example of the Eastern Gulf of Finland). Oceanologia, 63 (2),
214–226. h
ttps://doi.org/10.1016/j.oceano.2020.12.002
Dluzewski, M., Dluzewska, J.R., Hesp, P.A., Tomczak, J.O., Dubis, L., 2023.
Impact of coastline orientation on the dynamics of foredune growth (Łeba
Barrier, south Baltic Sea coast, Poland). Miscellanea Geographica 27 (4),
147–156.
https://doi.org/10.2478/mgrsd-2023-0020
Dodge, S.E., Zoet, L.K., Rawling, J.E., Theuerkauf, E.J., Hansen, D.D., 2022.
Transport properties of fast ice within the nearshore. Coast. Eng.
177, 104176.
https://doi.org/10.1016/j.coastaleng.2022.104176
Dreier, N., Männikus, R., Fröhle, P., 2020.
Long-term changes of waves
at the German Baltic Sea soast: Are there trends from the past? J. Coast.
Res. 95(Sp. Iss.), 1416 –1421.
https://doi.org/10.2112/SI95-274.1
Dudzińska-Nowak, J., 2017.
Morphodynamic processes of the Swina Gate
coastal zone development (southern Baltic Sea), [in:] Harff, J.,
Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea
from South to East. Coastal Res. Library 19, Springer, Cham.
https://doi.org/10.1007/978-3-319-49894-2_11
Eberhards, G. and Lapinskis, J., 2008.
Processes on the Latvian coast of
the Baltic Sea: atlas. Riga. University of Latvia, Riga.
Eberhards, G., 2003.
The sea coast of Latvia. University of Latvia,
Riga, 294 pp. (in Latvian).
Eberhards, G., Lapinskis, J., Saltupe, B., 2006.
Hurricane Erwin 2005
coastal erosion in Latvia. Baltica 19 (1), 10–19.
Eelsalu, M., Parnell, K.E., Soomere, T., 2022.
Sandy beach evolution in the
low-energy microtidal Baltic Sea: attribution of changes to hydrometeorological
forcing. Geomorphology 414, 108383.
https://doi.org/10.1016/j.geomorph.2022.108383
Eelsalu, M., Soomere, T., Jankowski, M.Z., 2024.
Climate change-driven
alongshore variations of directional forcing of sediment transport on the
eastern Baltic Sea coast. J. Coast. Res. 113 (Sp. Iss.), 256–260.
https://doi.org/10.2112/JCR-SI113-051.1
Eelsalu, M., Soomere, T., Julge, K., 2015.
Quantification of changes in the
beach volume by the application of an inverse of the Bruun Rule and laser
scanning technology. Proc. Estonian Acad. Sci. 64 (3), 240–248.
https://doi.org/10.3176/proc.2015.3.06
Eelsalu, M., Soomere, T., Pindsoo, K., Lagemaa, P., 2014.
Ensemble approach
for projections of return periods of extreme water levels in Estonian
waters. Cont. Shelf Res. 91, 201–210.
https://doi.org/10.1016/j.csr.2014.09.012
Eichentopf, S., Alsina, J.M., Christou, M., Kuriyama, Y., Karunarathna, H.,
2020.
Storm sequencing and beach profile variability at Hasaki, Japan.
Mar. Geol. 424, 106153.
https://doi.org/10.1016/j.margeo.2020.106153
Erikson, L., Morim, J., Hemer, M., Young, I., Wang, X.L., Mentaschi, L., Mori,
N., Semedo, A., Stopa, J., Grigorieva, V., Gulev, S., Aarnes, O., Bidlot, J.R.,
Breivik, O., Bricheno, L., Shimura, T., Menendez, M., Markina, M., Sharmar, V.,
Trenham, C., Wolf, J., Appendini, C., Caires, S., Groll, N., Webb, A., 2022.
Global ocean wave fields show consistent regional trends between 1980 and
2014 in a multiproduct ensemble. Commun. Earth Environ. 3(1), 320.
https://doi.org/10.1038/s43247-022-00654-9
Feng, J., Li, D., Dang, W., Zhao, L., 2023.
Changes in storm surges based
on a bias-adjusted reconstruction dataset from 1900 to 2010. J. Hydrol.
Pt. A, 617, 128759.
https://doi.org/10.1016/j.jhydrol.2022.128759
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., Xia, L., 2015.
Storminess over the North Atlantic and northwestern Europe – a
review. Q. J. R. Meteorol. Soc. B 141 (687), 350–382.
https://doi.org/10.1002/qj.2364
Furmańczyk, K., 2013. Poland, [in:] Pranzini, E., Williams, A. (Eds.),
Coastal erosion and protection in Europe, Routledge, London,
81–95.
Gao, J.J., Kennedy, D.M., Konlechner, T.M., 2020.
Coastal dune mobility
over the past century: A global review. Prog. Phys. Geog. Environ. 44 (6),
814–836.
https://doi.org/10.1177/0309133320919612
Garcı́a-Romero, L., Hesp, P.A., Peña-Alonso, C., da Silva, G.M.,
Hernández-Calvento, L., 2019.
Climate as a control on foredune mode in
Southern Australia. Total Environ. 694, 133768.
https://doi.org/10.1016/j.scitotenv.2019.133768
Girjatowicz, J.P., 2011.
Ice conditions on the southern Baltic Sea
coast. J. Cold Reg. Eng. 25 (1), 1–15.
https://doi.org/10.1061/(ASCE)CR.1943-5495.0000020
Girjatowicz, J.P., Łabuz, T.A., 2020.
Forms of piled ice at the southern
coastal of the Baltic Sea. Estuar. Coast. Shelf Sci. 239, 106746.
https://doi.org/10.1016/j.ecss.2020.106746
Girjatowicz, J.P., Świątek, M., 2020.
Relationships between the Baltic
Sea ice extent and ice parameters in the sheltered basins of the southern
Baltic coast. Oceanol. Hydrobiol. Stud. 49 (3), 291–303.
https://doi.org/10.1515/ohs-2020-0026
Girjatowicz, J.P., Światek, M., 2021.
Relationship between air
temperature change and southern Baltic coastal lagoons ice conditions.
Atmosphere 12 (8), 931.
https://doi.org/10.3390/atmos12080931
Grinsted, A., 2015.
Projected Change – Sea Level, [in:] The BACC II
Author Team, Second Assessment of Climate Change for the Baltic Sea Basin.
Regional Climate Studies. Springer, Cham, 253–263. h
ttps://doi.org/10.1007/978-3-319-16006-1_14
Gudelis, V., 1967.
The morphogenetic types of Baltic Sea coasts.
Baltica 3, 123–145 (In Russian).
Gudelis, V., 1998.
Offshore and nearshore of Lithuania. Vilnius, 444
pp. (in Lithuanian).
Haapala, J.J., Ronkainen, I., Schmelzer, N., Sztobryn, M., 2015.
Recent
change–sea ice, [in:] The BACC II Author Team, Second Assessment of
Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer,
Cham, 145–153. h
ttps://doi.org/10.1007/978-3-319-16006-1_8
Harff, J., Meyer, M., 2011.
Coastlines of the Baltic Sea – zones of
competition between geological processes and a changing climate: examples from
the southern Baltic. [in:] Harff, J., Björck, S., Hoth, P. (Eds.), The
Baltic Sea Basin, Springer, Berlin, Heidelberg, 149–164.
Harff, J., Deng, J.J., Dudzinska-Nowak, J., Fröhle, P., Groh, A., Hünicke,
B., Soomere, T., Zhang, W.Y., 2017.
What Determines the Change of
Coastlines in the Baltic Sea? [in:] Harff, J., Furmańczyk, K., von
Storch, H. (Eds), Coastline Changes of the Baltic Sea from South to East: Past
and Future Projection. Coastal Research Library 19, 15–35.
https://doi.org/10.1007/978-3-319-49894-2_2
HELCOM, 2013.
Climate change in the Baltic Sea Area: HELCOM thematic
assessment in 2013. Baltic Sea Environ. Proc. No. 137.
HELCOM/Baltic Earth 2021.
Climate Change in the Baltic Sea. 2021 Fact
Sheet. Baltic Sea Environ. Proc. 180. Hoffmann, G., Lampe, R., Barnasch, J.,
2005. Postglacial evolution of coastal barriers along the West Pomeranian
coast, NE Germany. Quaternary International 133–134, 47–59. h
ttps://doi.org/10.1016/j.quaint.2004.10.014
Huang, W.P., 2022.
Impact of coastal development on coastal morphology of
Taiwan: Case studies and proposed countermeasures. J. Sea Res. 186,
102234.
https://doi.org/
10.1016/j.seares.2022.102234
Hünicke, B., Zorita, E., Soomere, T., Madsen, K.S., Johansson, M., Suursaar,
Ü., 2015. Recent Change – Sea Level and Wind Waves, [in:] The BACC II
Author Team, Second Assessment of Climate Change for the Baltic Sea Basin,
Regional Climate Studies, Springer, Cham, 155– 185.
https://doi:10.1007/978-3-319-16006-1_9
IPCC, 2019. Summary for Policymakers, [in:] Pörtner, H.-O., Roberts, D.C.,
Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K.,
Alegrı́a, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer. N.M.
(Eds.),
IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate. Cambridge Univ. Press, Cambridge, UK and New York, NY, USA,
3–35.
https://doi.org/10.1017/9781009157964.001
Jaagus, J., 2006.
Trends in sea ice conditions in the Baltic Sea near the
Estonian coast during the period 1949/1950– 2003/2004 and their relationships
to large-scale atmospheric circulation. Boreal Environ. Res. 11,
169–183. Jaagus, J., Kull, A., 2011. Changes in surface wind directions in
Estonia during 1966–2008 and their relationships with large-scale atmospheric
circulation. Estonian J. Earth Sci. 60 (4), 220–231.
https://doi.org/10.3176/earth.2011.4.03
Jaagus, J., Suursaar, Ü., 2013.
Long-term storminess and sea level
variations on the Estonian coast of the Baltic Sea in relation to large-scale
atmospheric circulation. Estonian J. Earth Sci. 62 (2), 73–92.
https://doi.org/10.3176/earth.2013.07
Jackson, D.W.T., Costas, S., Gonzalez-Villanueva, R., Cooper, A., 2019.
A
global ’greening’ of coastal dunes: An integrated consequence of climate
change?. Glob. Planet. Change, 182, 103026.
https://doi:10.1016/j.gloplacha.2019.103026
Jankowski, M.Z., Soomere, T., Parnell, K.E., Eelsalu, M., 2024.
Alongshore
sediment transport in the Eastern Baltic Sea. J. Coast. Res. 113 (Sp.
Iss.), 261–265.
https://doi.org/10.2112/JCR-SI113-052.1
Janušaitė, R., Jarmalavičius, D., Jukna, L., Žilinskas, G., Pupienis,
D., 2022.
Analysis of interannual and seasonal nearshore bar behaviour
observed from decadal optical satellite data in the Curonian Spit, Baltic
Sea. Remote Sens. 14 (14), 3423.
https://doi.org/10.3390/rs14143423
Jarmalavičius, D., Šmatas, V., Stankunavičius, G., Pupienis, D.,
Žilinskas, G., 2016.
Factors controlling coastal erosion during storm
events. J. Coast. Res., 75 (Sp. Iss.), 1112–1116.
Järvelill, J.I., 2019.
Development of the Narva-Joesuu beach, mineral
composition of beach deposits and destruction of the pier, southeastern coast
of the Gulf of Finland.Open Geosci. 11 (1), 961–968.
https://doi.org/10.1515/geo-2019-0074
Jensen, J., Schwarzer, K., 2013. Germany, [in:] Pranzini, E., Williams, A.
(Eds.),
Coastal erosion and protection in Europe. Routledge, London,
108–135.
Julge, K., Eelsalu, M., Grünthal, E., Talvik, S., Ellmann, A., Soomere, T.,
Tõnisson, H., 2014
. Combining airborne and terrestrial laser scanning to
monitor coastal processes, [in:] 2014 IEEE/OES Baltic International
Symposium “Measuring and Modeling of Multi-Scale Interactions in the Marine
Environment”, May 26–29, 2014, Tallinn, Estonia. IEEE Conf. Proc.
https://doi.org/10.1109/BALTIC.2014.6887874
Kall, T., Oja, T., Tänavsuu, K., 2014.
Postglacial land uplift in Estonia
based on four precise levelings. J. Tectonophys. 610, 25–38. h
ttps://doi.org/10.1016/j.tecto.2013.10.002
Karaliunas, V., Jarmalavičius, D., Pupienis, D., Janušaitė, R.,
Zilinskas, G., Karlonienė, D., 2020.
Shore nourishment impact on coastal
landscape transformation: An example of the Lithuanian Baltic Sea coast.
J. Coast. Res. 95 (Sp. Iss.), 840–844.
https://doi.org/10.2112/SI95-163.1
Karmanov, K., Burnashov, E., Chubarenko, B., 2018.
Contemporary
dynamics of the sea shore of Kaliningrad Oblast. Arch. Hydro-Eng. Environ.
Mech. 65 (2), 143–159.
https://doi.org/10.1515/heem-2018-0010
Keevallik, S., 2003.
Possibilities of reconstruction of the wind regime
over Tallinn Bay. Proc. Estonian Acad. Sci. Eng. 9 (3), 209–219.
Keevallik, S., 2011.
Shifts in meteorological regime of late winter and
early spring in Estonia during recent decades. Theor. Appl. Climatol. 105,
209–215.
https://doi.org/10.1007/s00704-010-0356-x
Keevallik, S., Soomere, T., 2014.
Regime shifts in the surfacelevel average
air flow over the Gulf of Finland during 1981–2010. Proc. Estonian Acad.
Sci. 63 (4), 428–437.
https://doi.org/10.3176/proc.2014.4.08
Kelpšaitė, L., Dailidienė, I., 2011.
Influence of wind wave climate
change on coastal processes in the eastern Baltic Sea. J. Coast. Res. 64
(Sp. Iss.), 220–224.
Kelpšaitė, L., Dailidiene, I., Soomere, T., 2011.
Changes in wave
dynamics at the south-eastern coast of the Baltic Proper during
1993–2008. Boreal Environ. Res. 16 (Suppl A), 220–232.
Kelpšaitė-Rimkienė, L., Parnell, K.E., Žaromskis, R., Kondrat, V.,
2021.
Cross-shore profile evolution after an extreme erosion event –
Palanga, Lithuania. J. Mar. Sci. Eng. 9, 38.
https://doi.org/10.3390/jmse9010038
Kl̦avinš, M., Avotniece, Z., Rodinovs, V., 2016.
Dynamics and impacting
factors of ice regimes in Latvia inland and coastal waters. Proc. Latvian
Acad. Sci. B 70 (6/705), 400–408.
https://doi.org/10.1515/prolas-2016-0059
Knaps, R.J., 1966.
Sediment transport near the coasts of the Eastern
Baltic, [in:] Development of sea shores under the conditions of
oscillations of the Earth’s crust. Valgus, Tallinn, 21–29 (in Russian).
Kobelyanskaya, J., Bobykina, V.P., Piekarek-Jankowska, H., 2011.
Morphological and lithodynamic conditions in the marine coastal zone of the
Vistula Spit (Gulf of Gdańsk, Baltic Sea). Oceanologia 53 (4),
1027–1043.
https://doi.org/10.5697/oc.53-4.1027
Kondrat, V., Šakurova, I., Baltranaitė, E., Kelpšaitė-Rimkienė, L.,
2021.
Natural and anthropogenic factors shaping the shoreline of Klaipeda,
Lithuania. J. Mar. Sci. Eng. 9 (12), 1456.
https://doi.org/10.3390/jmse9121456
Kont, A., Endjärv, E., Jaagus, J., Lode, E., Orviku, K., Ratas, U., Rivis,
R., Suursaar, Ü., Tõnisson, H., 2007.
Impact of climate change on
Estonian coastal and inland wetlands – a summary with new results.
Boreal Environ. Res. 12, 653–671.
Kont, A., Jaagus, J., Orviku, K., Palginõmm, V., Ratas, U., Rivis, R.,
Suursaar, Ü., Tõnisson, H., 2011.
Natural development and human
activities on Saaremaa Island (Estonia) in the context of climate change and
integrated coastal zone management, [in:] Schernewski, G., Hofstede, J.,
Neumann, T. (Eds.), Global change and Baltic coastal zones, Coastal Res.
Library 1, Springer, 117– 134.
https://doi.org/10.1007/978-94-007-0400-8_8
Kont, A., Tõnisson, H., Jaagus, J., Suursaar, Ü., Rivis, R., 2022.
Eesti randade areng viimastel aastakümnetel kliima ja rannikumere
hüdrodünaamiliste muutuste tagajärjel. Terasmaa, J., Truus, L., Kont,
A. (Toim.) 30 aastat keskkonnaökoloogiat. Ökoloogia keskus 1992–2022.
(9–58). Tallinna Ülikool. (Tallinna Ülikooli ökoloogia
instituudi/keskuse publikatsioonid; 13).
Kosyan, R., Krylenko, M., Ryabchuk, D., Chubarenko, B., 2013. Russia, [in:]
Pranzini, E., Williams, A. (Eds.),
Coastal erosion and protection in
Europe, Routledge, London, 9–30.
Kotta, J., Herkül, K., Jaagus, J., Kaasik, A., Raudsepp, U., Alari, V.,
Arula, T., Haberman, J., Järvet, A., Kangur, K., Kont, A., Kull, A.,
Laanemets, J., Maljutenko, I., Männik, A., Nõges, P., Nõges, T., Ojaveer,
H., Peterson, A., Reihan, A., Rõõm, R., Sepp, M., Suursaar, Ü., Tamm, O.,
Tamm, T., Tõnisson, H., 2018.
Linking atmospheric, terrestrial and
aquatic environments: Regime shifts in the Estonian climate over the past 50
years. PLoS ONE 13 (12), e0209568.
https://doi.org/10.1371/journal.pone.0209568
Kovaleva, O., Eelsalu, M., Soomere, T., 2017.
Hot-spots of large wave
energy resources in relatively sheltered sections of the Baltic Sea coast.
Renew. Sustain. Energy Rev. 74, 424–437. h
ttps://doi.org/10.1016/j.rser.2017.02.033
Krek, A., Stont, Z., Ulyanova, M., 2016.
Alongshore bed load transport in
the southeastern part of the Baltic Sea under changing hydrometeorological
conditions: Recent decadal data. Regional Stud. Mar. Sci. 7, 81–87.
https://doi.org/10.1016/j.rsma.2016.05.011
Kudryavtseva, N., Räämet, A., Soomere, T., 2020.
Coastal flooding:
Joint probability of extreme water levels and waves along the Baltic Sea
coast. J. Coast. Res. 95 (Sp. Iss.), 1146–1151.
https://doi.org/10.2112/SI95-222.1
Kudryavtseva, N., Soomere, T., 2017.
Satellite altimetry reveals spatial
patterns of variations in the Baltic Sea wave climate. Earth Syst. Dynam.
8, 697–706.
https:
//doi.org/10.5194/esd-8-697-2017
Kudryavtseva, N., Soomere, T., Männikus, R., 2021.
Nonstationary analysis
of water level extremes in Latvian waters, Baltic Sea, during 1961–2018.
Nat. Hazards Earth Syst. Sci. 21 (4), 1279–1296.
https://doi.org/10.5194/nhess-21-1279-2021
Kupfer, S., MacPherson, L.R., Hinkel, J., Arns, A., Vafeidis, A.T., 2024.
A
comprehensive probabilistic flood assessment accounting for hydrograph
variability of ESL events. J. Geophys. Res. 129 (1), e2023JC019886.
https://doi.org/10.1029/2023JC019886
Lampe, R., Naumann, M., Meyer, H., Janke, W., Ziekur, R., 2011,
Holocene
evolution of the southern Baltic Sea coast and interplay of sea-level
variation, isostasy, accommodation and sediment supply, [in:] Harff J.,
Björck S., Hoth P., (Eds.), The Baltic Sea Basin. Springer, Berlin,
Heidelberg, 233–251.
https://doi.org/10.1007/978-3-642-17220-5_12
Lapinskis, J., 2010. D
ynamic of the Kurzeme coast of the Baltic
proper. Ph.D. Thesis, Univ. Latvia Press, Riga, 67 pp.
Larson, M., Hanson, H., 2013. Sweden, [in:] Pranzini, E., Williams, A. (Eds.),
Coastal erosion and protection in Europe, Routledge, London,
31–46.
Lehmann, A., Getzlaff, K., Harlaß, J., 2011.
Detailed assessment of
climate variability in the Baltic Sea area for the period 1958 to 2009.
Clim. Res. 46 (2), 185–196.
https://doi.org/10.3354/cr00876
Leppäranta, M., 2012.
Environmental impacts of land-ice interaction in
the northern Baltic Sea, [in:] Li, Z., Lu, P. (Eds.), Meeting 21st IAHR
International Symposium on Ice Location, Dalian University of Technology,
Dalian, China, June 11–15, 2012. Ice Research for Sustainable Environment,
Vol. I & II, 532–541.
Leppäranta, M., 2013.
Land-ice interaction in the Baltic Sea.
Estonian J. Earth Sci. 62 (1), 2–14.
https://doi.org/10.3176/earth.2013.01
Leppäranta, M., Myrberg, K., 2009.
Physical Oceanography of the Baltic
Sea. Springer, Berlin, 378 pp. h
ttps://doi.org/10.1007/978-3-540-79703-6
Lorenz, M., Gräwe, U., 2023.
Uncertainties and discrepancies in the
representation of recent storm surges in a non-tidal semi-enclosed basin: A
hind-cast ensemble for the Baltic Sea. Ocean Sci. 19 (6), 1753–1771. h
ttps://doi.org/10.5194/os-19-1753-2023
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Don chyts, G.,
Aarninkhof, S., 2018.
The state of the world’s beaches. Sci. Rep. 8,
6641.
https://doi.org/10.1038/s41598-018-24630-6
Łabuz, T., 2013.
Polish coastal dunes – affecting factors and
morphology. Landform Anal. 22, 33–59.
https://doi.org/10.12657/landfana.022.004
Łabuz, T.A., 2005.
Present-day dune environment dynamics on coast of Swina
Gate Barrier (West Polish coast). Estuar. Coast. Shelf Sci. 62 (3),
507–520.
https://doi.org/10.1016/j.ecss.2004.09.014
Łabuz, T.A., 2009.
The West Pomerania coastal dunes – alert state of
their development. Zeitschrift der Deutschen Gesellschaft für
Geowissenschaften 160 (2), 113–122.
https://doi.org/10.1127/1860-1804/2009/0160-0113
Łabuz, T.A., 2014.
Erosion and its rate on an accumulative Polish dune
coast: the effects of the January 2012 storm surge. Oceanologia 56 (2),
307–326. h
ttps://doi.org/10.5697/oc.56-2.307
Łabuz, T.A., 2015.
Environmental Impacts – Coastal Erosion and Coastline
Changes, [in:] The BACC II Author Team, Second Assessment of Climate
Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham,
381–396.
https://doi.org/10.1007/978-3-319-16006-1_20
Łabuz, T.A., 2022.
Storm surges versus shore erosion: 21 years
(2000–2020) of observations on the Swina Gate sandbar (southern Baltic
coast). Quaest. Geogr. 41 (3), 5–31.
https://doi.org/10.2478/quageo-2022-0023
Łabuz, T.A., 2023a.
Causes and effects of coastal dunes erosion during
storm surge Axel in January 2017 on the southern Baltic Polish coast.
Quaest. Geogr. 42 (3), 67–87.
https://doi.org/10.14746/quageo-2023-0024
Łabuz, T.A., 2023b.
Influence of meteorological conditions in
autumn/winter 2021–2022 on the development of storm surges and the dune
erosion on the Polish Baltic coast as a result of climate changes. Studia
Quaternaria 40 (2), 93–114.
https://doi.org/10.24425/sq.2023.148035
Łabuz, T.A., Grunewald, R., Bobykina, V., Chubarenko, B., Česnulevičius,
A., Bautrėnas, A., Morkūnaitė, R., Tõnisson, H., 2018.
Coastal
dunes of the Baltic Sea shores: A review. Quaest. Geogr 37 (1), 47–71.
https://doi.org/10.2478/quageo-2018-0005
Łabuz, T.A., Kowalewska-Kalkowska, H., 2011.
Coastal erosion by the heavy
storm surge of November 2004 in the southern Baltic Sea. Clim. Res. 48
(1), 93–101. h
ttps://doi.org/10.3354/cr00927
Madsen, K.S., Høyer, J.L., Suursaar, Ü., She, J., Knudsen, P., 2019.
Sea
level trends and variability of the Baltic Sea from 2D statistical
reconstruction and altimetry. Front. Earth Sci. 7, 243.
https://doi.org.10.3389/feart.2019.00243
Mahmoud, A.M.A., Hussain, E., Novellino, A., Psimoulis, P., Marsh, S., 2021.
Monitoring the dynamics of Formby sand dunes using airborne LiDAR
DTMs. Remote Sens. 13, 4665.
https://doi.org/10.3390/rs13224665
Männikus, R., Soomere, T., Kudryavtseva, N., 2019.
Identification of
mechanisms that drive water level extremes from in situ measurements in the
Gulf of Riga during 1961–2017. Cont. Shelf Res. 182, 22–36.
https://doi.org/10.1016/j.csr.2019.05.014
Männikus, R., Soomere, T., Viška, M., 2020.
Variations in the mean,
seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea,
during 1961–2018. Estuar. Coast. Shelf Sci. 245, 106827.
https://doi.org/10.1016/j.ecss.2020.106827
Masselink, G., Hughes, M., Knight, J., 2011.
Introduction to Coastal
Processes and Geomorphology. 2nd ed., Hodder Education, 416 pp.
McInnes, K.L., Hubbert, G.D., 2003.
A numerical modelling study of storm
surges in Bass Strait. Australian Meteorol. Mag. 52, 3, 143–156.
McInnes, K.L., Walsh, K.J.E., Hubbert, G.D., Beer, T., 2003. Impact of
sea-level rise and storm surges on a coastal community. Nat. Hazards. 30 (2),
187–207.
https://doi.org/10.1023/A:1026118417752
Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E.,
Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel,
F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B.,
Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala,
J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M.,
Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A.,
Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B.,
Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O.
P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., Zhang, W., 2022.
Climate change in the Baltic Sea region: A summary. Earth Syst. Dynam.
13, 457–593.
https://doi.org/10.5194/esd-13-457-2022
Merkouriadi, I., Leppäranta, M., 2014.
Long-term analysis of
hydrography and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea.
Clim. Change 124, 849–859.
https://doi.org/10.1007/s10584-014-1130-3
Milne, G.A., Gehrels, W.R., Hughes, C.W., Tamisiea, M.E., 2009.
Identifying
the causes of sea-level change. Nat. Geosci. 2, 471–478.
https://doi.org/10.1038/ngeo544
Miner, J.J., Powell, R.D., 1991.
An evaluation of ice-rafted erosion caused
by an icefoot complex, southwestern Lake-Michigan, USA. Artic and Alpine
Res. 23 (3), 320– 327.
https://doi.org/10.2307/1551610
Musielak, S., Furmańczyk, K., Bugajny, N., 2017.
Factors and
processes forming the Polish southern Baltic Sea coast on various temporal and
spatial scales, [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.),
Coastline Changes of the Baltic Sea from South to East. Coast. Res. Lib. 19,
Springer, Cham, 69–85. h
ttps://doi.org/10.1007/978-3-319-49894-2_5
Najafzadeh, F., Kudryavtseva, N., Soomere, T., 2021.
Effects of large-scale
atmospheric circulation on the Baltic Sea wave climate: application of the EOF
method on multimission satellite altimetry data. Clim. Dynam. 57 (11),
3465–3478.
https://doi.org/10.1007/s00382-021-05874-x
Najafzadeh, F., Kudryavtseva, N., Soomere, T., Giudici, A., 2022.
Effect of
ice cover on wave statistics and wavedriven processes in the northern Baltic
Sea. Boreal Environ. Res. 27, 97–116.
http://www.borenv.net/BER/archive/pdfs/ber27/
ber27-097-116.pdf
Najafzadeh, F., Soomere, T., 2024.
Impact of changes in sea ice cover
on wave climate of semi-enclosed seasonally ice-covered water bodies on
temperate latitudes: A case study in the Gulf of Riga. Estonian J. Earth
Sci. 73 (1), 26–36.
https://doi.org/10.3176/earth.2024.03
Navrotskaya, S.E., Chubarenko, B.V., 2012.
On the sea level rise in the
Russian part of the Vistula Lagoon. Russian Meteorology and Hydrology
39(46), 37.
https://doi.org/10.3103/S1068373912010062
Nerem, R.S., Beckley, B.D., Fasullo, J.T., Hamlington B.D., Masters, D.,
Mitchum, G.T., 2018.
Climate-changedriven accelerated sea-level rise.
Proc. Natl. Acad. Sci. U.S.A, 115 (9), 2022–2025. h
ttps://doi.org/10.1073/pnas.1717312115
Nicholls, R.J., Cazenave, A., 2010.
Sea-level rise and its impact on
coastal zones. Science, 328 (5985), 1517–1520.
https://doi.org/10.1126/science.118578
Nicholls, R.J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A.T., Meyssignac,
B., Hanson, S.E., Merkens, J-L., Fang, J., 2021.
A global analysis of
subsidence, relative sea-level change and coastal flood exposure. Nat.
Clim. Chang. 11, 338–342.
https://doi.org/10.1038/s41558-021-00993-z
Oppenheimer, M., Glavovic, B.C., Hinkel, J., van de Wal, R., Magnan, A.K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R.M., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., Sebesvari, Z., 2019.
Sea level
rise and implications for low-lying islands, coasts and communities, [in:]
Pörtner, H.-O., Roberts, D.C., MassonDelmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegrı́a, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., Weyer. N.M. (Eds.),
IPCC Special Report on the Ocean
and Cryosphere in a Changing Climate. Cambridge Univ. Press, Cambridge,
UK, New York, NY, USA, 321–445.
https://doi.org/10.1017/9781009157964.00
Orviku, K., 2018.
Beaches and coasts. Tallinn University Publishers
(in Estonian).
Orviku, K., Jaagus, J., Kont, A., Ratas, U., Rivis, R., 2003.
Increasing
activity of coastal processes associated with climate change in Estonia.
J. Coast. Res. 19 (2), 364–375.
Orviku, K., Jaagus, J., Tõnisson, H., 2011.
Sea ice shaping the
shores. J. Coastal Res. 64 (Sp. Iss.), 681–685.
Orviku, K., Suursaar, Ü., Tõnisson, H., Kullas, T., Rivis, R., Kont, A.,
2009.
Coastal changes in Saaremaa Island, Estonia, caused by winter storms
in 1999, 2001, 2005 and 2007. J. Coast. Res. 65 (Sp. Is.), 1651–1655.
Osadczuk, A., Borówka, R.K., Dudzińska-Nowak, J. 2024
. Two millennia of
natural and anthropogenic changes of the Polish Baltic coast. Oxford
Research Encyclopedia of Climate Science.
https://doi.org/10.1093/acrefore/9780190228620.013.896
Ostrowski, R., Pruszak Z., Babakov A., Chubarenko B., 2012.
Anthropogenic
effects on coastal sediment fluxes in a nontidal gulf system. J. Waterway
Div.-ASCE, 138 (6), 491 –500.
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000156
Ostrowski, R., Pruszak, Z., Babakov, A., 2014.
Condition of south-eastern
Baltic Sea shores and methods of protecting them. Arch. Hydro-Eng.
Environ. Mech. 61 (1–2), 17–37.
https://doi.org/10.1515/heem-2015-0002
Ostrowski, R., Schönhofer, J., Szmytkiewicz, P., 2016.
South Baltic
representative coastal field surveys, including monitoring at the Coastal
Research Station in Lubiatowo, Poland. J. Marine Syst. 162, 89–97.
https://doi.org/10.1016/j.jmarsys.2015.10.006
Overeem, I., Anderson, R.S., Wobus, C.W., Clow, G.D., Urban, F.E., Matell, N.,
2011.
Sea ice loss enhances wave action at the Arctic coast. Geophys.
Res. Lett. 38, 17.
https://doi.org/10.1029/2011GL048681
Pettersson, H., Lindow, H., Brüning, T., 2013.
Wave climate in the Baltic
Sea 2012. Baltic Sea Environment Fact Sheet 2013.
https://helcom.fi/wp-content/uploads/2019/08/Wave_climate_in_the_Baltic_Sea_2012_BSEFS2013.pdf
Pilkey, O.H., Cooper, J.A.G., 2014.
Are natural beaches facing
extinction?, J. Coast. Res. 70 (Sp. Iss. 1), 431–436.
https://doi.org/10.2112/SI70-073.1
Pindsoo, K., Soomere, T., 2015.
Contribution of wave set-up into the total
water level in the Tallinn area. Proc. Est. Acad. Sci. 64 (3S), 338–348.
https://doi.org/10.3176/proc.2015.3S.03
Pindsoo, K., Soomere, T., 2020.
Basin-wide variations in trends in
water level maxima in the Baltic Sea. Cont. Shelf Res. 193, 104029.
https://doi.org/10.1016/j.csr.2019.104029
Polyak, L., Alley, R.B., Andrews, J.T., Brigham-Grette, J., Cronin, T.M.,
Darby, D.A., Dyke, A.S., Fitzpatrick, J.J., Funder, S., Holland, M., Jennings,
A.E., Miller, G.H., O’Regan, M., Savelle, J., Serreze, M., St John, K.,
White, J.W.C., Wolff, E., 2010.
History of sea ice in the Arctic.
Quatern. Sci. Rev. 29 (15–16), 1757–1778.
https://doi.org/10.1016/j.quascirev.2010.02.010
Prime, T., Brown, J.M., Plater, A.J., 2015.
Physical and economic impacts
of sea-level rise and low probability flooding events on coastal
communities. PLoS ONE 10 (2), e0117030.
https://doi.org/10.1371/journal.pone.0117030
Pruszak, Z., Zawadzka, E., 2005.
Vulnerability of Poland’s coast to
sea-level rise. Coast. Eng. 47 (2–3), 131–155.
https://doi.org/10.1142/S0578563405001197
Pruszak, Z., Zawadzka, E., 2008.
Potential implications of sea-level rise
for Poland. J. Coast. Res. 24 (2), 410–422.
https://doi.org/10.2112/07A-0014.1
Pupienis, D., Jarmalavičius, D., Zilinskas, G., Fedorovic, J., 2024.
Beach nourishment experiment in Palanga, Lithuania. J. Coast. Res. 70
(Sp. Iss.), 490–495.
https://doi.org/10.2112/SI70-083.1
Pye, K., Blott, S.J., 2008.
Decadal-scale variation in dune erosion and
accretion rates: An investigation of the significance of changing storm tide
frequency and magnitude on the Sefton coast, UK. Geomorphology 102
(3–4), 652–666.
https://doi.org/10.1016/j.geomorph.2008.06.011
Ranasinghe, R., 2016.
Assessing climate change impacts on open sandy
coasts: A review. Earth-Sci. Rev. 160, 320–332.
https://doi.org/10.1016/j.earscirev.2016.07.011
Rantanen, M., van den Broek, D., Cornér, J., Sinclair, V.A., Johansson, M.M.,
Särkkä, J., Laurila, T..K., Jylhä, K., 202
4. The impact of serial
cyclone clustering on extremely high sea levels in the Baltic Sea.
Geophys. Res. Lett. 51 (6), e2023GL107203.
https://doi.org/10.1029/2023GL107203
Räämet A., Soomere T., Zaitseva-Pärnaste I., 2010
. Variations in
extreme wave heights and wave directions in the north-eastern Baltic Sea.
Proc. Estonian Acad. Sci. 59 (2), 182–192. h
ttps://doi.org/10.3176/proc.2010.2.18
Räämet, A., Soomere, T., 2011.
Spatial variations in the wave climate
change in the Baltic Sea. J. Coast. Res. 64 (Sp. Iss.), 240–244.
Räämet, A., Soomere, T., 2021.
Spatial patterns of quality of
historical wave climate reconstructions for the Baltic Sea. Boreal
Environ. Res. 26, 29–41.
Reckermann, M., Omstedt, A., Soomere, T., Aigars, J., Akhtar, N., Bełdowska,
M., Bełdowski, J., Cronin, T., Czub, M., Eero, M., Hyytiäinen, K.P.,
Jalkanen, J.-P., Kiessling, A., Kjellström, E., Kuliński, K., Guo Larsén,
X., McCrackin, M., Meier, H.E.M., Oberbeckmann, S., Parnell, K., PonsSeres de
Brauwer, C., Poska, A., Saarinen, J., Szymczycha, B., Undeman, E., Wörman,
A., Zorita, E., 2022.
Human impacts and their interactions in the Baltic
Sea region. Earth Syst. Dynam. 13, 1–80.
https://doi.org/10.5194/esd-13-1-2022
Reiniks, M., Kalinka, M., Lazdans, J., Klive, J., Ratkus, B., 2010.
Valsts
augstuma izejas lımenanoteikšana (Determining the state height level output
data). Sci. J. Riga Tech. Univ. Geomatics, 7–13.
Rosentau, A., Meyer, M., Harff, J., Dietrich, R., Richter, A., 2007.
Relative sea level change in the Baltic Sea since the littorina
transgression. Zeitschrift für Geologische Wissenschaften, 35 (1/2),
3–16.
Rosentau, A., Harff, J., Oja, T., Meyer, M., 2012.
Postglacial rebound and
relative sea level changes in the Baltic Sea since the Litorina
transgression. Baltica 25 (2), 113–120.
https://doi.org/10.5200/baltica.2012.25.11
Rotnicka, J., 2011.
Factors controlling the development of foredunes along
the Leba Barrier on the South Baltic coast of Poland. J. Coast. Res. 64
(Sp. Iss.), 308–313. Rotnicki, K., Rotnicka, J., 2010. Poland. [in:] Bird,
E.C.F. (ed.), Encyclopedia of the World’s Coastal Landforms, Springer,
Dordrecht, 627–638.
https://doi.org/10.1007/978-1-4020-8639-7_107
Różyński, G., 2005.
Long term shoreline response of a nontidal,
barred coast. Coast. Eng. 52(1), 79–91.
https://doi.org/10.1016/j.coastaleng.2004.09.007
Różyński, G., 2010.
Long-term evolution of Baltic Sea wave climate
near a coastal segment in Poland; its drivers and impacts. Ocean Eng., 37
(2–3), 186–199.
https://doi.org/10.1016/j.oceaneng.2009.11.008
Różyński, G., 2023.
Coastal protection challenges after heavy storms
on the Polish coast. Cont. Shelf Res. 266, 105080. h
ttps://doi.org/10.1016/j.csr.2023.105080
Różyński, G., Lin, J.G., 2021.
Can climate change and geological past
produce enhanced erosion? A case study of the Hel Peninsula, Baltic Sea,
Poland. Appl. Ocean Res. 115, 102852.
https://doi.org/10.1016/j.apor.2021.102852
Ryabchuk, D., Kolesov, A., Chubarenko, B., Spiridonov, M., Kurennoy, D.,
Soomere, T. 2011a.
Coastal erosion processes in the eastern Gulf of Finland
and their links with geological and hydrometeorological factors. Boreal
Environ. Res. 16 (Suppl. A), 117–137.
Ryabchuk, D., Leontyev, I., Sergeev, A., Nesterova, E., Sukhacheva, L.,
Zhamoida, V., 2011b.
The morphology of sand spits and the genesis of
longshore sand waves on the coast of the eastern Gulf of Finland. Baltica
24 (1), 13–24.
Ryabchuk, D., Sergeev, A., Burnashev, E., Khorikov, V., Neevin, I., Kovaleva,
O., Budanov, L., Zhamoida, V., Danchenkov, A., 2020.
Coastal processes in
the Russian Baltic (eastern Gulf of Finland and Kaliningrad area). Q. J.
Eng. Geol. Hydrogeol. 54 (1), qjegh2020-036.
https://doi.org/10.1144/qjegh2020-036
Ryabchuk, D., Spiridonov, M., Zhamoida, V., Nesterova, E., Sergeev, A.,
2012.
Long term and short term coastal line changes of the eastern Gulf of
Finland. Problems of coastal erosion. J. Coast. Conserv. 16, 233–242.
https://doi:10.1007/s11852-010-0105-4
Šakurova, I., Kondrat, V., Baltranaitė, E., Vasiliauskienė, E.,
Kelpsaitė-Rimkienė, L., 202
3. Assessment of coastal morphology on the
south-eastern Baltic Sea coast: The case of Lithuania. Water, 15 (1), 79.
https://doi.org/10.3390/w15010079
Sallenger, A., Doran, K., How, P., 2012.
Hotspot of accelerated sea-level
rise on the Atlantic coast of North America. Nature Clim. Change 2,
884–888.
https://doi.org/10.1038/nclimate1597
Seleem, T.A., Parcharidis, I., Foumelis, M., Kourkouli, P., 2011.
Detection
of ground deformation over Sharm ElSheikh-Ras Nasrani coastal zone, South Sinai
(Egypt), by using time series SAR interferometry. J. African Earth Sci.
59(4–5), 373–383.
https://doi.org/10.1016/j.jafrearsci.2011.01.009
Sergeev, A., Ryabchuk, D., Zhamoida, V., Leontyev, I., Kolesov, A., Kovaleva,
O., Orviku, K., 2018.
Coastal dynamics of the eastern Gulf of Finland, the
Baltic Sea: toward a quantitative assessment. Baltica, 31 (1), 49–62.
https://doi.org/10.5200/baltica.2018.31.05
Shepard, F., 1948. Submarine Geology. Harper & Brothers. Shirzaei, M.,
Freymueller, J., Törnqvist, T.E., Galloway, D.L., Dura, T., Minderhoud,
P.S.J., 2021.
Measuring, modelling and projecting coastal land
subsidence. Nature Rev. Earth Environ. 2(1), 40–58.
https://doi.org/10.1038/s43017-020-00115-x
Sinitsyn, A.O., Guegan, E., Shabanova, N., Kokin, O., Ogorodov, S., 2020.
Fifty four years of coastal erosion and hydrometeorological parameters in
the Varandey region, Barents Sea. Coast. Eng. 157, 103610.
https://doi.org/10.1016/j.coastaleng.2019.103610
Sokolov, A.N., Chubarenko, B.V., 2020.
Temporal variability of the wind
wave parameters in the Baltic Sea in 1979–2018 based on the numerical
modeling results. Phys. Oceanogr. 27(4), 352–363.
https://doi.org/10.22449/1573-160X-2020-4-352-363
Sokolov, A., Chubarenko, B., 2024.
Baltic sea wave climate in 1979–2018:
Numerical modelling results. Ocean Eng. 297, 117088.
https://doi.org/10.1016/j.oceaneng.2024.117088
Sooäär, J., Jaagus, J., 2007.
Long-term changes in the sea ice regime
in the Baltic Sea near the Estonian coast. Estonian J. Eng. 13 (3),
189–200.
https://doi.org/10.3176/eng.2007.3.02
Soomere, T., 2003.
Anisotropy of wind and wave regimes in the Baltic proper. J. Sea Res. 49 (4), 305–316.
https://doi.org/10.1016/S1385-1101(03)00034-0
Soomere, T., 2024.
Climate change and coastal processes in the Baltic
Sea. Oxford Encyclopedia of Climate Science.
https://doi.org/10.1093/acrefore/9780190228620.013.897
Soomere, T., Behrens, A., Tuomi, L., Nielsen, J.W., 2008.
Wave conditions
in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun.
Nat. Hazards Earth Syst. Sci. 8 (1), 37–46.
https://doi.org/10.5194/nhess-8-37-2008
Soomere, T., Bishop, S.R., Viška, M., Räämet, A., 2015a.
An abrupt
change in winds that may radically affect the coasts and deep sections of the
Baltic Sea. Clim. Res. 62 (2), 163–171.
https://doi.org/10.3354/cr01269
Soomere, T., Eelsalu, M., 2014.
On the wave energy potential along the
eastern Baltic Sea coast. Renew. Energy. 71, 221–233.
https://doi.org/10.1016/j.renene.2014.05.025
Soomere, T., Eelsalu, M., Kurkin, A., Rybin, A., 2015b.
Separation of the
Baltic Sea water level into daily and multiweekly components. Cont. Shelf
Res. 103, 23–32.
https://doi.org/10.1016/j.csr.2015.04.018
Soomere, T., Eelsalu, M., Viigand, K., Giudici, A., 2024.
Linking changes
in the directional distribution of moderate and strong winds with changes in
wave properties in the eastern Baltic proper. J. Coast. Res. 113 (Sp.
Iss.), 190–194.
https://doi.org/10.2112/JCR-SI113-038.1
Soomere, T., Keevallik, S., 2001.
Anisotropy of moderate and strong winds
in the Baltic Proper. Proc. Estonian Acad. Sci. Eng. 50 (1), 35–49.
https://doi.org/10.3176/eng.2001.1.04
Soomere, T., Männikus, R., Pindsoo, K., Kudryavtseva, N., Eelsalu, M., 2017.
Modification of closure depths by synchronisation of severe seas and high
water levels. Geo-Mar. Lett. 37 (1), 35–46. h
ttps://doi.org/10.1007/s00367-016-0471-5
Soomere, T., Pindsoo, K., 2016.
Spatial variability in the trends in
extreme storm surges and weekly-scale high water levels in the eastern Baltic
Sea. Cont. Shelf Res. 115, 53–64.
https://doi.org/10.1016/j.csr.2015.12.016
Soomere, T., Pindsoo, K., Bishop, S.R., Käärd, A., Valdmann, A. 2013.
Mapping wave set-up near a complex geometric urban coastline. Nat.
Haz. Earth Syst. Sci. 13 (11), 3049–3061.
https://doi.org/10.5194/nhess-13-3049-2013
Soomere, T., Räämet, A., 2011.
Long-term spatial variations in the
Baltic Sea wave fields. Ocean Sci. 7 (1), 141–150.
https://doi.org/10.5194/os-7-141-2011
Soomere, T., Räämet, A., 2014.
Decadal changes in the Baltic Sea wave
heights. J. Marine Syst. 129, 86–95.
https://doi.org/10.1016/j.jmarsys.2013.03.009
Soomere, T., Viška, M., 2014.
Simulated wave-driven sediment transport
along the eastern coast of the Baltic Sea. J. Marine Syst. 129, 96–105.
h
ttps://doi.org/10.1016/j.jmarsys.2013.02.001
Soomere, T., Viška, M., Lapinskis, J., Räämet, A. 2011.
Linking wave
loads with the intensity of erosion along the coasts of Latvia. Estonian
J. Eng. 17 (4), 359–374. h
ttps://doi.org/10.3176/eng.2011.4.06
Soomere T., Weisse R., Behrens, A,. 2012.
Wave climate in the Arkona Basin,
the Baltic Sea. Ocean Sci. 8 (2), 287–300.
https://doi.org/.5194/os-8-287-2012
Sørensen, P., 2013. Denmark, [in:] Pranzini, E., Williams, A. (Eds.),
Coastal erosion and protection in Europe, Routledge, London,
96–107.
Stive, M.J.F., Aarninkhof, S.G.J., Hamm, L., Hanson, H., Larson, M., Wijnberg,
K.M., Nicholls, R.J., Capobianco, M., 2002.
Variability of shore and
shoreline evolution. Coast. Eng. 47 (2), 211–235.
https://doi.org/10.1016/S0378-3839(02)00126-6
Su, J., Murawski, J., Nielsen, J.W., Madsen, K.S., 2024.
Coinciding storm
surge and wave setup: A regional assessment of sea level rise impact.
Ocean Eng. 305, 117885.
https://doi.org/10.1016/j.oceaneng.2024.117885
Suursaar, Ü., Sooäär, J., 2007
. Decadal variations in mean and
extreme sea level values along the Estonian coast of the Baltic Sea.
Tellus A 59 (2), 249–260.
https://doi.org/10.1111/j.1600-0870.2006.00220.x
Suursaar, Ü., Jaagus, J., Kullas, T., 2006.
Past and future changes in
sea level near the Estonian coast in relation to changes in wind climate.
Boreal Environ. Res. 11, 123–142.
Suursaar, Ü., Jaagus, J. Tõnisson, H., 2015.
How to quantify long-term
changes in coastal sea storminess?. Estuar. Coast. Shelf Sci. 156,
31–41.
https://doi.org/10.1016/j.ecss.2014.08.001
Suursaar, Ü., Jaagus, J., Kont, A., Rivis, R., Tõnisson, H., 2008.
Field observations on hydrodynamic and coastal geomorphic processes off
Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007. Estuar.
Coast. Shelf Sci. 80 (1), 31–41.
https://doi.org/10.1016/j.ecss.2008.07.007
Suursaar, Ü., Kall, T., 2018.
Decomposition of relative sea level
variations at tide gauges using results from four Estonian precise levelings
and uplift models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (6),
1966–1974.
https://doi.org/10.1109/JSTARS.2018.2805833
Szmytkiewicz, P., Szmytkiewicz, M., Uscinowicz, G., 2021.
Lithodynamic
processes along the seashore in the area of planned nuclear power plant
construction: A case study on Lubiatowo at Poland. Energies, 14 (6), 1636.
h
ttps://doi.org/10.3390/en14061636
Toimil, A., Camus, P., Losada, I.J., Le Cozannet, G., Nicholls, R.J., Idier,
D., Maspataud, A. 2020b.
Climate changedriven coastal erosion modelling in
temperate sandy beaches: Methods and uncertainty treatment. Earth-Sci.
Rev. 202, 103110. h
ttps://doi.org/10.1016/j.earscirev.2020.103110
Toimil, A., Losada, I.J., Nicholls, R.J., Dalrymple, R.A., Stive, M.J.F.,
2020a.
Addressing the challenges of climate change risks and adaptation in
coastal areas: A review. Coast. Eng. 156, 103611.
https://doi.org/10.1016/j.coastaleng.2019.103611
Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., Žaromskis, R.,
2013.
The Baltic States – Estonia, Latvia and Lithuania. [in:]
Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe,
Routledge, London, 47–80.
Tõnisson, H., Suursaar, Ü., Orviku, K., Jaagus, J., Kont, A., Willis, D.A.,
Rivis, R., 2011.
Changes in coastal processes in relation to changes in
large-scale atmospheric circulation, wave parameters and sea levels in
Estonia. J. Coast. Res. 64 (Sp. Iss.), 701–705.
Tuomi L., Kahma K.K., Pettersson H. 2011.
Wave hindcast statistics in the
seasonally ice-covered Baltic Sea. Boreal Environ. Res. 16 (6),
451–472.
Ulsts, V., 1998.
Latvian Coastal Zone of the Baltic Sea. Riga, 96 pp.
(In Latvian).
Ulsts, V., Bulgakova, J., 1998.
General lithological and geomorphological
map of Latvian shore zone – Baltic Sea and Gulf of Riga. State
Geological Survey of Latvia, Riga.
USACE, 2002.
Coastal Engineering Manual. Department of the U.S. Army.
U.S. Army Corps of Engineers, Manual No. 1110-2-1100.
Uścinowicz, G., Jegliński, W., Paczek, U., Szarafin, T., Szmytkiewicz, P.,
Uścinowicz, S., 2024.
New insights into coastal processes in the southern
Baltic Sea: relevance to modelling and future scenarios. Geol. Q. 68(1),
9.
https://doi.org/10.7306/gq.1737
Valiela, I., Lloret, J., Bowyer, T., Miner, S., Remsen, D., Elrmstrom, E.,
Cogswell, D., Thieler, E.R., 2018.
Transient coastal landscapes: rising sea
level threatens salt marshes. Sci. Total Environ. 640–641, 1148–1156.
https://doi.org/10.1016/j.scitotenv.2018.05.235
Vihma, T., Haapala, J., 2009.
Geophysics of sea ice in the Baltic Sea: A
review. Prog. Oceanogr. 80 (3–4), 129–148.
https://doi.org/10.1016/j.pocean.2009.02.002
Viška, M., Soomere, T., 2013.
Simulated and observed reversals of
wave-driven alongshore sediment transport at the eastern Baltic Sea coast.
Baltica 26 (2), 145–156.
https://doi.org/10.5200/baltica.2013.26.15
Viška, M., Soomere, T., 2012.
Hindcast of sediment flow along the
Curonian Spit under different wave climates, [in:] Proceedings of the
IEEE/OES Baltic 2012 International Symposium “Ocean: Past, Present and
Future. Climate Change Research, Ocean Observation & Advanced Technologies
for Regional Sustainability,” May 8–11, Klaipėda, Lithuania. IEEE Conf.
Publ.
https://doi.org/10.1109/BALTIC.2012.6249195
Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S.,
Jackson, L.P., Feyen, L., 2018.
Global probabilistic projections of extreme
sea levels show intensification of coastal flood hazard. Nat. Commun. 9,
2360.
https://doi.org/10.1038/s41467-018-04692-w
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt,
A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E. 2021.
Sea
level dynamics and coastal erosion in the Baltic Sea region. Earth Syst.
Dynam. 12, 871–898. h
ttps://doi.org/10.5194/esd-12-871-2021
Weisse, R., von Storch, H., Feser, F., 2005.
Northeast Atlantic and North
Sea storminess as simulated by a regional climate model during 1958–2001 and
comparison with observations. J. Clim. 18, 465–479.
https://doi.org/10.1175/JCLI-3281.1
Wolski, T., Wiśniewski, B., 2020.
Geographical diversity in the
occurrence of extreme sea levels on the coasts of the Baltic Sea. J. Sea
Res. 159, 101890.
https://doi.org/10.1016/j.seares.2020.101890
Wolski, T., Wisniewski, B., 2021.
Characteristics and longterm variability
of occurrences of storm surges in the Baltic Sea. Atmosphere 12 (12),
1679.
https://doi.org/10.3390/atmos12121679
Wolski, T., Wisniewski, B., 2023.
Characteristics of seasonal changes of
the Baltic Sea extreme sea levels. Oceanologia 65 (1), 151–170.
https://doi.org/10.1016/j.oceano.2022.02.006
Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H.,
Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaitė, Ž., 2014.
Extreme sea levels at selected stations on the Baltic Sea coast.
Oceanologia 56 (2), 259–290.
https://doi.org/10.5697/oc.56-2.259
Zakharchuk, E.A., Sukhachev, V.N., Tikhonova, N.A., 2021.
Storm surges in
the Gulf of Finland of the Baltic Sea. Vestnik of Saint Petersburg
University, Earth Sciences, 66 (4), 781–805.
https://doi.org/10.21638/spbu07.2021.408
Zawadzka-Kahlau, E., 1999.
Tendencje rozwojowe polskich brzegów Bałtyku
Południowego. IBW PAN, Gdańsk, 147 pp.
Zeidler, R.B., Wróblewski, A., Miętus, M., Dziadziuszko, Z., Cyberski J.,
1995.
Wind, wave, and storm surge regime at the Polish Baltic coast.
J. Coast. Res. 22 (Sp. Iss.), 33–55.
Zhang, K., Douglas, B.C., Leatherman, S.P., 2004.
Global warming and
coastal erosion. Clim. Change 64 (1/2), 41–58.
https://doi.org/10.1023/B:CLIM.0000024690.32682.48
Žilinskas, G., Janušaitė, R., Jarmalavičius, D., Pupienis, D.,
202
0. The impact of Klaipeda Port entrance channel dredging on the dynamics
of coastal zone, Lithuania.Oceanologia 62 (4), 489–500.
https://doi.org/10.1016/j.oceano.2020.08.002
Xu, K., Zhuang, Y.C., Bin, L.L., Wang, C.Y., Tian, F.C., 2023.
Impact
assessment of climate change on compound flooding in a coastal city. J.
Hydrol. 617 (C), 129166.
https://doi.org/10.1016/j.jhydrol.2023.129166xx
Digital Information System for the Polish Marine Areas — Modelling of Structures and Dynamics of Physical Processes in the Southern Baltic
Oceanologia, 67 (1)/2025, 67104, 17 pp.
https://doi.org/10.5697/CUKW4719
Lidia Dzierzbicka-Głowacka*, Dawid Dybowski, Maciej Janecki, Artur Nowicki
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: dzierzb@iopan.pl (L. Dzierzbicka-Głowacka)
*corresponding author
Keywords: Numerical modelling; Baltic Sea; Polish Marine Areas; Ocean hydrodynamic
Received: 19 July 2024; revised: 14 October 2024; accepted: 25 November 2024.
Highlights
- Better understanding of the basic hydrodynamic parameters of the Baltic Sea environment
- New tools within the Digital Information System on the Environment of Polish Marine Areas
- Forecasting capabilities in the complex marine environment of the Southern Baltic Sea
Abstract
Researching the dynamic environment of the Baltic Sea requires an interdisciplinary approach, with numerical models and computer simulations becoming essential tools. The 3D CEMBS-PolSEA ecosystem model, developed at the Institute of Oceanology of the Polish Academy of Sciences, aims to determine the basic hydrodynamic parameters of the southern Baltic Sea. The CSI-POM service (Digital Information System on the Environment of Polish Marine Areas) consists of new tools for studying the structures, dynamics, and variability of physical processes in the southern Baltic.
The service includes tools for determining the thermocline, halocline, and pycnocline, conducting spatio-temporal analysis of water column structure, automatic detection of vortices, testing water mass inertia under forecasted wind forces, and automatic detection of upwelling currents. The novelty of this work lies in the development of tools for studying the dynamics of the structure and variability of physical processes in the southern Baltic Sea. These innovative techniques support scientists, the maritime community, and regulatory bodies by providing detailed insights
into local phenomena such as vortex formation, water mixing. The tools are implemented on the project server and the Tryton+ supercomputer, enabling high temporal and spatial resolution results. The CSI-POM system’s operational mode ensures access to the latest model results, with real-time and forecasted data. This enhances understanding and forecasting capabilities, informing about the current state of the environment and potential threats in the open sea.
References
Andrejev, O., Soomere, T., Sokolov, A., Myrberg, K., 2011.
The role of the
spatial resolution of a three-dimensional hydrodynamic model for marine
transport risk assessment. Oceanologia 53(1), 309–334.
https://doi.org/10.5697/oc.53-1-TI.309
Bossier, S., Palacz, A.P., Nielsen, J.R., Christensen, A., Hoff, A., Maar, M.,
Gislason, H., Bastardie, F., Gorton, R., Fulton, E.A., 2018.
The Baltic sea
Atlantis: An integrated end-to-end modelling framework evaluating
ecosystem-wide effects of human-induced pressures. PLoS ONE 13.
https://doi.org/10.1371/journal.pone.0199168
Dybowski, D., Jakacki, J., Janecki, M., Nowicki, A., Rak, D., Dzierzbicka-Glowacka, L., 2019.
High-Resolution Ecosystem Model of the Puck Bay (Southern Baltic Sea) – Hydrodynamic Component Evaluation. Water
11(10), 2057.
https://doi.org/10.3390/w11102057
Dybowski, D., Janecki, M., Dzierzbicka-Głowacka, L., 2024a.
Various aspects of marine circulation in the Southern Baltic in a submesoscale perspective. Weather Forecast., under review.
Dybowski, D., Janecki, M., Nowicki, A., Dzierzbicka-Glowacka, L.A., 2020.
Assessing the Impact of Chemical Loads from Agriculture Holdings on the Puck Bay Environment with the High-Resolution Ecosystem Model of the Puck Bay,
Southern Baltic Sea. Water 12(7), 2068.
https://doi.org/10.3390/w12072068
Dybowski, D., Janecki, M., Nowicki, A., Jakacki, J., Dzierzbicka-Głowacka, L., 2024b.
Development and validation of a high-resolution hydrodynamic model for Polish Marine Areas. Oceanologia 67(1), 11 pp.
https://doi.org/10.5697/EWGU8323
Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2013a.
Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part. Oceanologia 55(3), 519–541.
https://doi.org/10.5697/oc.55-3.519
Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J., 2013b.
Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia 55(3), 543–572.
https://doi.org/10.5697/oc.55-3.543
Graftieaux, L., Michard, M., Grosjean, N., 2001.
Combining PIV, POD and
vortex identification algorithms for the study of unsteady turbulent swirling
flows. Meas. Sci. Technol. 12, 1422.
https://doi.org/10.1088/0957-0233/12/9/307
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., Meier, H.E.M., 2019.
Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak
projected in an ensemble of climate scenarios downscaled with a coupled
regional ocean–sea ice–atmosphere model. Clim. Dynam. 53, 5945–5966.
https://doi.org/10.1007/s00382-019-04908-9
Gustafsson, E., Wällstedt, T., Humborg, C., Mörth, C.-M., Gustafsson, B.G.,
2014.
External total alkalinity loads versus internal generation: The
influence of nonriverine alkalinity sources in the Baltic Sea. Global
Biogeochem. Cy. 28, 1358–1370.
https://doi.org/10.1002/2014GB004888
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger,
M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P.,
Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K.,
Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A.,
Tuomi, L., Haapala, J., 2019. Nemo-Nordic 1.0:
A NEMO-based ocean model for
the Baltic and North seas - Research and operational applications. Geosci.
Model. Dev. 12, 363–386.
https://doi.org/10.5194/gmd-12-363-2019
Janecki, M., Dybowski, D., Jakacki, J., Nowicki, A., Dzierzbicka-Glowacka, L.,
2021.
The Use of Satellite Data to Determine the Changes of Hydrodynamic
Parameters in the Gulf of Gdańsk via EcoFish Model. Remote. Sens.Basel
13, 3572.
https://doi.org/10.3390/rs13183572
Janecki, M., Dybowski, D., Rak, D., Dzierzbicka-Glowacka, L., 2022.
A New
Method for Thermocline and Halocline Depth Determination at Shallow Seas.
J. Phys. Oceanogr. 52(9), 2205–2218
https://doi.org/10.1175/JPO-D-22-0008.1
Jedrasik, J., Cieślikiewicz, W., Kowalewski, M., Bradtke, K., Jankowski, A.,
2008.
44 Years Hindcast of the sea level and circulation in the Baltic Sea.
Coast. Eng. 55, 849–860.
https://doi.org/10.1016/j.coastaleng.2008.02.026
Leppäranta, M., Myrberg, K. (Eds.), 2009.
Topography and hydrography of
the Baltic Sea, in: Physical Oceanog- raphy of the Baltic Sea. Springer,
Berlin, Heidelberg, 41–88.
https://doi.org/10.1007/978-3-540-79703-6_3
Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016.
A numerical study of
circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and
mean currents. Cont. Shelf. Res. 112, 1–13.
https://doi.org/10.1016/j.csr.2015.11.008
Marmefelt, E., Omstedt, A., 1993.
Deep water properties in the Gulf of
Bothnia. Cont. Shelf. Res. 13, 169–187.
https://doi.org/10.1016/0278-4343(93)90104-6
Neumann, T., Fennel, W., Kremp, C., 2002.
Experimental sim- ulations with
an ecosystem model of the Baltic Sea: A nu- trient load reduction
experiment. Global Biogeochem. Cy. 16(3), 7–1–7–19.
https://doi.org/10.1029/2001gb001450
Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., Kałas, M., 2015.
Assimilation of the satellite SST data in the 3D CEMBS model.
Oceanologia 57(1), 17–24.
https://doi.org/10.1016/j.oceano.2014.07.001
Öberg, J., 2017.
Cyanobacteria blooms in the Baltic Sea. HELCOM Baltic
Sea Environment Fact Sheets.
Stigebrandt, A., 1983.
A Model for the Exchange of Water and Salt Between
the Baltic and the Skagerrak. J. Phys. Oceanogr. 13 (3), 411–427.
Development and validation of a high-resolution hydrodynamic model for the Polish Marine Area
Oceanologia, 67 (1)/2025, 67105, 10 pp.
https://doi.org/10.5697/EWGU8323
Dawid Dybowski*, Maciej Janecki, Artur Nowicki, Jaromir Jakacki, Lidia Dzierzbicka-Głowacka
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: ddybowski@iopan.pl (D. Dybowski)
*corresponding author
Keywords: Numerical modelling; High-resolution model; Hydrodynamics; Southern Baltic
Received: 4 July 2024; revised: 7 October 2024; accepted: 25 November 2024.
Highlights
- 3D CEMBS-PolSEA model accurately maps temperature and salinity in Polish Marine Areas
- The model supports hydrodynamic forecasting and maritime planning
- High-resolution model accurately simulates water circulation and submesoscale dynamics
Abstract
This study presents the development and validation of a high-resolution 3D hydrodynamic model, CEMBS-PolSea, designed to resolve submesoscale features in Polish Marine Areas. The model, derived from the Community Earth System Model (CESM), employs a horizontal resolution of 575 m and 66 vertical layers. It incorporates advanced parameterizations for horizontal and vertical mixing processes, and integrates meteorological and river inflow data. A novel satellite data assimilation module was implemented to enhance model accuracy. The model was calibrated and validated using in situ measurements from the International Council for the Exploration of the Sea (ICES) database and satellite observations over the period 2019–2023. Results demonstrate strong agreement between model outputs and observational data, particularly for surface temperature (Pearson’s r = 0.95) and salinity (r = 0.89). The model successfully captures temporal and spatial variations in temperature and salinity profiles, with some discrepancies noted in deeper layers. The integration of satellite data assimilation significantly improved model performance, particularly in surface temperature predictions. This high-resolution model represents a significant advancement in simulating complex coastal dynamics and submesoscale features in the Polish Marine Areas, offering a valuable tool for marine ecosystem management and climate change impact studies in the region.
References
Daewel, U., Schrum, C., 2013.
Simulating long-term dynamics of the coupled
North Sea and Baltic Sea ecosystem with ECOSMO II: Model description and
validation. J. Marine Syst, 119–120, 30–49.
https://doi.org/10.1016/j.jmarsys.2013.03.008
Dybowski, D., Dzierzbicka-Głowacka, L., 2023.
Analysis of the impact of
nutrients deposited from the land side on the waters of Puck Lagoon (Gdańsk
Basin, Southern Baltic): A model study. Oceanologia 65(2), 386–397.
https://doi.org/10.1016/j.oceano.2022.11.005
Dybowski, D., Jakacki, J., Janecki, M., Nowicki, A., Rak, D., Dzierzbicka-Glowacka, L., 2019.
High-Resolution Ecosystem Model of the Puck Bay (Southern Baltic Sea) – Hydrodynamic Component Evaluation. Water 11,
2057.
https://doi.org/10.3390/w11102057
Dybowski, D., Janecki, M., Nowicki, A., Dzierzbicka-Glowacka, L.A., 2020.
Assessing the Impact of Chemical Loads from Agriculture Holdings on the
Puck Bay Environment with the High-Resolution Ecoystem Model of the Puck Bay,
Southern Baltic Sea. Water 12, 2068.
https://doi.org/10.3390/w12072068
Dzierzbicka-Glowacka, L., Dybowski, D., Janecki, M., Wojciechowska, E.,
Szymczycha, B., Potrykus, D., Now- icki, A., Szymkiewicz, A., Zima, P.,
Jaworska-Szulc, B., Pietrzak, S., Pazikowska-Sapota, G., Kalinowska, D.,
Nawrot, N., Wielgat, P., Dembska, G., Matej-Łukowicz, K., Szczepańska, K.,
Puszkarczuk, T., 2022.
Modelling the impact of the agricultural holdings
and land-use structure on the quality of inland and coastal waters with an
innovative and interdisciplinary toolkit. Agr. Water Manage. 263, 107438.
https://doi.org/10.1016/j.agwat.2021.107438
Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2013a.
Activation of the operational ecohydrodynamic model (3D CEMBS) – the
hydrodynamic part. Oceanologia 55(3), 519–541.
http://dx.doi.org/10.5697/oc.55-3.519
Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J., 2013b.
Activation of the operational ecohydrodynamic model (3D CEMBS) – the
ecosystem module. Oceanologia 55(3), 543–572.
http://dx.doi.org/10.5697/oc.55-3.543
Eilola, K., Meier, H.E.M., Almroth, E., 2009.
On the dynamics of oxygen,
phosphorus and cyanobacteria in the Baltic Sea; A model study. J. Marine
Syst. 75, 163–184.
https://doi.org/10.1016/j.jmarsys.2008.08.009
Fennel, K., Wilkin, J., Levin, J., Moisan, J., O’Reilly, J., Haidvogel, D.,
2006.
Nitrogen cycling in the Middle Atlantic Bight: Results from a
three-dimensional model and implications for the North Atlantic nitrogen
budget. Global Biogeochem. Cy. 20.
https://doi.org/10.1029/2005GB002456
Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H., 2015.
Advantages of vertically adaptive coordinates in numerical models of
stratified shelf seas. Ocean Model. 92, 56–68.
https://doi.org/10.1016/j.ocemod.2015.05.008
Holt, J., Proctor, R., 2008.
The seasonal circulation and volume transport
on the northwest European continental shelf: A fine-resolution model
study. J. Geophys. Res.- Oceans 113.
https://doi.org/10.1029/2006JC004034
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger,
M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P.,
Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K.,
Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A.,
Tuomi, L., Haapala, J., 2019.
Nemo-Nordic 1.0: A NEMO-based ocean model for
the Baltic and North seas – Research and operational applications.
Geosci. Model Dev. 12, 363–386.
https://doi.org/10.5194/gmd-12-363-2019
Lehmann, A., Getzlaff, K., Harlaß, J., 2011.
Detailed assessment of
climate variability of the Baltic Sea area for the period 1958–2009.
Climate Res. 46, 185–196.
https://doi.org/10.3354/cr00876
Markus Meier, H.E., 2007.
Modeling the pathways and ages of inflowing salt-
and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci. 74(1),
610–627.
https://doi.org/10.1016/j.ecss.2007.05.019
Meier, H.E.M., Andersson, H.C., Arheimer, B., Donnelly, C., Eilola, K.,
Gustafsson, B.G., Kotwicki, L., Neset, T.-S., Niiranen, S., Piwowarczyk, J.,
Savchuk, O.P., Schenk, F., Węsławski, J.M., Zorita, E., 2014.
Ensemble
Modeling of the Baltic Sea Ecosystem to Provide Scenarios for Management.
AMBIO 43, 37–48.
https://doi.org/10.1007/s13280-013-0475-6
Murawski, J., She, J., Mohn, C., Frishfelds, V., Nielsen, J.W., 2021.
Ocean
Circulation Model Applications for the Estuary-Coastal-Open Sea Continuum.
Front. Mar. Sci. 8.
https://doi.org/10.3389/fmars.2021.657720
Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., Kałas, M., 2015.
Assimilation of the satellite SST data in the 3D CEMBS model.
Oceanologia 57(1), 17–24.
https://doi.org/10.1016/j.oceano.2014.07.001
Schrum, C., Hübner, U., Jacob, D., Podzun, R., 2003.
A coupled
atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate
Dynam. 21, 131–151.
https://doi.org/10.1007/s00382-003-0322-8
Timmermann, R., Beckmann, A., Hellmer, H., 2002.
Simulation of
ice-ocean dynamics in the Weddell Sea. Part I: Model configuration and
validation. J. Geophys. Res. C3 107.
https://doi.org/10.1029/2000JC000741
Note on estimating air-sea flux of CO2 using mean wind
Oceanologia, 67 (1)/2025, 67106, 5 pp.
https://doi.org/10.5697/BRBY1100
Dag Myrhaug
Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Otto Nielsens vei 10, NO–7491 Trondheim, Norway;
e-mail: dag.myrhaug@ntnu.no (D. Myrhaug)
Keywords: Air-sea flux of CO2; Transfer velocity of CO2; Air-sea exchange; Mean wind speed statistics; Stochastic method
Received: 10 October 2023; revised: 21 November 2024; accepted: 26 November 2024.
Highlights
- The air-sea flux of CO2 is estimated using mean wind speed statistics
- Eight wind speed-dependent transfer velocity parameterisations of CO2 are used
- Examples of results are given using wind speed statistics from one location in the North Sea and one location in the North Atlantic
- The results demonstrate statistical uncertainties in terms of large standard deviations of
wind speed-dependent transfer velocity
Abstract
Statistical properties of the air-sea flux of CO2 are estimated based on mean wind speed statistics. This is achieved by applying the same eight wind speed-dependent transfer velocity parameterizations of CO2 as used by Woolf et al. (2019) together with mean wind speed statistics from one location in the North Sea and one in the North Atlantic. These results demonstrate solely the contribution of the statistical uncertainties in terms of large standard deviations of the wind speed-dependent gas transfer velocity of the CO2 flux at both locations.
References
Bitner-Gregersen, E.M., 2015. Joint met-ocean description for design and
operations of marine structures. Appl. Ocean Res. 51, 279–292.
http://dx.doi.org/10.1016/j.apor.2015.01.007
Bury, K.V., 1975. Statistical Models in Applied Science. John Wiley & Sons,
New York, 646 pp.
Fay, A.R, Gregor, L., Landschützer, P., McKinley, G.A., Gruber, N., Gehlen,
M., Iida, Y., Laruelle, G.G., Rödenbeck, C., Roobaert, A., Zeng, J., 2021.
Sea-Flux: harmonization of air-sea CO2 fluxes from surface pCO2 data products
using a standardized approach. Earth Syst. Sci. Data 13, 4693–4710.
https://doi.org/10.5194/essd-13-4693-2021
Ho, D.T., Law, C.S., Smith, M.J., Schlosser, P., Harvey, M., Hill, P., 2006.
Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean:
Implications for global parameterizations. Geophys. Res. Lett. 33, L16611.
https://doi.org/10.1029/2006GL026817
Ho, D.T., Law, C.S., Smith, M.J., Schlosser, P., Harvey, M., Hill, P., 2007.
Reply to comments by X. Zhang on ‘Measurements of air-sea gas exchange at
high wind speeds in the Southern Ocean: Implications for global
parameterizations’. Geophys. Res. Letters 34, L23604.
https://doi.org/10.1029/2007GL030943
Johannessen, K., Meling, T.S., Haver, S., 2001. Joint distribu- tion of wind
and waves in the Northern North Sea. [In:] Chung, J.S., Prevosto, M., Mizutani,
N. (eds). Proceedings of the 11th Int. Offshore and Polar Engineering Conf.,
Stavanger, Norway, Vol. 3, Int. Soc. Offshore Polar Eng. (ISOPE), Cupertino,
CA, USA, 19–28.
Mao, W., Rychlik, I., 2017. Estimation of Weibull
distribution for wind speeds along ship routes. Proc. Inst. Mech. Eng. Pt. M,
J. Eng. Mar. Environ. 231 (2), 464–480.
https://doi.org/10.1177/1475090216653495
McGillis, W.R., Edson, J.B., Ware, J.D., Dacey, J.W.H., Hare, J.E., Fairall,
C.W., Wanninkhof, R., 2001. Carbon dioxide flux techniques performed during
GasEx 98. Mar. Chem. 75 (4), 267–280.
https://doi.org/10.1016/S0304-4203(01)00042-1
Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., 2000. In
situ evaluation of air-sea gas exchange parameterizations using novel
conservative and volatile tracers. Global Biochem. Cy. 14 (1), 373–387.
https://doi.org/10.1029/1999GB900091
Roobaert, A., Laruelle, G.G., Landschutzer, P., Regnier, P., 2018. Uncertainty
in the global oceanic CO2 uptake induced by wind forcing: quantification and
special analysis. Biogeosciences 15 (6), 1701–1720.
https://doi.org/10.5194/bg-15-1701-2018
Smith, M.J., Ho, D.T., Law, C.S., McGregor, J., Popinet, S., Schlosser, P.,
2011. Uncertainties in gas exchange parameterization during the SAGE
dual-tracer experiment. Deep Sea Res. Pt. II 58 (6), 869–881.
https://doi.org/10.1016/j.dsr2.2010.10.025
Villas Bôas, A.B., Arduin, F., Ayet, A., Bourassa, M.A., Brandt, P., Chapron,
B., Cornuelle, B.D., Farrar, J.T., Fewings, M.R., Fox-Kemper, B., Gille, S.T.,
Gommenginger, C., Heimbach, P., Hell, M.C., Li, Q., Mazloff, M.R., Merrifield,
S.T., Mouche, A., Rio, M.H., Rodriguez, E., Shutler, J.D., Subramanian, A.C.,
Terrill, T.J., Tsamados, M., Ubelmann, C., van Sebille, E., 2019. Integrated
observations of global surface winds, currents, and waves: requirements and
challenges for the next decade. Front. Mar. Sci. 6, 425.
https://doi.org/10.3389/fmars.2019.00425
Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the
ocean revisited. Limnol. Oceanogr.-Meth. 12 (6), 351–362.
https://doi.org/10.4319/lom.2014.12.351
Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C., McGillis, W.R., 2009.
Advances in quantifying air-sea gas exchange and environmental forcing. Annu.
Rev. Mar. Sci. 1 (1), 213–244.
https://doi.org/10.1146/annurev.marine.010908.163742
Woolf, D.K., Shutler, J.D., Goddijn-Murphy, L., Watson, A.J., Chapron, B.,
Nightingale, P.D., Donlon, C.J., Piskozub, J., Yelland, M.J., Ashton I.,
Holding, T., Schuster, U., Girard- Ardhuin, F., Grouazel, A., Piolle, J.-F.,
Warren, M., Wrobel- Niedzwiecka, I., Land, P.E., Torres, R., Prytherch, J.,
Moat, B., Hanafin, J., Ardhuin, F., Paul, F., 2019. Key uncertainties in the
recent air-sea flux of CO2. Global Biogeochem. Cy. 33, 1548–1563.
https://doi.org/10.1029/2018GB006041
Myoxocephalus scorpius – liver nematodes and diet (pilot studies from Polish waters)
Oceanologia, 67 (1)/2025, 67107, 8 pp.
https://doi.org/10.5697/OZMV7779
Katarzyna Nadolna-Ałtyn1,*, Joanna Pawlak1, Marcin Kuciński2
1National Marine Fisheries Research Institute, Kołłątaja 1, 81–332, Gdynia, Poland;
e-mail: knadolna@mir.gdynia.pl (K. Nadolna-Ałtyn)
2University of Gdańsk, Marszałka Piłsudskiego 46 Av., 81–378 Gdynia, Poland
*corresponding author
Keywords:
Myoxocephalus scorpius; Shorthorn sculpin; Dietary composition; Nematodes; Baltic Seachemistry; Carbon cycle; Climate and environmental research; Atmosphere-ocean-land surface modeling
Received: 13 March 2024; revised: 23 September 2024; accepted: 26 November 2024.
Highlights
- Parasitological analysis of the liver of shorthorn sculpin was performed.
- The prevalence of Contracaecum sp. was 15.6%.
- The dietary composition of shorthorn sculpin was investigated.
Predominant prey species were Crangon crangon, Bylgides sarsi and Gammarus sp.
Abstract
Research on the parasitology of the shorthorn sculpin (Myoxocephalus scorpius) from the Baltic Sea is presently limited. As a predatory fish, the species primarily acquire nematode parasites through the ingestion of infected prey. The main objectives of the current study were to (1) evaluate the presence of nematodes in the livers of shorthorn sculpin from the southern Baltic Sea and (2) investigate the dietary composition of this species. Accordingly, 32 fish from the north-western Polish waters of the Baltic Sea (ICES rectangle 39G6) were caught in November 2020 and subjected to standard ichthyological analyses. Moreover, liver samples were dissected from each fish and frozen for further
parasitological investigation. The presence of the parasites was detected in 5 of the 32 analyzed livers, with a prevalence of 15.6%, intensity of infection from 2 to 99 parasites per fish and abundance of 3.9. Co-occurrence of Contracaecum sp. and Hysterothylacium sp. nematodes was observed in all infected fish. Stomach content analysis revealed that Crangon crangon, Bylgides sarsi and Gammarus spp. were the most abundant components of the shorthorn sculpin’s diet.
References
Andersen, K., 2001.
A note on the variation in sealworm (Pseudoterranova
decipiens) infection in shorthorn sculpin (Myoxocephalus scorpius) with host
age and size at two locations in Norwegian inshore waters. NAMMCO Sci.
Publ. 3, 39–46.
https://doi.org/10.7557/3.2957
Aspholm, P.E., Ugland, K.I., Jødestøl, K.A., Berland, B., 1995.
Sealworm
(Pseudoterranova decipiens) infection in harbour seals (Phoca vitulina) and
potential intermediate fish hosts from the outer Oslofjord, Int. J.
Parasit. 25, 367–373.
https://doi.org/10.1016/0020-7519(94)00133-9
Blaxter, M.L., De Ley P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete,
A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T.,
Thomas, W.K., 1998.
A molecular evolutionary framework for the phylum
Nematoda, Nature 392, 71–75.
https://doi.org/10.1038/32160
Bush, A.O., Lafferty, K.D., Lotz, J.M., Shostak, A.W., 1997.
Parasitology
Meets Ecology on Its Own Terms: Margolis et al. Revisited, J. Parasitol.
83 (4), 575–583.
https://doi.org/10.2307/3284227
Cardinale, M., 2000.
Ontogenetic diet shifts of bull-rout, Myoxocephalus
scorpius (L.) in the south-western Baltic Sea. J. Appl. Ichthyol. 16,
231–239.
https://doi.org/10.1046/j.1439-0426.2000.00231.x
Dang, M., Nørregaard, R., Bach, L., Sonne, Ch., Søndergaard, J., Gustavson,
K., Aastrup, P., Nowak, B., 2017.
Metal residues, histopathology and
presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus
quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former
lead-zinc mine in East Greenland. Environ. Res. 153, 171–180.
https://doi.org/10.1016/j.envres.2016.12.007
Dick, T., Chambers, C., Gallagher, C.P., 2009.
Parasites, diet and stable
isotopes of shortern sculpin (Myoxocephalus Scorpius) from Frobisher Bay,
Canada. Parasite 16, 297–304.
http://dx.doi.org/10.1051/parasite/2009164297
Ebeling, E., Alshuth, S., 1989.
Food preferences and diseases of
Myoxocephalus Scorpius in the German Bight. ICES CM paper 1989/G:48
Demersal fish committee.
Fiorenza, E.A., Wendt, C.A., Dobkowski, K.A., King, T.L., Pappaionou, M.,
Rabinowitz, P., Samhouri, J.F., Wood, C.L., 2020.
It’s a wormy world:
Meta-analysis reveals several decades of change in the global abundance of the
para- sitic nematodes anisakis spp. and Pseudoterranova spp. in marine fishes
and invertebrates. Glob. Change Biol. 26, 2854–2866.
https://doi.org/10.1111/gcb.15048
Floyd, R.M., Rogers, A.D., Lambshead, P.J.D., Smith, C.R., 2005.
Nematode-specific PCR primers for the 18S small subunit rRNA gene.
Mol. Ecol. Notes 5(3), 611–612.
https://doi.org/10.1111/j.1471-8286.2005.01009.x
Gabel, M., Theisen, S., Palm, H.W., Dähne, M., Unger, P., 2021.
Nematode
parasites in Baltic Sea mammals, grey seal (Halichoerus grypus (Fabricius,
1791)) and harbour porpoise (Phocoena Phocoena(L.)), from German coast.
Acta Parasitol. 66, 26–33.
https://doi.org/10.1007/s11686-020-00246-7
Herreras, M.V., Montero, F.E., Marcogliese, D.J., Raga, J.A., Balbuena , J.A.,
2007.
Phenotypic trade offs between egg number and egg size in three
parasitic anisakid nematodes. Oikos 116, 1737–1747.
https://doi.org/10.1111/j.2007.0030-1299.16016.x
ICES, 2021.
ICES Working Group on Baltic International Fish Survey (WGBIFS;
outputs from 2020 meeting). ICES Sci. Rep. 3:02, 539 pp.
http://doi.org/10.17895/ices.pub.7679
Jackson, C.J., Marcogliese, D.J., Burt, M.D.B., 1997.
Role of hyperbenthic
crustaceans in the transmission of marine helminth parasites. Can. J.
Fish. Aquat. Sci., 54, 815–820.
https://doi.org/10.1139/f96-329
Khan, R.A., 2011.
Chronic Exposure and Decontamination of a Marine Sculpin
(Myoxocephalus scorpius) to Polychlorinated Biphenyls Using Selected Body
Indices, Blood Values, Histopathology, and Parasites as Bioindicators.
Arch. Environ. Contam. Toxicol. 60, 479–485.
http://doi.org/10.1007/s00244-010-9547-9
Køie, M., 1993.
Aspects of the life-cycle and morphology of
Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea,
Anisakidae). Can. J. Zool. 71, 1289–1296.
https://doi.org/10.1139/z93-178
Køie, M., Fagerholm, H.P. 1995.
The life cycle of Contracaecum osculatum
(Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of
experimental infection. Parasitol. Res. 81, 481–489.
https://doi.org/10.1007/BF00931790
Kulikowski, M., Rolbiecki, L., Skóra, K, Rokicki, J., 2012.
Nematodes
found in the European anchovy (Engraulis encrasicolus), a rare visitor to the
Baltic Sea. Oceanol. Hydrobiol. Stud. 41, 99–102.
https://doi.org/10.2478/s13545-012-0032-0
Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018.
MEGA X:
Molecular evolutionary genetics analysis across computing platforms. Mol.
Biol. Evol. 35(6), 1547.
https://doi.org/10.1093/molbev/msy096
Kühl, H., 1961.
Nahrungsuntersuchungen an einigen Fischen im
Elbe-Mündungsgebiet [Nutrition studies on some fish in the Elbe estuary].
Der Dt. Wiss. Komm. Meeresforsch. XVI 2, 90–104 (in German).
Lähdekorpi, E., 2011.
Sealworms (Pseudoterranova decipiens) in shorthorn
sculpin (Myoxocephalus scorpius) from the outer Oslofjord. M.Sc. thesis.
University of Oslo.
Landry, J.J., Fisk, A.T., Yurkowski, D.J., Hussey, N.E., Dick, T., Crawford,
R.E., Kessel1, S.T., 2018.
Feeding ecology of a common benthic fish,
shorthorn sculpin (Myoxocephalus scorpius) in the high arctic. Polar Biol.
41, 2091–2102.
https://doi.org/10.1007/s00300-018-2348-8
Luksenburg, J.A., Pedersen, T., Falk-Petersen, I.B., 2004.
Reproduction of
the shorthorn sculpin (Myoxocephalus scorpius) in northern Norway. J. Sea
Res. 51, 157–166.
https://doi.org/10.1016/j.seares.2003.09.001
Lunneryd, S.G., Bostrom, M.K., Aspholm, P.E., 2015.
Sealworm
(Pseudoterranova decipiens) infection in grey seals (Halichoerus grypus), cod
(Gadus morhua) and shorthorn sculpin (Myoxocephalus scorpius) in the Baltic
Sea. Parasitol. Res. 114, 257–264.
https://doi.org/10.1007/s00436-014-4187-z
Midtgaard, T., Andersen, K., Halvorsen, O., 2003.
Population dynamics
of sealworm, Pseudoterranova decipiens sensu lato, in sculpins, Myoxocephalus
scorpius from two areas in Norway between 1990 and 1996. Parasitol. Res.
89(5), 387–392.
https://doi.org/10.1007/s00436-002-0667-7
Nadolna, K., Podolska, M., 2014.
Anisakid larvae in the liver of cod (Gadus
morhua) L. from the southern Baltic Sea. J. Helminthol. 88, 237–246.
https://doi.org/10.1017/S0022149X13000096
Nadolna-Ałtyn, K., Pawlak, J., Pachur M., 2023a.
First record of
Pseudoterranova decipiens in sprat (Sprattus sprattus) from the Baltic
Sea. J. Fish. Dis. 47(1), e13866.
https://doi.org/10.1111/jfd.13866
Nadolna-Ałtyn, K., Pawlak, J., Podolska, M., Lejk, A., 2023b.
Contracaecum
osculatum and Pseudoterranova sp. in the liver of salmon (Salmo salar) from
Polish marine waters. Fish. Aquatic Life, 31, 44–53.
https://doi.org/10.2478/aopf-2023-0005
Nadolna-Ałtyn, K., Podolska, M., Pawlak, J., 2024.
First report of the
presence of Pseudoterranova sp. in the body cavity of salmon (Salmo salar) from
the Baltic Sea. Fish. Aquatic. Life. 32, 117–121.
https://doi.org/10.2478/aopf-2024-0010
Nadolna-Ałtyn, K., Podolska, M., Szostakowska, B., 2017.
Great sandeel
(Hyperoplus lanceolatus) as a putative transmitter of parasite Contracaecum
osculatum (Nematoda: Anisakidae). Parasitol. Res. 116(7), 1931–1936.
https://doi.org/10.1007/s00436-017-5471-5
Nadolna-Ałtyn, K., Szostakowska, B., Podolska, M., 2018.
Sprat (Sprattus
sprattus) as a possible source of invasion of marine predators with
Contracaecum osculatum in the Southern Baltic Sea. Russ. J. Mar. Biol. 44,
471–476.
https://doi.org/10.1134/S1063074018060093
Navone, G.T., Sardella, N.H., Timi, J.T., 1998.
Larvae and adults of
Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda: Anisakidae) in fishes and
crustaceans in the South West Atlantic. Parasite 5, 127–136.
https://doi.org/10.1051/parasite/1998052127
Norderhaug, K.M., Christie, H., Fossa, J.H., Fredriksen S., 2005.
Fish
macrofauna interactions in a kelp (Laminaria hyperborean) forest. J. Mar.
Biol. Assoc. U.K. 185, 1279–1286.
https://doi.org/10.1017/S0025315405012439
Pawlak, J., 2021.
In situ evidence of the role of Crangon crangon in
infection of cod Gadus morhua with nematode parasite Hysterothylacium aduncum
in the Baltic Sea. Parasitol. 148, 1691–1696.
https://doi.org/10.1017/S0031182021001414
Pawlak, J., Nadolna-Ałtyn, K., Szostakowska, B., Pachur, M., Bańkowska, A.,
Podolska, M., 2019.
First evidence of the presence of Anisakis simplex in
Crangon crangon and Contracaecum osculatum in Gammarus sp. by in situ
examination of the stomach contents of cod (Gadus morhua) from the southern
Baltic Sea. Parasitol. 146 (13), 1699–1706.
https://doi.org/10.1017/S0031182019001124
Raciborski, K., 1984.
Migrations, reproduction, growth and feeding of
Myoxocephalus scorpius (L.) in Gdansk Bay (South Baltic). Pol. Arch.
Hydrobiol. 31, 109–118.
Rokicki, J., Rolbiecki, L., Skóra, A., 2009.
Helminth parasites of twaite
shad, Alosa fallax (Actinopterygii: Clu- peiformes: Clupeidae), from the
southern Baltic Sea. Acta Ichthyol. Piscat. 39, 7–10.
https://doi.org/10.3750/AIP2009.39.1.02
Rolbiecki, L., Izdebska, J.N., Dzido, J., 2020.
The helminthofauna of the
garfish Belone belone (Linnaeus, 1760) from the southern Baltic Sea, including
new data. Ann. Parasitol. 66, 237–241.
https://doi.org/10.17420/ap6602.260
Rolbiecki, L., Rokicki, J., Skóra, K, 2008.
Parasites of a saithe,
Pollachius virens (L.) captured in the Baltic Sea. Acta Ichthyol. Piscat.
38, 143–147.
https://doi.org/10.3750/AIP2008.38.2.10
Shamsi, S., 2019.
Parasite loss or parasite gain? Story of Contracaecum
nematodes in antipodean waters. Parasite Epidem. Cont. 3, e00087.
https://doi.org/10.1016/j.parepi.2019.e00087
Skrzypczak, M., Rokicki, J., Pawliczka, I., Najda, K., Dzido, J., 2014.
Anisakids of seals found on the southern coast of Baltic Sea. Acta
Parasitol. 59, 165–172.
https://doi.org/10.2478/s11686-014-0226-2
Sonne, Ch., Lakemeyer, J., Desforges, J.-P., Eulaers, I., Persson, S.,
Stokholm, I., Galatius, A., Gross, S., Gonnsen, K., Lehnert, K.,
Andersen-Ranberg, E.U., Olsen, M.T., Dietz, R., Siebert, U., 2020.
A review
of pathogens in selected Baltic Sea indicator species. Environ. Int. 137,
105565.
https://doi.org/10.1016/j.envint.2020.105565
Sulgostowska, T., Jerzewska, B., Wicikowski, J., 1990.
Parasite fauna of
Myoxocephalus scorpius (L.) and Zoarces viviparus (L.) from environs of Hel
(south-east Baltic) and seasonal occurrence of parasites. Acta Parasitol.
Pol. 35(2), 143–147.
Valtonen, E.T., Fagerholm, H.P., Helle, E., 1988.
Contracaecum osculatum
(Nematoda: Anisakidae) in fish and seals in Bothnian Bay (northeastern Baltic
Sea). Int. J. Parasitol. 18(3), 365–370.
https://doi.org/10.1016/0020-7519(88)90146-4
Yoshinaga, T., Ogawa, K., Wakabayashi, H., 1987.
Experimental life cycle of
Hysterothylacium aduncum (Nematoda: Anisakidae) in fresh water. Fish
Pathol. 22, 243–251.
https://doi.org/10.3147/JSFP.22.243
Zuo, S., Kania, P.W., Mehrdana, F., Marana, M.H., Buchmann, K., 2018.
Contracaecum osculatum and other anisakid nematodes in grey seals and cod
in the Baltic Sea: molecular and ecological links. J. Helminthol. 92(1),
81–89.
https://doi.org/10.1017/S0022149X17000025
Integrative biomarker approach to decode seasonal variation in biomarker responses of Scylla serrata and Penaeus monodon from Sundarbans estuarine system
Oceanologia, 67 (1)/2025, 67108, 11 pp.
https://doi.org/10.5697/IVQW7412
Sritama Baag, Sumit Mandal*
Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata – 700073, India;
e-mail: sumit.dbs@presiuniv.ac.in (S. Mandal)
*corresponding author
Keywords: Seasonal variation; Biomarkers; Antioxidant enzymes; Estuary; Integrated biomarker approach
Received: 23 February 2023; revised: 22 November 2024; accepted: 6 December 2024.
Highlights
- Seasonal discrepancies were the governing factor behind biomarkers’ variability
- High temperatures and low salinity in monsoon were the most stressful for crabs
- Shrimps were stressed in winter due to their impaired ROS elimination system
Abstract
Sundarbans Estuarine System is a highly productive estuary and is considered the most important spawning and nursery ground for various commercial fish and shellfish species. Estuarine organisms are frequently exposed to a wide variety of pollutants due to their vicinity to human habitation. Marine organisms residing in this area are also exposed to extensive fluctuations of environmental factors which vary with season. In the present study, effects of seasonal variation on oxidative stress biomarkers such as superoxide dismutase, catalase, glutathione-S-transferase, and lipid peroxidation in the hepatopancreas of mud crab Scylla serrata and shrimp Penaeus monodon, were studied during monsoon, winter, spring and summer seasons. The integrated biomarker response (IBR) was assessed with the biomarker scores for all four seasons in both species. Our results suggested seasonal discrepancies as the governing factor behind biomarkers’ variability. The breeding period of the animals also seems to play a significant role in their oxidative stress physiology.
The IBR results indicated that moderately high temperatures and low salinity in the monsoon season are the most stressful for crabs. This stress might also be ascribed to the breeding period of these crabs which exacerbates the stress level during this season. However, in the case of shrimps, the highest IBR value was observed in the winter season due to impaired ROS elimination at low temperatures. This study also offers baseline values in various seasons that would be beneficial to be considered in environmental monitoring programs to avoid the misinterpretation of environmental factors, which change seasonally.
References
Aebi, H., 1984.
Catalase in vitro. Methods Enzymol. 105, 121–126.
https://doi.org/10.1016/s0076-6879(84)05016-3
Alves, A.S., Caetano, A., Costa, J.L., Costa, M.J., Marques, J.C., 2015.
Estuarine intertidal meiofauna and nematode communities as indicators of
ecosystem’s recovery following mitigation measures. Ecol. Indic. 54,
184–196.
https://doi.org/10.1016/j.ecolind.2015.02.013
Amaral, A.M.B., de Moura, L.K., de Pellegrin, D., Guerra, L.J., Cerezer, F.O.,
Saibt, N., Prestes, O.D., Zanella, R., Loro, V.L., Clasen, B., 2020.
Seasonal factors driving biochemical biomarkers in two fish species from a
subtropical reservoir in southern Brazil: An integrated approach. Environ.
Pollut. 266, 115168.
https://doi.org/10.1016/j.envpol.2020.115168
Anderson, D., Yu, T.W., Phillips, B.J., Schmezer, P., 1994.
The effect of
various antioxidants and other modifying agents on oxygen radicals generated
DNA damage in human lymphocytes in the Comet assay. Mutat. Res. Fund Mol.
Mech. Mutagen 307, 261–271.
https://doi.org/10.1016/0027-5107(94)90300-X
Attri, S.D., Tyagi, A., 2010.
Climate Profile of India, Met.
Monograph., Environment Meteorology – 01/2010. India Meteorol. Depart.,
Ministry of Earth Sciences, Government of India, 129 pp.
Baag, S., Mahapatra, S., Mandal, S., 2021.
An Integrated and Multibiomarker
approach to delineate oxidative stress status of Bellamya bengalensis under the
interactions of elevated temperature and chlorpyrifos contamination.
Chemosphere, 264, 128512.
https://doi.org/10.1016/j.chemosphere.2020.128512
Baag, S., Mandal, S., 2023a.
Do global environmental drivers’ ocean
acidification and warming exacerbate the effects of oil pollution on the
physiological energetics of Scylla serrata? Environ. Sci. Pollut. Res. 30,
23213–23224.
https://doi.org/10.1007/s11356-022-23849-1
Baag, S., Mandal, S., 2023b.
The influence of ocean acidifica- tion and
warming on responses of Scylla serrata to oil pollution: an integrated
biomarker approach. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 266,
110847.
https://doi.org/10.1016/j.cbpb.2023.110847
Beliaeff, B., Burgeot, T., 2002.
Integrated biomarker response: a useful
tool for ecological risk assessment. Environ. Toxicol. Chem. 21,
1316–1322.
https://doi.org/10.1002/etc.5620210629
Bhagat, J., Sarkar A., Ingole, B.S., 2016.
DNA Damage and Oxidative Stress
in Marine Gastropod Morula granulata Exposed to Phenanthrene. Water Air
Soil Pollut. 227, 114.
https://doi.org/10.1007/s11270-016-2815-1
Bhowmik, M., Mandal, S., 2021.
Do seasonal dynamics influence traits and
composition of macrobenthic assemblages of Sundarbans Estuarine System,
India? Oceanologia 63(1), 80–98.
https://doi.org/10.1016/j.oceano.2020.10.002
Bradford, M.M., 1976. A
rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal. Biochem. 72, 248–254.
https://doi.org/10.1006/abio.1976.9999
Brooks, S., Harman, C., Zaldibar, B., Izagirre, U., Glette, T., Marigomez, I.,
2011.
Integrated biomarker assessment of the effects exerted by treated
produced water from an onshore natural gas processing plant in the North Sea on
the mussel Mytilus edulis. Mar. Pollut. Bull. 62, 327–339.
Brooks, S., Lyons, B., Goodsir, F., Bignell, J., Thain, J., 2009.
Biomarker
responses in mussels, an integrated approach to biological effects
measurements. J. Toxicol. Environ. Health Pt. A 72, 196–208.
Cailleaud, K., Maillet, G., Budzinski, H., Souissi, S., ForgetLeray, J., 2007.
Effects of salinity and temperature on the expression of enzymatic
biomarkers in Eurytemora affinis (Calanoida, Copepoda). Comp. Biochem.
Physiol. A Mol. Integr. Physiol. 147, 841–849.
Catarina, V., Madeira, D., Mendonça, V., Madeira, C., Diniz, M.S., 2021.
Warming in shallow waters: Seasonal response of stress biomarkers in a tide
pool fish. Estuar. Coast. Shelf Sci. 251, 107187.
https://doi.org/10.1016/j.ecss.2021.107187
Chen, J.C., Chia, P.G., 1997.
Osmotic and ionic concentrations of Scylla
serrata (Forskal) subjected to different salinity levels. Compar. Biochem.
Physiol. A 227, 239–244.
https://doi.org/10.1016/S0300-9629(96)00237-X
Clarke, K.R., Gorley, R.N., 2006.
PRIMER V6: User Manual/Tutorial.
PRIMER-E, Plymouth.
Clarke, K.R., Somerfield, P.J., Chapman, M.G., 2008.
Testing of null
hypotheses in explanatory community analyses: similarity profiles and
biota-environment linkage. J. Exp. Mar Biol. 366, 56–69.
CMFRI, 2020.
Annual Report 2019. Central Marine Fish- eries Research
Institute, Kochi. 284 pp.
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B.,
Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P.,
1997.
The value of the world’s ecosystem services and natural
capital. Nature, 387, 253–260.
https://doi.org/10.1038/387253a0
Dagnino, A., Allen, J.I., Moore, M.N., Broeg, K., Canesi, L., Viarengo, A.,
2007.
Development of an expert system for the integration of biomarker
responses in mussels into an animal health index. Biomarkers, 12,
155–172.
https://doi.org/10.1080/13547500601037171
Devin, S., Burgeot, T., Giamberini, L., Minguez, L., PainDevin, S., 2014.
The integrated biomarker response revisited: optimization to avoid
misuse. Environ. Sci. Pollut. Res. 21, 2448–2454.
https://doi.org/10.1007/s11356-013-2169-9
dos Santos, C.C.M., da Costa, J.F.M., Dos Santos, C.R.M., Amado, L.L., 2019.
Influence of seasonality on the natural modulation of oxidative stress
biomarkers in mangrove crab Ucides cordatus (Brachyura, Ucididae). Comp.
Biochem. Physiol. A Mol. Integr. Physiol. 227, 146–153.
https://doi.org/10.1016/j.cbpa.2018.10.001
Ern, R., Huong, D.T.T., Nguyen, V.C., Wang, T., Bayley, M., 2012.
Effects of salinity on standard metabolic rate and critical oxygen tension
in the giant freshwater prawn (Macrobrachium rosenbergii). Aquacul. Res.
44, 1–7.
https://doi.org/10.1111/j.1365-2109.2012.03129.x
Feidantsis, K., Michaelidis, B., Raitsos, D.E., Vafidis, D., 2021.
Seasonal
metabolic and oxidative stress responses of commercially important invertebrate
species—correlation with their habitat. Mar. Ecol. Prog. Ser. 658,
27–46.
https://doi.org/10.3354/meps13565
Ghosh, M., Mandal, S., Chatterjee, M., 2018.
Impact of unusual monsoonal
rainfall in structuring meiobenthic assemblages at Sundarban estuarine system,
India. Ecol. Indic. 94, 139–150.
https://doi.org/10.1016/j.ecolind.2018.06.067
Ghosh, M., Mandal, S., 2019.
Does vertical distribution of meiobenthic
community structure differ among various mangrove habitats of Sundarban
Estuarine System? Reg. Stud. Mar. Sci. 31, 1—11.
https://doi.org/10.1016/j.rsma.2019.100778
Grasshoff, K., Kremling, K., Ehrhardt, M., 1999.
Methods of seawater
analysis. Verlag Chemie, Weinheim Germany, 634 pp.
Grilo, T.F., Cardoso, P.G., Dolbeth, M., Bordalo, M.D., Pardal, M.A., 2011.
Effects of extreme climate events on the macrobenthic communities’
structure and functioning of a temperate estuary. Mar. Pollut. Bull. 62,
303–311.
https://doi.org/10.1016/j.marpolbul.2010.10.010
Gutteridge, J.M.C., Halliwell, B., 2018.
Mini-review: oxidative stress,
redox stress or redox success? Biochem. Biophys. Res. Commun. 502,
183–186.
https://doi.org/10.1016/j.bbrc.2018.05.045
Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974.
Glutathione S transferases
the first enzymatic step in mercapturic acid formation. J. Biol. Chem.
249, 7130–7139.
Halliwell, B., Gutteridge, J.M.C., 2007.
Free Radicals in Biology and
Medicine. Oxford Univ. Press, Oxford.
Hu, M., Li, L., Sui, Y., Li, J., Wang, Y., Lu, W., Dupont, S., 2015.
Effect
of pH and temperature on antioxidant responses of the thick shell mussel
Mytilus coruscus. Fish Shellfish Immunol. 46(2), 573–583.
https://doi.org/10.1016/j.fsi.2015.07.025
Jackson, C.J., Burford, M.A., 2003.
The effects of temperature and salinity
on growth and survival of larval shrimp Penaeus Semisulcatus (Decapoda:
Penaeoidea). J. Crustacean Biol. 23 (4), 819–826.
https://doi.org/10.1651/C-2379
Kannan, D., Jagadeesan, K., Shettu, N., Thirunavukkarasu, P., 2014.
Maturation and Spawning of Commercially Important Penaeid Shrimp Penaeus
monodon Fabricus at Pazhayar Tamil Nadu (South East Coast of India). J.
Fish. Aquat. Sci. 9, 170–175. h
ttps://doi.org/10.3923/jfas.2014.170.175
Kennish, M.J., 2002.
Environmental threats and environmental future of
estuaries. Environ. Conserv. 29, 78–107.
https://doi.org/10.3923/jfas.2014.170.175
Kong, X., Wang, G., Li, S., 2008.
Seasonal variations of AT- Pase activity
and antioxidant defenses in gills of the mud crab Scylla serrata (Crustacea,
Decapoda). Mar. Biol. 154, 269–276.
https://doi.org/10.1007/s00227-008-0920-4
Lushchak, V.I., 2011.
Environmentally induced oxidative stress in aquatic
animals. Aquat. Toxicol. 101, 13–30. h
ttps://doi.org/10.1016/j.aquatox.2010.10.006
Luvizotto-Santos, R., Lee, J.T., Branco, Z.P., Bianchini, A., Nery, L.E.M.,
2003.
Lipids as energy source during salinity acclimation in the euryhaline
crab Chasmagnathus granulata Dana, 1851 (crustacea-grapsidae). J. Exp.
Zool. Part A. 295, 200–205.
https://doi.org/10.1002/jez.a.10219
Madeira, C., Leal, M.C., Diniz, M.S., Cabral, H.N., Vinagre, C., 2018.
Thermal stress and energy metabolism in two circumtropical decapod
crustaceans: Responses to acute temperature events. Mar. Environ. Res.
141, 148–158.
https://doi.org/10.1016/j.marenvres.2018.08.015
Madeira, D., Mendonça, V., Dias, M., Roma, J., Costa, P.M., Larguinho, M.,
Vinagre, C., Diniz, M.S., 2015.
Physiological, cellular and biochemical
thermal stress response of intertidal shrimps with different vertical
distributions: Palaemon elegans and Palaemon serratus. Comp. Biochem.
Physiol. A 183, 107–115.
https://doi.org/10.1016/j.cbpa.2014.12.039
Madeira, D., Mendonça, V., Vinagre, C., Diniz, M.S., 2016.
Is the stress
response affected by season? Clues from an in situ study with a key intertidal
shrimp. Mar. Biol. 163, art. no. 41.
https://doi.org/10.1007/s00227-015-2803-9
Malanga, G., Estevez, M.S., Calvo, J., Abele, D., Puntarulo, S., 2007.
The
effect of seasonality on oxidative metabolism in Nacella (Patinigera)
magellanica. Comp. Biochem. Physiol. A 146, 551–558.
https://doi.org/10.1016/j.cbpa.2006.01.029
Marques, J.A., Abrantes, D.P., Marangoni, L.F., Bianchini, A., 2020.
Ecotoxicological responses of a reef calcifier exposed to copper,
acidification and warming: A multiple biomarker approach. Environ. Pollut.
257, 113572.
https://doi.org/10.1016/j.envpol.2019.113572
Martin, Jr., J.P., Dailey, M., Sugarman, E., 1987.
Negative and positive
assays of superoxide dismutase based on hematoxylin autoxidation. Arch.
Biochem. Biophys. 255, 329–336.
https://doi.org/10.1016/0003-9861(87)90400-0
Na, J., Song, J., Achar, C., Jung, J., 2021.
Synergistic effect of
microplastic fragments and benzophenone-3 additives on lethal and sublethal
Daphnia magna toxicity. J. Hazard. Mater. 402, 123845.
https://doi.org/10.1016/j.jhazmat.2020.123845
Nandy, T., Baag, S., Mandal, S., 2021.
Impact of elevated temperature on
physiological energetics of Penaeus monodon post larvae: A mesocosm study.
J. Therm. Biol. 97, 102829.
https://doi.org/10.1016/j.jtherbio.2020.102829
Nandy, T., Mandal, S., 2020.
Unravelling the spatio-temporal variation
of zooplankton community from the river Matla in the Sundarbans Estuarine
System, India. Oceanologia 62 (3), 326–346.
https://doi.org/10.1016/j.oceano.2020.03.005
Nandy, T., Mandal, S., Chatterjee, M., 2018.
Intra-monsoonal variation of
zooplankton population in the Sundarbans Estuarine System, India. Environ.
Monit. Assess. 190, 1–20.
https://doi.org/10.1007/s10661-018-6969-8
Ohkawa, H., Ohishi, N., Yagi, K., 1979.
Assay for lipid peroxides in animal
tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358.
https://doi.org/10.1016/0003-2697(79)90738-3
Paital, B., Chainy, G.B., 2013.
Seasonal variability of antioxidant
biomarkers in mud crabs (Scylla serrata). Ecotoxicol. Environ. Saf. 87,
33–41.
https://doi.org/10.1016/j.ecoenv.2012.10.006
Paital, B., Chainy, G.B.N., 2010. A
ntioxidant defenses and oxidative stress
parameters in tissues of mud crab (Scylla serrata) with reference to changing
salinity. Compar. Biochem. Physiol. C 151, 142–151.
https://doi.org/10.1016/j.cbpc.2009.09.007
Paschke, K., Cumillaf, J.P., Loyola, S., Gebauer, P., Urbina, M., Chinal, M.E.,
Pascual, C., 2010.
Effect of dissolved oxygen level on respiratory
metabolism, nutritional physiology, and immune condition of southern king crab
Lithodes santolla (Molina, 1782) (Decapoda, Lithodidae). Mar. Biol. 157,
7–18.
https://doi.org/10.1007/s00227-009-1291-1
Prandle, D., 2009.
Estuaries: Dynamics, Mixing, Sedimentation and
Morphology. Cambridge University Press, UK.
Qiu, J., Wang, W.N., Wang, L.J., Liu, Y.F., Wang, A.L., 2011.
Oxidative
stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus
vannamei exposed to acute low temperature stress. Comp. Biochem. Physiol.
C: Toxicol. Pharmacol. 154, 36–41.
https://doi.org/10.1016/j.cbpc.2011.02.007
Ragunathan, M.G., 2017.
Vicissitudes of oxidative stress biomarkers in the
estuarine crab Scylla serrata with reference to dry and wet weather conditions
in Ennore estuary, Tamil Nadu, India. Mar. Pollut. Bull. 116, 113–120.
https://doi.org/10.1016/j.marpolbul.2016.12.069
Rahi, M.L., Azad, K.N., Tabassum, M., Irin, H.H., Hossain, K.S., Aziz, D.,
Moshtaghi, A., Hurwood, D.A., 2021.
Effects of Salinity on Physiological,
Biochemical and Gene Expression Parameters of Black Tiger Shrimp (Penaeus
monodon): Potential for Farming in Low-Salinity Environments. Biology
(Basel). 10, 1220.
https://doi.org/10.3390/biology10121220
Regoli, F., Giuliani, M.E., 2014.
Oxidative pathways of chemical toxicity
and oxidative stress biomarkers in marine organisms. Mar. Environ. Res.
93, 106–117.
https://doi.org/10.1016/j.marenvres.2013.07.006
Romero, M.C., Tapella, F., Sotelano, M.P., Ansaldo, M., Lovrich, G.A., 2011.
Oxidative stress in the subantarctic false king crab Paralomis granulosa
during air exposure and subsequent re-submersion. Aquaculture 319,
205–210.
https://doi.org/10.1016/j.aquaculture.2011.06.041
Samanta, P., Im, H., Na, J., Jung, J., 2018.
Ecological risk assessment of
a contaminated stream using multi-level integrated biomarker response in
Carassius auratus. Environ. Pollut. 233, 429–438.
https://doi.org/10.1016/j.envpol.2017.10.061
Sardi, A.E., Sandrini-Neto, L., da Cunha Lana, P., Camus, L., 2020.
Seasonal variation of oxidative biomarkers in gills and digestive glands of
the clam Anomalocardia flexuosa and the mangrove oyster Crassostrea
rhizophorae. Mar. Pollut. Bull. 156, 111193.
https://doi.org/10.1016/j.marpolbul.2020.111193
Schvezov, N., Lovrich, G.A., Florentı́n, O., Romero, M.C., 2015.
Baseline
defense system of commercial male king crab Lithodes santolla from the Beagle
Channel. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 181, 18–26.
https://doi.org/10.1016/j.cbpa.2014.11.016
Semprucci, F., Balsamo, M., Frontalini, F., 2014.
The nematode assemblage
of a coastal lagoon (Lake Varano, Southern Italy): ecology and biodiversity
patterns. Sci. Mar. 78, 579–588.
https://doi.org/10.3989/scimar.04018.02A
Stoliar, O.B., Lushchak, V.I., 2012.
Environmental pollution and oxidative
stress in fish. [in:] Lushchak, V.I. (Ed.), Oxidative Stress:
Environmental Induction and Dietary Antioxidants. InTech Open, Rijeka, Croatia,
131–166.
https://doi.org/10.5772/38094
Van Der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003.
Fish bioaccumulation
and biomarkers in environmental risk assessment: a review. Environ.
Toxicol. Pharmacol. 13, 57–149.
https://doi.org/10.1016/S1382-6689(02)00126-6
Wang, W.N., Wang, A.L., Liu, Y., Xiu, J., Liu, Z.B., Sun, R.Y., 2006.
Effects of temperature on growth, adenosine phosphates, ATPase and cellular
defense response of juvenile shrimp Macrobrachium nipponense. Aquaculture,
256, 624–630.
https://doi.org/10.1016/j.aquaculture.2006.02.009
Zheng, J., Cao, J., Yong, M., Su, Y., Wang, J., 2019.
Effects of thermal
stress on oxidative stress and antioxidant response, heat shock proteins
expression profiles and histological changes in Marsupenaeus japonicus.
Ecol. Indicat. 101, 780–791.
https://doi.org/10.1016/j.ecolind.2018.11.044
Carbonaceous aerosol particle sources in Manila North Port and the urban environment
Oceanologia, 67 (1)/2025, 67109, 20 pp.
https://doi.org/10.5697/TQCH9343
Touqeer Gill1, Simonas Kecorius1,2,*, Kamilė Kandrotaitė1, Vadimas Dudoitis1, Leizel Madueño3, Alfred Wiedensohler3, Laurent Poulain3 Edgar A. Vallar4, Maria Cecilia D. Galvez4, Steigvilė Byčenkienė1, Kristina Plauškaitė1
1Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
e-mail: simonas.kecorius@ftmc.lt (S. Kecorius)
2Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
3Leibniz-Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
4ARCHERS, CENSER, De La Salle University, 2401 Taft Ave., Malate, Philippines
*corresponding author
Keywords: Equivalent black carbon; Source apportionment; Absorption Ångström exponent; Urban environment; Air pollution
Received: 29 July 2024; revised: 23 October 2024; accepted: 16 December 2024.
Highlights
- Quezon City's mean hourly average eBC concentration significantly surpasses WHO guidelines
- Manila North Port has a lower eBC concentration due to sea breezes from Manila Bay that disperse pollutants
- Morning eBC peaks in Manila and Quezon City are directly associated with increased traffic congestion
- Urgent measures needed to reduce carbon emissions from road traffic in the Philippines
Abstract
This study addresses the pressing issue of black carbon (BC) pollution in urban areas, focusing on two locations in the Philippines: Quezon City’s East Avenue (QCG, roadside urban environment) and Manila’s North Port. We found that organic aerosol particles (OA) made a greater contribution (80%) to total submicron particulate matter compared to inorganic aerosol (IA) (20%). The mean hourly average equivalent black carbon (eBC) mass concentration at the QCG site (35.97 ± 16.20 𝜇g/m3) was noticeably higher compared to the Port (10.27 ± 5.99 𝜇g/m3), consistent with
trends in other Asian cities. Source apportionment analysis identified eBC related to transport emissions (eBCTR) as the predominant contributor to eBC, accounting for 86% at the Port and 80% at QCG. Diurnal patterns showed the highest eBCTR mass concentrations (47.69 ± 9.34 𝜇g/m3) during morning rush hours, which can be linked to light-duty vehicles. Late-night (10 pm–12 am) high concentrations (30.63 ± 8.45 𝜇g/m3) can be associated with heavy diesel trucks at the QCG site. Whereas at the Port site, hourly average higher eBCTR concentration (12.24 ± 3.65 𝜇g/m3)
during morning hours (6 am–8 am) can be attributed to the traffic of heavy-duty trucks, trollers, diesel-powered cranes and ships. Compared to the QCG site, a lower eBC concentration at the Port site was favoured by the more open environment and higher wind speed, facilitating better pollutant dispersion. The mean hourly average concentrations of PM2.5 and PM10, measured using an Aerodynamic Particle Sizer, consistently exceeded the air quality standards set by the World Health Organization and the Philippine Clean Air Act at both sites. This study highlights the persisting BC pollution in developing regions and calls for scientifically based strategies to mitigate the air quality crisis.
References
Alam, K., Blaschke, T., Madl, P., Mukhtar, A., Hussain, M., Trautmann, T.,
Rahman, S., 2011.
Aerosol size distribution and mass concentration
measurements in various cities of Pakistan. J. Environ. Monit. 13,
1944–1952.
https://doi.org/10.1039/c1em10086f
Alas, H.D., Müller, T., Birmili, W., Kecorius, S., Cambaliza, M.O., Simpas,
J.B.B., Cayetano, M., Weinhold, K., Vallar, E., Galvez, M.C., Wiedensohler, A.,
2018.
Spatial characterization of black carbon mass concentration in the
atmosphere of a southeast Asian megacity: An air quality case study for metro
Manila, Philippines. Aerosol Air Qual. Res. 18, 2301–2317.
https://doi.org/10.4209/aaqr.2017.08.0281
Atabakhsh, S., Poulain, L., Chen, G., Canonaco, F., Prévôt, A.S.H.,
Pöhlker, M., Wiedensohler, A., Herrmann, H., 2023.
A 1-year aerosol
chemical speciation monitor (ACSM) source analysis of organic aerosol particle
contributions from anthropogenic sources after long-range transport at the
TROPOS research station Melpitz. Atmos. Chem. Phys. 23, 6963–6988.
https://doi.org/10.5194/acp-23-6963-2023
Bartley, D.L., Martinez, A.B., Baron, P.A., Secker, D.R., Hirst, E., 2000.
Droplet distortion in accelerating flow. J. Aerosol Sci. 31,
1447–1460.
https://doi.org/10.1016/S0021-8502(00)00042-2
Bagtasa, G., Yuan, C.S., 2020.
Influence of local meteorology on the
chemical characteristics of fine particulates in Metropolitan Manila in the
Philippines. Atmos. Pollut. Res. 11, 1359–1369.
https://doi.org/10.1016/j.apr.2020.05.013
Bilal, M., Ali, M.A., Nichol, J.E., Bleiweiss, M.P., de Leeuw, G., Mhawish, A.,
Shi, Y., Mazhar, U., Mehmood, T., Kim, J., Qiu, Z., Qin, W., Nazeer, M. 2022.
AEROsol generic classification using a novel Satellite remote sensing
Approach (AEROSA). Front. Environ. Sci. 10:981522.
https://doi.org/10.3389/fenvs.2022.981522
Bisht, D.S., Dumka, U.C., Kaskaoutis, D.G., Pipal, A.S., Srivastava, A.K.,
Soni, V.K., Attri, S.D., Sateesh, M., Tiwari, S. 2015.
Carbonaceous
aerosols and pollutants over Delhi urban environment: Temporal evolution,
source apportionment and radiative forcing. Sci. Total Environ. 521–522,
431–445.
https://doi.org/10.1016/j.scitotenv.2015.03.083
Bodhaine, B.A., 1995.
Aerosol absorption measurements at Barrow, Mauna Loa
and the south pole. J. Geophys. Res. 100, 8967–8975.
https://doi.org/10.1029/95JD00513
Braun, R.A., Aghdam, M.A., Bañaga, P.A., Betito, G., Cambaliza, M.O., Cruz,
M.T., Lorenzo, G.R., Macdonald, A.B., Simpas, J.B., 2020.
Long-range
aerosol transport and impacts on size-resolved aerosol composition in Metro
Manila, Philippines. Atmos. Chem. Phys. 20, 2387–2405,
https://doi.org/10.5194/acp-20-2387-2020
Byčenkienė, S., Gill, T., Khan, A., Kalinauskaitė, A., Ulevicius, V.,
Plauškaitė, K., 20
23. Estimation of Carbonaceous Aerosol Sources under
Extremely Cold Weather Conditions in an Urban Environment. Atmosphere 14.
https://doi.org/10.3390/atmos14020310
Carslaw, D.C., 2005.
Evidence of an increasing NO2/NOX emissions ratio from
road traffic emissions. Atmos. Environ. 39, 4793–4802.
https://doi.org/10.1016/j.atmosenv.2005.06.023
Cadondon, J., Caido, N.G., Galvez, M.C., Rempillo, O., Esmeria Jr., J., Vallar,
E., 2024.
Black carbon and PM0.49 characterization in Manila North Harbour
Port, Metro Manila, Philippines. Environ. Adv. 16, 100526.
https://doi.org/10.1016/j.envadv.2024.100526
Cappa, C.D., Onasch, T.B., Massoli, P., Worsnop, D.R., Bates, T.S., Cross,
E.S., Davidovits, P., Hakala, J., Hayden, K.L., Jobson, B.T., Kolesar, K.R.,
Lack, D.A., Lerner, B.M., Li, S.M., Mellon, D., Nuaaman, I., Olfert, J.S.,
Petäjä, T., Quinn, P.K., Song, C., Subramanian, R., Williams, E.J., Zaveri,
R.A., 2012.
Response to Comment on “Radiative Absorption Enhancements Due
to the Mixing State of Atmospheric Black Carbon”. Science 339(6118),
393-c.
https://doi.org/10.1126/science.1230260
Cappa, C.D., Kolesar, K.R., Zhang, X., Atkinson, D.B., Pekour, M.S., Zaveri,
R.A., Zelenyuk, A., Zhang, Q., 2016.
Understanding the optical properties
of ambient sub- and supermicron particulate matter: results from the CARES 2010
field study in northern California. Atmos. Chem. Phys. 16, 6511–6535.
https://doi.org/10.5194/acp-16-6511-2016
Cesari, D., Merico, E., Dinoi, A., Marinoni, A., Bonasoni, P., Contini, D.,
2018.
Seasonal variability of carbonaceous aerosols in an urban background
area in Southern Italy. Atmos. Res. 200, 97–108.
https://doi.org/10.1016/j.atmosres.2017.10.004
Chen, X., Zhang, Z., Engling, G., Zhang, R., Tao, J., Lin, M., Sang, X., Chan,
C., Li, S., Li, Y., 2014.
Characterization of fine particulate black carbon
in Guangzhou, a megacity of south China. Atmos. Pollut. Res. 5, 361–370.
https://doi.org/10.5094/APR.2014.042
Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K.,
Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin,
R., Morawska, L., Pope, C.A., Shin, H., Straif, K., Shaddick, G., Thomas, M.,
van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C.J.L., Forouzanfar,
M.H., 2017.
Estimates and 25-year trends of the global burden of disease
attributable to ambient air pollution: an analysis of data from the Global
Burden of Diseases Study 2015. Lancet 389, 1907–1918.
https://doi.org/10.1016/S0140-6736(17)30505-6
Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D.,
Fierz-Schmidhauser, R., Flentje, H., Henzing, J.S., Jennings, S.G., Moerman,
M., Petzold, A., Schmid, O., Baltensperger, U., 2010.
Minimizing light
absorption measurement artifacts of the Aethalometer: evaluation of five
correction algorithms. Atmos. Meas. Tech. 3, 457–474.
https://doi.org/10.5194/amt-3-457-2010
Cruz, M.T., Simpas, J.B., Sorooshian, A., Betito, G., Cambaliza, M.O.L.,
Collado, J.T., Eloranta, E.W., Holz, R., Topacio, X.G.V., Del Socorro, J.,
Bagtasa, G., 2023.
Impacts of regional wind circulations on aerosol
pollution and planetary boundary layer structure in Metro Manila,
Philippines. Atmos. Environ. 293, 119455.
https://doi.org/10.1016/j.atmosenv.2022.119455
Deng, J., Guo, H., Zhang, H., Zhu, J., Wang, X., Fu, P., 2020.
Source
apportionment of black carbon aerosols from light absorption observation and
source-oriented modeling: An implication in a coastal city in China.
Atmos. Chem. Phys. 20, 14419–14435.
https://doi.org/10.5194/acp-20-14419-2020
De Sa, S.S., Rizzo, L.V., Palm, B.B., Campuzano-Jost, P., Day, D.A., Yee, L.D.,
Wernis, R., Isaacman-VanWertz, G., Brito, J., Carbone, S., Liu, Y.J., Sedlacek,
A., Springston, S., Goldstein, A.H., Barbosa, H.M.J., Alexander, M.L., Artaxo,
P., Jimenez, J.L., Martin, S.T., 2019.
Contributions of biomass-burning,
urban, and biogenic emissions to the concentrations and light-absorbing
properties of particulate matter in central Amazonia during the dry
season. Atmos. Chem. Phys., 19, 7973–8001.
https://doi.org/10.5194/acp-19-7973-2019
Donaldson, K., Gilmour, M.I., Macnee, W., 2000. Commentary Asthma and PM 10.
Respir. Res. 1, 12–15. Draxler, R.R., Hess, G.D., 1998.
An overview of
the HYSPLIT_4 modelling system for trajectories, dispersion and
deposition. Aust. Meteorol. Mag. 47, 295–308.
Dumka, U.C., Kaskaoutis, D.G., Tiwari, S., Safai, P.D., Attri, S.D., Soni,
V.K., Singh, N., Mihalopoulos, N., 2018.
Assessment of biomass burning and
fossil fuel contribution to black carbon concentrations in Delhi during
winter. Atmos.Environ. 194, 93–109.
https://doi.org/10.1016/j.atmosenv.2018.09.033
Dumka, U.C., Kaskaoutis, D.G., Devara, P.C.S., Kumar, R., Kumar, S., Tiwari,
S., Gerasopoulos, E., Mihalopoulos, N., 2019.
Year-long variability of the
fossil fuel and wood burning black carbon components at a rural site in
southern Delhi outskirts. Atmos. Res. 216, 11–25.
https://doi.org/10.1016/j.atmosres.2018.09.016
Dumka, U.C., Tiwari, S., Kaskaoutis, D.G., Soni, V.K., Safai, P.D., Attri,
S.D., 2019.
Aerosol and pollutant characteristics in Delhi during a winter
research campaign. Environ. Sci. Pollut. Res. 26, 3771–3794.
https://doi.org/10.1007/s11356-018-3885-y
Fan, M., Zhang, W., Zhang, Y., Li, J., Fang, H., Al, F.A.N.E.T., 2023.
Formation Mechanisms and Source Apportionments of Nitrate Aerosols in a
Megacity of Eastern China Based On Multiple Isotope Observations. J.
Geophys. Res.-Atmos. 1–14.
https://doi.org/10.1029/2022JD038129
Gani, S., Bhandari, S., Seraj, S., Wang, D.S., Patel, K., Soni, P., Arub, Z.,
Habib, G., Hildebrandt Ruiz, L., Apte, J.S., 2019.
Submicron aerosol
composition in the world’s most polluted megacity: The Delhi Aerosol
Supersite study. Atmos. Chem. Phys. 19, 6843–6859.
https://doi.org/10.5194/acp-19-6843-2019
Geng, X., Li, J., Zhong, G., Zhao, S., Tian, C., Zhang, Y.-L., Zhang, G., 2024.
Ship Emissions as the Largest Contributor to Coastal Atmospheric Black
Carbon at a Receptor Island in Southern China. Environ. Sci. Technol.
Lett. 11, 723−729.
https://doi.org/10.1021/acs.estlett.4c00362
Grivas, G., Stavroulas, I., Liakakou, E., Kaskaoutis, D.G., Bougiatioti, A.,
Paraskevopoulou, D., Gerasopoulos, E., Mihalopoulos, N., 2019.
Measuring
the spatial variability of black carbon in Athens during wintertime. Air
Quality, Atmos. Health 12, 1459–1470.
https://doi.org/10.1007/s11869-019-00756-y
Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinilä, K., Backman, J.,
Aurela, M., Saarikoski, S., Rönkkö, T., Asmi, E., Timonen, H., 2018.
Characteristics and source apportionment of black carbon in the Helsinki
metropolitan area, Finland. Atmos. Environ. 190, 87–98.
https://doi.org/10.1016/j.atmosenv.2018.07.022
Hinds, W.C. 1982.
Aerosol Technology: Properties, Behavior and Measurement
of Airborne Particles. John Wiley & Sons, Hoboken.
Hinds, W.C., 1998.
Aerosol Technology: Properties, Behavior and Measurement
of Airborne Particles. John Wiley & Sons, Hoboken.
Kaminska, J.A., Turek, T., Van Poppel, M., Peters, J., Hofman, J., Kazak, J.K.,
2023.
Whether cycling around the city is in fact healthy in the light of
air quality – Results of black carbon. J. Environ. Manage. 337, 117694.
https://doi.org/10.1016/j.jenvman.2023.117694
Kasthuriarachchi, N.Y., Rivellini, L.H., Adam, M.G., Lee, A.K.Y., 2020.
Light absorbing properties of primary and secondary brown carbon in a
tropical urban environment. Environ. Sci. Technol., 54, 10808–10819.
https://doi.org/10.1021/acs.est.0c02414
Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Bougiatioti, A., Liakakou, E.,
Dumka, U.C., Gerasopoulos, E., Mihalopoulos, N., 2021.
Apportionment of
black and brown carbon spectral absorption sources in the urban environment of
Athens, Greece, during winter. Sci. Total Environ. 801, 149739.
https://doi.org/10.1016/j.scitotenv.2021.149739
Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Liakakou, E., Dumka, U.C.,
Gerasopoulos, E., Mihalopoulos, N., 2021.
Effect of aerosol types from
various sources at an urban location on spectral curvature of scattering and
absorption coefficients. Atmospheric Research, 264, 105865.
https://doi.org/10.1016/j.atmosres.2021.105865
Kecorius, S., Madueño, L., Löndahl, J., Vallar, E., Cecilia, M., Idolor,
L.F., Gonzaga-Cayetano, M., Müller, T., Birmili, W., Wiedensohler, A., 2019.
Science of the Total Environment Respiratory tract deposition of inhaled
roadside ultra fine refractory particles in a polluted megacity of South-East
Asia. Sci. Total Environ. 663, 265–274.
https://doi.org/10.1016/j.scitotenv.2019.01.338
Kecorius, S., Madueño, L., Vallar, E., Alas, H., Betito, G., Birmili, W.,
Cambaliza, M.O., Catipay, G., Gonzaga-Cayetano, M., Galvez, M.C., Lorenzo, G.,
Müller, T., Simpas, J.B., Tamayo, E.G., Wiedensohler, A., 2017.
Aerosol
particle mixing state, refractory particle number size distributions and
emission factors in a polluted urban environment: Case study of Metro Manila,
Philippines. Atmos. Environ. 170, 169–183.
https://doi.org/10.1016/j.atmosenv.2017.09.037
Kim, S.W., Cho, C., Rupakheti, M., 2021.
Estimating contributions of black
and brown carbon to solar absorption from aethalometer and AERONET measurements
in the highly polluted Kathmandu Valley, Nepal. Atmos. Res., 247, 105164.
https://doi.org/10.1016/j.atmosres.2020.105164
Kumar, R.R., Soni, V.K., Jain, M.K., 2020.
Evaluation of spatial and
temporal heterogeneity of black carbon aerosol mass concentration over India
using three-year measurements from IMD BC observation network. Sci. Total
Environ. 723, 138060.
https://doi.org/10.1016/j.scitotenv.2020.138060
Lavanchy, V.M.H., Gäggeler, H.W., Schotterer, U., Schwikowski, M.,
Baltensperger, U., 1999.
Historical record of carbonaceous particle
concentrations from a European high-alpine glacier (Colle Gnifetti,
Switzerland). J. Geophys. Res. Atmos. 104, 21227–21236.
https://doi.org/10.1029/1999JD900408
Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015.
The contribution of outdoor air pollution sources to premature mortality on
a global scale. Nature 525, 367–371.
https://doi.org/10.1038/nature15371
Liu, P.S.K., Deng, R., Smith, K.A., Williams, L.R., Jayne, J.T., Canagaratna,
M.R., Moore, K., Onasch, T.B., Worsnop, D.R., Deshler, T., 2007.
Transmission efficiency of an aerodynamic focusing lens system: Comparison
of model calculations and laboratory measurements for the aerodyne aerosol mass
spectrometer. Aerosol Sci. Technol. 41, 721–733.
https://doi.org/10.1080/02786820701422278
Liu, C., Chung, C.E., Yin, Y., Schnaiter, M., 2018.
The absorption
Ångström exponent of black carbon: From numerical aspects. Atmos. Chem.
Phys. 18, 6259–6273.
https://doi.org/10.5194/acp-18-6259-2018
Li, Z., Tan, H., Zheng, J., Liu, L., Qin, Y., Wang, N., Li, F., Li, Y., Cai,
M., Ma, Y., Chan, C.K., 2019.
Light absorption properties and potential
sources of particulate brown carbon in the Pearl River Delta region of
China. Atmos. Chem. Phys., 19, 11669–11685.
https://doi.org/10.5194/acp-19-11669-2019
Liakakou, E., Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Tsagkaraki, M.,
Paraskevopoulou, D., Bougiatioti, A., Dumka, U.C., Gerasopoulos, E.,
Mihalopoulos, N. 2020.
Long-term brown carbon spectral characteristics in a
Mediterranean city (Athens). Sci. Total Environ. 708, 135019.
https://doi.org/10.1016/j.scitotenv.2019.135019
Madueño, L., Kecorius, S., Birmili, W., Müller, T., Simpas, J., Vallar,
E., Galvez, M.C., Cayetano, M., Wiedensohler, A., 2019
. Aerosol particle
and black carbon emission factors of vehicular fleet in Manila,
Philippines. Atmosphere (Basel). 10.
https://doi.org/10.3390/atmos10100603
Madueño, L., Kecorius, S., Löndahl, J., Schnelle-Kreis, J., Wiedensohler,
A., Pöhlker, M., 202
2. A novel in-situ method to determine the
respiratory tract deposition of carbonaceous particles reveals dangers of
public commuting in highly polluted megacity. Part. Fibre Toxicol. 19.
https://doi.org/10.1186/s12989-022-00501-x
Merico, E., Dinoi, A., Contini, D., 2019.
Development of an integrated
modelling-measurement system for nearreal-time estimates of harbour activity
impact to atmospheric pollution in coastal cities. Transp. Res. Pt. D 73,
108–119.
https://doi.org/10.1016/j.trd.2019.06.009
Middlebrook, A.M., Bahreini, R., Jimenez, J.L., Canagaratna, M.R., 2012.
Evaluation of composition-dependent collection efficiencies for the
Aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol.
46, 258–271.
https://doi.org/10.1080/02786826.2011.620041
Miller, R.M., Rauber, R.M., Di Girolamo, L., Rilloraza, M., Fu, D., Mcfarquhar,
G.M., Nesbitt, S.W., Ziemba, L.D., Woods, S., Thornhill, K.L., 2023.
Influence of natural and anthropogenic aerosols on cloud base droplet size
distributions in clouds over the South China Sea and West Pacific. Atmos.
Chem. Phys. 23, 8959–8977.
https://doi.org/10.5194/acp-23-8959-2023
Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K.,
Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K.,
Vainorius, D., Byčenkienė, S., 2022.
Carbonaceous aerosol source
apportionment and assessment of transport-related pollution. Atmos.
Environ. 279.
https://doi.org/10.1016/j.atmosenv.2022.119043
Myllyvirta, L., Suarez, I., 2020. Air quality and health impacts of coal-fired
power in the Philippines. Nie, D., Qiu, Z., Wang, X., Liu, Z., 2022.
Characterizing the source apportionment of black carbon and ultrafine
particles near urban roads in Xi’an, China. Environ. Res. 215, 114209.
https://doi.org/10.1016/j.envres.2022.114209
Oanh, N.T., Upadhyay, N., Zhuang, Y.H., Hao, Z.P., Murthy, D.V.S., Lestari, P.,
Villarin, J.T., Chengchua, K., Co, H.X., Dung, N.T., Lindgren, E.S., 2006.
P
articulate air pollution in six Asian cities: Spatial and temporal
distributions, and associated sources. Atmos. Environ. 40, 3367–3380.
https://doi.org/10.1016/j.atmosenv.2006.01.050
Pabroa, P.C.B., Racho, J.M.D., Jagonoy, A.M., Valdez, J.D.G., Bautista VII,
A.T., Yee, J.R., Pineda, R., Manlapaz, J., Atanacio, A.J., Coronel, I.C. V.,
Salvador, C.M.G., Cohen, D.D., 2022.
Characterization, source apportionment
and associated health risk assessment of respirable air particulates in Metro
Manila, Philippines. Atmos. Pollut. Res. 13, 101379.
https://doi.org/10.1016/j.apr.2022.101379
Park, S., Yu, G.H., 2019.
Absorption properties and size distribution of
aerosol particles during the fall season at an urban site of Gwangju,
Korea. Environ. Eng. Res. 24, 159–172.
https://doi.org/10.4491/eer.2018.166
Pani, S.K., Lin, N.-H., Griffith, S.M., Chantara, S., Lee, C.-T., Thepnuan,
D., Tsai, Y.I., 2021.
Brown carbon light absorption over an urban
environment in northern peninsular Southeast Asia. Environ. Pollut. 276,
116735.
https://doi.org/10.1016/j.envpol.2021.116735
Patel, K., Bhandari, S., Gani, S., Campmier, M.J., Kumar, P., Habib, G., Apte,
J., Hildebrandt Ruiz, L., 2021.
Sources and Dynamics of Submicron Aerosol
during the Autumn Onset of the Air Pollution Season in Delhi, India. ACS
Earth Sp. Chem. 5, 118–128.
https://doi.org/10.1021/acsearthspacechem.0c00340
Park, K., Kittelson, D.B., McMurry, P.H., 2004.
Structural properties
of diesel exhaust particles measured by Transmission Electron Microscopy (TEM):
Relationships to particle mass and mobility. Aerosol Sci. Technol. 38,
881–889.
https://doi.org/10.1080/027868290505189
Park, S.S., Hansen, A.D.A., Cho, S.Y., 2010.
Measurement of real-time black
carbon for investigating spot loading effects of Aethalometer data. Atmos.
Environ. 44, 1449–1455.
https://doi.org/10.1016/j.atmosenv.2010.01.025
Pauraite, J., Mainelis, G., Kecorius, S., Minderytė, A., Dudoitis, V.,
Garbarienė, I., Plauškaitė, K., Ovadnevaite, J., Byčenkienė, S.,
2021.
Office indoor PM and BC level in Lithuania: The role of a long-range
smoke transport event. Atmosphere (Basel) 12.
https://doi.org/10.3390/atmos12081047
Peters, T.M., Ott, D., O’Shaughnessy, P.T., 2006.
Comparison of the Grimm
1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic
particle sizer for dry particles. Ann. Occup. Hyg. 50, 843–850.
https://doi.org/10.1093/annhyg/mel067
Pfeifer, S., Müller, T., Weinhold, K., Zikova, N., Dos Santos, S.M.,
Marinoni, A., Bischof, O.F., Kykal, C., Ries, L., Meinhardt, F., Aalto, P.,
Mihalopoulos, N., Wiedensohler, A., 2016.
Intercomparison of 15 aerodynamic
particle size spectrometers (APS 3321): Uncertainties in particle sizing and
number size distribution. Atmos. Meas. Tech. 9, 1545–1551.
https://doi.org/10.5194/amt-9-1545-2016
Philippine Land Transportation Office Annual Report, 2023.
Philippine Land
Transportation Office Annual Rep., Philippine Gov.
https://lto.gov.ph/wp-content/uploads/2023/11/Annual_Reports-2023.pdf,
(Last access: 17 February 2024).
Philippine Population Density, 2015.
Philippine Population Density, (based
on the 2015 Census of Population), Philippine Gov.
https://psa.gov.ph/system/files/phcd/202212/Citi
es%2520and%2520Municipalities%2520Population
%2520Projections_2015CBPP_Phils.pdf, (Last access: 17 February 2024).
Philippines, Environmental Management Bureau, 2018.
National Air Quality
Status Report 2016–2018. Dep. Environ. Nat. Res., Environ.l Manage.
Bureau, Philippines.
https://air.emb.gov.ph/wp-content/uploads/2021/01/National-Air-Quality-Status-Report-2008-2015_ With-message-from-D.pdf
Plauškaitė, K., Špirkauskaitė, N., Byčenkienė, S., Kecorius, S.,
Jasinevičienė, D., Petelski, T., Zielinski, T., Andriejauskienė, J.,
Barisevičiūtė, R., Garbaras, A., Makuch, P., Dudoitis, V., Ulevicius, V.,
201
7. Characterization of aerosol particles over the southern and
South-Eastern Baltic Sea. Mar. Chem. 190, 13–27.
https://doi.org/10.1016/j.marchem.2017.01.003
Qin, Y.M., Bo Tan, H., Li, Y.J., Jie Li, Z., Schurman, M.I., Liu, L., Wu, C.,
Chan, C.K., 2018.
Chemical characteristics of brown carbon in atmospheric
particles at a suburban site near Guangzhou, China. Atmos. Chem. Phys. 18,
16409–16418.
https://doi.org/10.5194/acp-18-16409-2018
Quang, T.N., Hue, N.T., Dat, M. Van, Tran, L.K., Phi, T.H., Morawska, L., Thai,
P.K., 2021.
Motorcyclists have much higher exposure to black carbon
compared to other commuters in traffic of Hanoi, Vietnam. Atmos. Environ.
245, 118029.
https://doi.org/10.1016/j.atmosenv.2020.118029
Republic of the Philippines, 1999.
Philippine Clean Air Act of 1999: An Act
Providing for a Comprehensive Air Pollution Control Policy and for Other
Purposes. 11th Congr. Philipp. Metro Manila. June 23, 1999, 1–29.
Salvador, C.M.G., Yee, J.R. dR., Coronel, I.C. V., Bautista VII, A.T., Sugcang,
R.J., Lavapie, M.A.M., Capangpangan, R.Y., Pabroa, P.C.B., 2022.
Variability and Source Characterization of Regional PM of Two Urban Areas
Dominated by Biomass Burning and Anthropogenic Emission. Aerosol Air Qual.
Res. 22, 220026.
https://doi.org/10.4209/aaqr.220026
Salam, A., Hossain, T., Siddique, M.N.A., Shafiqul Alam, A.M., 2008.
Characteristics of atmospheric trace gases, particulate matter, and heavy
metal pollution in Dhaka, Bangladesh. Air Qual. Atmos. Heal. 1, 101–109.
https://doi.org/10.1007/s11869-008-0017-8
Sandradewi, J., Prévôt, A.S.H., Weingartner, E., Schmidhauser, R., Gysel,
M., Baltensperger, U., 2008
. A study of wood burning and traffic aerosols
in an Alpine valley using a multi-wavelength Aethalometer. Atmos. Environ.
42, 101–112.
https://doi.org/10.1016/j.atmosenv.2007.09.034
Salcedo, D., Onasch, T.B., Dzepina, K., Canagaratna, M.R., Zhang, Q., Huffmann,
J.A., DeCarlo, P.F., Jayne, J.T., Mortimer, P., Worsnop, D.R., Kolb, C.E.,
Johnson, K.S., Zuberi, B., Marr, L.C., Volkamer, R., Molina, L.T., Molina,
M.J., Cardenas, B., Bernabé, R.M., Márquez, C., Gaffney, J.S., Marley,
N.A., Laskin, A., Shutthanandan, V., Xie, Y., Brune, W., Lesher, R., Shirley,
T., Jimenez, J.L., 2006.
Characterization of ambient aerosols in Mexico
City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: Results from
the CENICA Supersite. Atmos. Chem. Phys. 6, 925–946.
https://doi.org/10.5194/acp-6-925-2006
Schober, P., Schwarte, L.A., 2018.
Correlation coefficients: Appropriate
use and interpretation. Anesth. Analg. 126, 1763–1768.
https://doi.org/10.1213/ANE.0000000000002864
Shakya, K.M., Peltier, R.E., Shrestha, H., Byanju, R.M., 2017.
Measurements
of TSP, PM10, PM2.5, BC, and PM chemical composition from an urban residential
location in Nepal. Atmos. Pollut. Res. 8, 1123–1131.
https://doi.org/10.1016/j.apr.2017.05.002
Stavroulas, I., Grivas, G., Liakakou, E., Kalkavouras, P., Bougiatioti, A.,
Kaskaoutis, D.G., Lianou, M., Papoutsidaki, K., Tsagkaraki, M., Zarmpas, P.,
Gerasopoulos, E., Mihalopoulos, N., 2021.
Online Chemical Characterization
and Sources of Submicron Aerosol in the Major Mediterranean Port City of
Piraeus, Greece. Atmosphere 12, 1686.
https://doi.org/10.3390/atmos12121686
Sun, Y.L., Zhang, Q., Schwab, J.J., Demerjian, K.L., Chen, W.N., Bae, M.S.,
Hung, H.M., Hogrefe, O., Frank, B., Rattigan, O. V., Lin, Y.C., 2011.
Characterization of the sources and processes of organic and inorganic
aerosols in New York city with a high-resolution time-of-flight aerosol mass
spectrometer. Atmos. Chem. Phys. 11, 1581–1602.
https://doi.org/10.5194/acp-11-1581-2011
Talukdar, S., Tripathi, S.N., Lalchandani, V., Rupakheti, M., Bhowmik,
H.S., Shukla, A.K., Murari, V., Sahu, R., Jain, V., Tripathi, N., Dave, J.,
Rastogi, N., Sahu, L., 2021.
Air pollution in new delhi during late winter:
An overview of a group of campaign studies focusing on composition and
sources. Atmosphere (Basel). 12, 1–22. h
ttps://doi.org/10.3390/atmos12111432
Tõnisson, L., Kunz, Y., Kecorius, S., Madueño, L., Tamayo, E.G., Casanova,
D.M., Zhao, Q., Schikowski, T., Hornidge, A.K., Wiedensohler, A., Macke, A.,
2020.
From transfer to knowledge co-production: A transdisciplinary
research approach to reduce black carbon emissions in metro manila,
Philippines. Sustain. 12, 1–19.
https://doi.org/10.3390/su122310043
Ulevičius, V., Byčenkienė, S., Špirkauskaitė, N., Kecorius, S.,
201
0. Biomass burning impact on black carbon aerosol mass concentration at
a coastal site: Case studies. Lithuanian J. Phys. 50, 335–344.
https://doi.org/10.3952/lithjphys.50304
Tun, M.M., Juchelkova, D., Win, M.M., Thu, A.M., Puchor, T., 2019.
Biomass
energy: An overview of biomass sources, energy potential, and management in
Southeast Asian countries. Resources 8.
https://doi.org/10.3390/resources8020081
Ulevičius, V., Byčenkienė, S., Špirkauskaitė, N., Kecorius, S.,
2010.
Biomass burning impact on black carbon aerosol mass concentration at
a coastal site: Case studies. Lithuanian J. Phys. 50, 335–344.
https://doi.org/10.3952/lithjphys.50304
Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A.,
Hämeri, K., Koponen, I.K., 2007
. A Simple Procedure for Correcting
Loading Effects of Aethalometer Data. J. Air Waste Manag. Assoc. 57(10),
1214–1222.
https://doi.org/10.3155/1047-3289.57.10.1214
Wang, J., Nie, W., Cheng, Y., Shen, Y., Chi, X., Wang, J., Huang, X., Xie, Y.,
Sun, P., Xu, Z., Qi, X., Su, H., Ding, A., 2018.
Light absorption of brown
carbon in eastern China based on 3-year multi-wavelength aerosol optical
property observations and an improved absorption Ångström exponent
segregation method. Atmos. Chem. Phys. 18, 9061–9074.
https://doi.org/10.5194/acp-18-9061-2018
Wang, X., Heald, C.L., Sedlacek, A.J., de Sá, S.S., Martin, S.T., Alexander,
M.L., Watson, T.B., Aiken, A.C., Springston, S.R., Artaxo, P. 2016.
Deriving brown carbon from multiwavelength absorption measurements: method
and application to AERONET and Aethalometer observations. Atmos. Chem.
Phys. 16, 12733–12752.
https://doi.org/10.5194/acp-16-12733-2016
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B.,
Baltensperger, U., 2003.
Absorption of light by soot particles:
Determination of the absorption coefficient by means of aethalometers. J.
Aerosol Sci. 34, 1445–1463.
https://doi.org/10.1016/S0021-8502(03)00359-8
Werden, B.S., Giordano, M.R., Goetz, J.D., Islam, M.R., Bhave, P. V.,
Puppala, S.P., Rupakheti, M., Saikawa, E., Panday, A.K., Yokelson, R.J., Stone,
E.A., DeCarlo, P.F., 2022.
Premonsoon submicron aerosol composition and
source contribution in the Kathmandu Valley, Nepal. Environ. Sci. Atmos.
2, 978–999.
https://doi.org/10.1039/d2ea00008c
WHO, 2021.
WHO global air quality guidelines. Coast. Estuar. Process.
2021, 1–360.
Williams, L., Aerodyne Team, 2021.
AMS/ACSM Calibration Protocols. ARI
AMS Users Meeting, Virtual, January 19, 2021.
Wmo/Igac, 2012.
Impacts of Megacities on Air Pollution and Climate,
Global Atmosphere Watch (GAW) Rep. Carbonaceous aerosol particle sources in
Manila North Port and the urban environment 20/20 No. 205., WMO/IGAC.
Xie, C., Xu, W., Wang, J., Wang, Q., Liu, D., Tang, G., Chen, P., Du, W., Zhao,
J., Zhang, Y., Zhou, W., Han, T., Bian, Q., Li, J., Fu, P., Wang, Z., Ge, X.,
Allan, J., Coe, H., Sun, Y., 2019.
Vertical characterization of aerosol
optical properties and brown carbon in winter in urban Beijing. Atmos.
Chem. Phys. 19, 165–179.
https://doi.org/10.5194/acp-19-165-2019
Yang, M., Howell, S.G., Zhuang, J., Huebert, B.J., 2009.
Attribution of
aerosol light absorption to black carbon, brown carbon, and dust in China.
Atmos. Chem. Phys. 9, 2035–2050.
https://doi.org/10.5194/acp-9-2035-2009
Yu, J., Zhu, A., Liu, M., Dong, J., Chen, R., Tian, T., Liu, T., Ma, L., Ruan,
Y., 2023.
Association between air pollution and cardiovascular disease
hospitalizations in Lanzhou City, 2013–2020: A time series analysis.
GeoHealth 8, e2022GH000780.
https://doi.org/10.1029/2022GH000780
Zhou, S., Collier, S., Jaffe, D.A., Briggs, N.L., Hee, J., Iii, A.J.S.,
Kleinman, L., Onasch, T.B., Zhang, Q., 2017.
Regional influence of
wildfires on aerosol chemistry in the western US and insights into atmospheric
aging of biomass burning organic aerosol. Atmos. Chem. Phys. 17,
2477–2493.
https://doi.org/10.5194/acp-17-2477-2017
Zhang, Y., Albinet, A., Petit, J.E., Jacob, V., Chevrier, F., Gille, G.,
Pontet, S., Chretien, E., Dominik-Segue, M., Levigoureux, G., Mocnik, G., Gros,
V., Jaffrezo, J.L., Favez, O., 2020.
Substantial brown carbon emissions
from wintertime residential wood burning over France. Sci. Total Environ.
743, 140752.
https://doi.org/10.1016/j.scitotenv.2020.140752
Zhao, Z., Cao, J., Chow, J.C., Watson, J.G., Chen, L.-W., Wang, X., Wang, Q.,
Tian, J., Shen, Z., Zhu, C., Liu, S., Tao, J., Ye, Z., Zhang, T., Zhou, J.,
2019.
Multi-wavelength light absorption of black and brown carbon at a
high-altitude site on the Southeastern margin of the Tibetan Plateau,
China. Atmos. Environ. 212, 54–64.
https://doi.org/10.1016/j.atmosenv.2019.05.035
Zuo, P., Huang, Y., Bi, J., Wang, W., Li, W., Lu, D., Zhang, Q., Liu, Q.,
Jiang, G., 2023.
Non-traditional stable isotopic analysis for source
tracing of atmospheric particulate matter. Trend. Anal. Chem. 158, 116866.
https://doi.org/10.1016/j.trac.2022.116866
Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Mocnik, G.,
Hüglin, C., Baltensperger, U., Szidat, S., Prévôt, A.S.H., 2017.
Evaluation of the absorption Ångström exponents for traffic and wood
burning in the Aethalometerbased source apportionment using radiocarbon
measurements of ambient aerosol. Atmos. Chem. Phys. 17, 4229–4249. h
ttps://doi.org/10.5194/acp-17-4229-2017
Elucidating the variation of phytoplankton pigments in estuarine ecosystem
Oceanologia, 67 (1)/2025, 67110, 17 pp.
https://doi.org/10.5697/UXLD2477
Reshmitha Ramakrishnan1,2, Keisham Sarjit Singh1, Temjensangba Imchen1,*
1CSIR – National Institute of Oceanography, Dona Paula–403004, Goa, India;
e-mail: timchen@nio.org,
temjen.imchen@gmail.com (T. Imchen)
2Department of Marine Science, Bharathidasan University, Tiruchirappalli–620024, Tamil Nadu, India
*corresponding author
Keywords: Biomass proportion; Diagnostic pigments; HPLC analysis; Mandovi estuary; Phytoplankton size classes; Zuari estuary
Received: 22 July 2024; revised: 18 November 2024; accepted: 18 December 2024.
Highlights
- The positive correlation between diagnostic pigments (DP) and chlorophyll a was linear.
- The biomass proportion of nanoplankton was lower than that of microplankton and picoplankton.
- The abundance of microplankton was higher during monsoon (June-July) while picoplankton was highest during pre-monsoon (March).
- Fucoxanthin, peridinin, 19’ hexanoyloxyfucoxanthin, diadinoxanthin, alloxanthin,
zeaxanthin, and chlorophyll b were the major diagnostic pigments.
- The phytoplankton size class from Goa’s estuary was determined by using marker pigments for the first time.
Abstract
Phytoplankton pigments were used to study the community structure and phytoplankton size class in Goa’s estuaries.
The study revealed that fucoxanthin and chlorophyll a were the most dominant pigments. The correlation of diagnostic
pigments (DP) and chl a correlated positively in both estuaries (Mandovi: R2 = 0.703, P < 0.01; Zuari: R2 = 0.892, P < 0.01), suggesting that DP can serve as a proxy to measure phytoplankton biomass. Results showed that with DP and biomass proportion, phytoplankton size class (picoplankton, nanoplankton and microplankton) can be derived.
Picoplankton biomass was highest during pre-monsoon season, while microplankton biomass was high during monsoon
season. The high abundance of microplankton may support planktivorous fishery productivity.
References
Albin, K.J., Jyothibabu, R., Alok, K.T., Santhikrishnan, S., Sarath, S.,
Sudheesh, V., Sherin, C.K., Balachandran, K. K., Asha Devi, C.R., Gupta,
G.V.M., 2022.
Distinctive phytoplankton size responses to the nutrient
enrichment of coastal upwelling and winter convection in the eastern Arabian
Sea. Prog. Oceanogr. 203, 102779.
https://doi.org/10.1016/j.pocean.2022.102779
Anand, S. S., Sardessai, S., Muthukumar, C., Mangalaa, K.R., Sundar, D., Parab,
S.G., Kumar, M.D., 2014.
Intra-and inter-seasonal variability of nutrients
in a tropical monsoonal estuary (Zuari, India). Cont. Shelf. Res. 82,
9–30.
https://doi.org/10.1016/j.csr.2014.04.005
Barlow, R., Sessions, H., Balarin, M., Weeks, S., Whittle, C., Hutchings, L.,
2005.
Seasonal variation in phytoplankton in the southern Benguela: pigment
indices and ocean colour. Afr. J. Mar. Sci. 27(1), 275–287.
https://doi.org/10.2989/18142320509504086
Barlow, R., Stuart, V., Lutz, V., Sessions, H., Sathyendranath, S., Platt, T.,
Kyewalyanga, M., Clementson, L., Fukasawa, M., Watanabe, S., Devred, E., 2007.
Seasonal pigment patterns of surface phytoplankton in the subtropical
southern hemisphere. Deep-Sea. Res I. Oceanogr. Res. Pap. 54(10),
1687–1703.
https://doi.org/10.1016/j.dsr.2007.06.010
Bharathi, M.D., Venkataramana, V., Sarma, V.V.S.S., 2022.
Phytoplankton
community structure is governed by salinity gradient and nutrient composition
in the tropical estuarine system. Cont. Shelf. Res. 234 (1), 104643.
https://doi.org/10.1016/j.csr.2021.104643
Chowdhury, M., Biswas, H., 2023.
A coherent status of summer monsoon
phytoplankton communities (2017–2018) along the Western Indian continental
shelf: Implications for fisheries. Sci. Total. Environ. 878, 162963.
https://doi.org/10.1016/j.scitotenv.2023.162963
Chai, C., Jiang, T., Cen, J., Ge, W., Lu, S., 2016.
Phytoplankton pigments
and functional community structure in relation to environmental factors in the
Pearl River Estuary. Oceanologia. 58 (3), 201–211.
https://doi.org/10.1016/j.oceano.2016.03.001
Chase, A.P., Kramer, S.J., Haëntjens, N., Boss, E.S., Karp-Boss, L.,
Edmondson, M., Graff, J.R., 2020.
Evaluation of diagnostic pigments to
estimate phytoplankton size classes. Limnol. Oceanogr. Meth. 18 (10),
570–584.
https://doi.org/10.1002/lom3.10385
Chandrasekhararao, A.V., Kurian, S., Vidya, P.J., Gauns, M., 2022.
Seasonal
and inter-annual variability of chemotaxonomic marker pigments in the
north-eastern Arabian Sea. Deep-Sea. Res. Pt. I. 179 (1), 103679.
https://doi.org/10.1016/j.dsr.2021.103679
Chilton, D., Hamilton, D.P., Nagelkerken, I., Cook, P., Hipsey, M.R., Reid, R.,
Brookes, J., 2021.
Environmental flow requirements of estuaries: providing
resilience to current and future climate and direct anthropogenic changes.
Front. Environ. Sc. 9, 764218.
https://doi.org/10.3389/fenvs.2021.764218
De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R.,
2015.
Eukaryotic plankton diversity in the sunlit ocean. Science. 348
(6237), 1–11.
https://doi.org/10.1126/science.1261605
de Senerpont Domis, L.N., Elser, J.J., Gsell, A.S., Huszar, V.L., Ibelings,
B.W., Jeppesen, E., Lürling, M., 2013.
Plankton dynamics under different
climatic conditions in space and time. Freshwater Biol. 58(3), 463–482.
https://doi.org/10.1111/fwb.12053.
Dutta, S., Chanda, A., Akhand, A., Hazra, S., 2016.
Correlation of
phytoplankton biomass (Chlorophyll-a) and nutrients with the catch per unit
effort in the PFZ forecast areas of Northern Bay of Bengal during simultaneous
validation of winter fishing season. Turk. J. Fish. Aquat. Sc. 16 (4),
767-777.
https://doi.org/10.4194/1303-2712-v16_4_03.
Figueiras, F.G., Espinoza-González, O., Arbones, B., Garrido, J.L., Teixeira,
I.G., Castro, C.G., 2014.
Estimating phytoplankton size-fractionated
primary production in the northwestern Iberian upwelling: Is mixotrophy
relevant in pigmented nanoplankton. Prog. Oceanog. 128, 88–97.
https://doi.org/10.1016/j.pocean.2014.08.011
Fietz, S., Kobanova, G., Izmest’eva, L., Nicklisch, A., 2005.
Regional,
vertical and seasonal distribution of phytoplankton and photosynthetic pigments
in Lake Baikal. J. Plankton. Res. 27 (8), 793–810.
https://doi.org/10.1093/plankt/fbi054.
Flander-Putrle, V., Francé, J., Mozetič, P., 2021
. Phytoplankton
pigments reveal size structure and interannual variability of the coastal
phytoplankton community (Adriatic Sea). Water 14 (1), 23.
https://doi.org/10.3390/w14010023
Gameiro, C., Cartaxana, P., Cabrita, M.T., Brotas, V., 2004.
Variability in
chlorophyll and phytoplankton composition in an estuarine system.
Hydrobiologia 525, 113–124.
https://doi.org/10.1023/B:HYDR.0000038858.29164.3
Gibb, S.W., Cummings, D.G. Irigoien, X., Barlow, R.G., Fauzi, R., Mantoura, C.,
2001.
Phytoplankton pigment chemotaxonomy of northeastern Atlantic.
Deep-Sea. Res. Pt. II, 48 (4–5), 795–823.
https://doi.org/10.1016/S0967-0645(00)00098-9
Gomez, F., Souissi, S., 2020.
The role of salinity in phytoplankton
growth dynamics and the implications for harmful algal blooms in coastal
ecosystems. Mar. Environ. Res. 162, 105149.
Hilligsøe, K.M., Richardson, K., Bendtsen, J., Sørensen, L.L., Nielsen, T.G.,
Lyngsgaard, M.M., 2011.
Linking phytoplankton community size composition
with temperature, plankton food web structure and sea–air CO2 flux.
Deep-Sea. Res Pt. I 58 (8), 826–838.
https://doi.org/10.1016/j.dsr.2011.06.004
Huete-Ortega, M., Marañon, E., Varela, M., Bode, A., 2010.
General
patterns in the size scaling of phytoplankton abundance in coastal waters
during a 10-year time series. J.Plankton. Res. 32 (1), 1–14.
https://doi.org/10.1093/plankt/fbp104.
Jeffrey, S.W., Wright, S.W., Zapata, M., 1999.
Recent advances in HPLC
pigment analysis of phytoplankton. Mar. Freshw. Res. 50 (8), 879–896.
https://doi.org/10.1071/MF99109
Jyothibabu, R., Madhu, N.V., Jayalakshmi, K.V., Balachandran, K.K., Shiyas,
C.A., Martin, G.D., 2006.
Impact of fresh water influx on microzooplankton
mediated food web in a tropical estuary (Cochin backwaters-India). Estuar.
Coast. Mar. Sci. 69 (3–4), 505–518.
https://doi.org/10.1016/j.ecss.2006.05.013
Kramer, S.J., Siegel, D.A., 2019.
How can phytoplankton pigments be best
used to characterize surface ocean phytoplankton groups for ocean color remote
sensing algorithms?. J. Geophys. Res. Oceans, 124 (11), 7557–7574.
https://doi.org/10.1029/2019JC015604
Kudela, R.M., Palacios, S.L., Austerberry, D.C., Accorsi, E.K., Guild, L.S.,
Torres-Perez, J., 2015.
Application of hyperspectral remote sensing to
cyanobacterial blooms in inland waters. Remote. Sens. Environ. 167,
196–205.
https://doi.org/10.1016/j.rse.2015.01.025
Le Quéré, C., Harrison, S.P., Prentice, C.I., Buitenhuis, E.T., Aumont, O.,
Bopp, L., Claustre, H., 2005.
Ecosystem dynamics based on plankton
functional types for global ocean biogeochemistry models. Global. Change.
Biol. 11 (11), 2016–2040. https://doi.org/10.1111/j.1365-2486.2005.1004.x
Madhu, N.V., Jyothibabu, R., Balachandran, K.K., 2010.
Monsoon-induced
changes in the size-fractionated phytoplankton biomass and production rate in
the estuarine and coastal waters of southwest coast of India. Environ.
Monit. Assess. 166 (1), 521–528.
https://doi.org/10.1007/s10661-009-1020-8
Marañón, E., Cermeno, P., Latasa, M., Tadonléké, R.D., 201
2.
Temperature, resources, and phytoplankton size structure in the ocean.
Limnol. Oceanogr. 57 (5), 1266–1278.
https://doi.org/10.4319/lo.2012.57.5.1266
Mouriño-Carballido, B., Hojas, E., Cermeño, P., Chouciño, P.,
Fernández-Castro, B., Latasa, M., Vidal, M., 201
6. Nutrient supply
controls picoplankton community structure during three contrasting seasons in
the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19.
https://doi.org/10.3354/meps11558
Mouw, C.B., Hardman-Mountford, N.J., Alvain, S., Bracher, A., Brewin, R.J.,
Bricaud, A., Uitz, J., 2017.
A consumer’s guide to satellite remote
sensing of multiple phytoplankton groups in the global ocean. Front. Mar.
Sci. 4, 41.
https://doi.org/10.3389/fmars.2017.00041
Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget,
M.H., Devred, E., Bouman, H., 2008.
Remote sensing of phytoplankton
functional types. Remote. Sens. Environ. 112 (8), 3366–3375.
https://doi.org/10.1016/j.rse.2008.01.021
Ning, M., Li, H., Xu, Z., Chen, L., He, Y., 2021.
Picophytoplankton
identification by flow cytometry and highthroughput sequencing in a clean
reservoir. Ecotox. Environ. Safe. 216, 112216.
https://doi.org/10.1016/j.ecoenv.2021.112216
Patil, J.S., Anil, A.C., 2011.
Variations in phytoplankton community in a
monsoon-influenced tropical estuary. Environ. Monit. Assess. 182,
291–300. https://doi.org/10.1007/s10661-011-1876-2
Patil, J.S., Anil, A.C., 2015.
Effect of monsoonal perturbations on the
occurrence of phytoplankton blooms in a tropical bay. Mar. Ecol. Prog.
Ser. 530, 77–92. https://doi.org/10.3354/meps11289
Patil, J.S., Sathish, K., 2023.
Responses of Phytoplankton Benthic
Propagules to Macronutrient Enrichment and Varying Light Intensities:
Elucidation from MonsoonInfluenced Mandovi and Zuari Riverine System: Responses
of Phytoplankton Benthic Propagules to Macronutrient Enrichment and Varying
Light Intensities: Elucidation from Monsoon-Influenced Mandovi and Zuari
Riverine System. Microb. Ecol. 85 (4), 1367–1381.
https://doi.org/10.1007/s00248-022-02021-9
Paerl, H.W., Valdes, L.M., Pinckney, J.L., Piehler, M.F., Dyble, J., Moisander,
P.H., 2003.
Phytoplankton photopigments as indicators of estuarine and
coastal eutrophication. Bio. Science. 53 (10), 953–964.
https://doi.org/10.1641/0006-3568(2003)053[0953:PPAIOE]2.0.CO;2
Paerl, H.W., Justic, D., 2013.
Estuarine phytoplankton. Estuarine.
Ecol., 85–110. https://doi.org/10.1002/9781118412787
Paul, M., Velappan, M.N., Nanappan, U., Gopinath, V., Velloth, R.T., Rajendran,
A., Peariya, A., 2021.
Characterization of phytoplankton size-structure
based productivity, pigment complexes (HPLC/CHEMTAX) and species composition in
the Cochin estuary (southwest coast of India): special emphasis on
diatoms. Oceanologia 63 (4), 463–481.
https://doi.org/10.1016/j.oceano.2021.05.004
Pednekar, S.M., Kerkar, V., Matondkar, S.G.P., 2014.
Spatiotemporal
distribution in phytoplankton community with distinct salinity regimes along
the Mandovi estuary, Goa, India. Turk. J. Bot. 38 (4), 800–818.
https://doi.org/10.3906/bot-1309-29
Pulina, S., Satta, C.T., Padedda, B.M., Bazzoni, A.M., Sechi, N., Lugliè,
A., 2017.
Picophytoplankton seasonal dynamics and interactions with
environmental variables in three Mediterranean coastal lagoons. Estuar.
Coast. 40, 469–478.
https://doi.org/10.1007/s12237-016-0154-5
Rajaneesh, K.M., Mitbavkar, S., Anil, A.C., 2018.
Dynamics of
size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and
drivers for seasonal and spatial variability. Estuar. Coast. Shelf. S.
207, 325 –337.
https://doi.org/10.1016/j.ecss.2018.04.026
Ramakrishnan, R., Fernandes, V., 2022.
Spatio-Temporal Dynamics of
Phytoplankton in the Mandovi Estuary, on the Central West Coast of India During
Post Monsoon. Thalassas. 38(2), 1025–1040.
https://doi.org/10.1007/s41208-022-00449-x
Roy, R., Pratihary, A., Mangesh, G., Naqvi, S.W.A., 2006.
Spatial variation
of phytoplankton pigments along the southwest coast of India. Estuar.
Coast. Shelf. S. 69 (1–2), 189–195.
https://doi.org/10.1016/j.ecss.2006.04.006
Roy, R., Chitari, R., Kulkarni, V., Krishna, M.S., Sarma, V.V.S.S., Anil, A.C.,
2015.
CHEMTAX-derived phytoplankton community structure associated with
temperature fronts in the northeastern Arabian Sea. J. Marine Syst. 144,
81–91.
https://doi.org/10.1016/j.jmarsys.2014.11.009
Rekik, A., Denis, M., Maalej, S., Ayadi, H., 2015.
Spatial and seasonal
variability of pico-, nano-and microphytoplankton at the bottom seawater in the
north coast of Sfax, Eastern Mediterranean Sea. Environ. Sci. Pollut. R.
22, 15961–15975.
https://doi.org/10.1007/s11356-015-4811-1
Saifullah, A.S.M., Kamal, A.H.M., Idris, M.H., Rajaee, A.H., Bhuiyan, M.K.A.,
2016.
Phytoplankton in tropical mangrove estuaries: role and
interdependency. Forest Sci. Technol. 12 (2), 104–113.
https://doi.org/10.1080/21580103.2015.1077479
Santhanam, R., Ramanathan, N., Venkataramanuja, K.V., Jegatheesan, G., 1987.
Phytoplankton of the Indian Seas: An Aspect of Marine Botany. Daya
Publication House, 127 pp.
Shankar, D., Remya, R., Anil, A. C., Vijith, V., 2019. Role of physical
processes in determining the nature of fisheries in the eastern Arabian Sea.
Prog. Oceanogr. 172, 124–158.
https://doi.org/10.1016/j.pocean.2018.11.006
Shetye, S.R., Gouveia, A.D., Singbal, S.Y., Naik, C.G., Sundar, D., Michael,
G.S., Nampoothiri, G., 1995.
Propagation of tides in the Mandovi-Zuari
estuarine network. Proc. Indian. Natl. Sci. 104, 667–682.
https://doi.org/10.1007/BF02839302
Shetye, S.R., Shankar, D., Neetu, S., Suprit, K., Michael, G.S., Chandramohan,
P., 2007.
The environment that conditions the Mandovi and Zuari
estuaries. National Institute of Oceanography, India, 3–27.
http://drs.nio.org/drs/handle/2264/624
Smetacek, V., 1998. Diatoms and the silicate factor. Nature. 391 (66694),
224–225.
https://doi.org/10.1038/34528
Soares, M.C.S., Lobão, M.L., Vidal, L.O., Noyma, N.P., Barros, N.O., Cardoso,
S.J., Roland F., 2011.
Light Microscopy in Aquatic Ecology: Methods for
Plankton Communities Studies. [In:] Chiarini-Garcia, H., Melo, R. (eds.),
Light Microscopy. Methods in Molecular Biology, Vol. 689, Humana Press, Totowa,
NJ.
https://doi.org/10.1007/978-1-60761-950-5_13
Strickland, J.D., Holm-Hansen, O., Eppley, R.W., Linn, R.J., 1969.
The use
of a deep tank in plankton ecology-Studies of the growth and composition of
phytoplankton crops at low nutrient levels. Limnol. Oceanogr 14 (1),
23–34.
https://doi.org/10.4319/lo.1969.14.1.0023
Tao, W., Niu, L., Liu, F., Cai, H., Ou, S., Zeng, D., Yang, Q., 2020.
Influence of river-tide dynamics on phytoplankton variability and their
ecological implications in two Chinese tropical estuaries. Ecol. Indic.
115, 106458.
https://doi.org/10.1016/j.ecolind.2020.106458
Thrane, J.E., Kyle, M., Striebel, M., Haande, S., Grung, M., Rohrlack, T.,
Andersen, T., 2015.
Spectrophotometric analysis of pigments: a critical
assessment of a highthroughput method for analysis of algal pigment mixtures by
spectral deconvolution. PloS One, 10 (9), e0137645.
https://doi.org/10.1371/journal.pone.0137645
Tomas, C.R, 1997. Identifying Marine Phytoplankton. Acad. Press, Elsevier,
Amsterdam, 858 pp. Turner, K.J., Mouw, C.B., Hyde, K.J., Morse, R., Ciochetto,
A.B., 2021.
Optimization and assessment of phytoplankton size class
algorithms for ocean color data on the Northeast US continental shelf.
Remote. Sens. Environ. 267, 112729.
https://doi.org/10.1016/j.rse.2021.112729
Twardowski, M.S., Claustre, H., Freeman, S.A., Stramski, D., Huot, Y., 2007.
Optical backscattering properties of the clearest natural waters.
Biogeosciences 4 (6), 1041–1058. https://doi.org/10.5194/bg-4-1041-2007
Van Dijk, M.A., Gregori, G., Hoogveld, H.L., Rijkeboer, M., Denis, M.,
Malkassian, A., Gons, H.J., 2010.
Optimizing the setup of a flow cytometric
cell sorter for efficient quantitative sorting of long filamentous
Cyanobacteria. Cytometry, 77 (10), 911–924.
https://doi.org/10.1002/cyto.a.20946
Van Heukelem, L., Thomas, C.S., 2001.
Computer-assisted high-performance
liquid chromatography method development with applications to the isolation and
analysis of phytoplankton pigments. J. Chromatogr. A, 910 (1), 31–49.
https://doi.org/10.1016/S0378-4347(00)00603-4
Verlecar, X.N., Desai, S.R., Sarkar, A., Dalal, S.G., 2006.
Biological
indicators in relation to coastal pollution along Karnataka coast, India.
Water. Res. 40 (17), 3304–3312.
https://doi.org/10.1016/j.watres.2006.06.022
Vidussi, F., Clustre, H., Manca, B.B., Luchetta, A., Marty, J.C., 2001.
Phytoplankton pigment distribution in relation to upper thermocline
circulation in the eastern Mediterranean Sea during winter. J. Geophys.
Res. 106 (C9), 19939–19956.
https://doi.org/10.1029/1999JC000308
Vijith, V., Sundar, D., Shetye, S.R., 2009.
Time-dependence of salinity in
monsoonal estuaries. Estuary. Coast. Shelf. S. 85 (4), 601–608.
https://doi.org/10.1016/j.ecss.2009.10.003
Wang, J., Jiang, H., Sun, X., 2019.
Responses of phytoplankton growth and
sinking rate to changes in salinity and temperature in the Changjiang River
estuary. Estuar. Coast. Shelf. S. 222, 183–191.
https://doi.org/10.2139/ssrn.4932301
Wollschläger, J., Wiltshire, K.H., Petersen, W., Metfies, K., 2015.
Analysis of phytoplankton distribution and community structure in the
German Bight with respect to the different size classes. J. Sea. Res. 99,
83–96.
https://doi.org/10.1016/j.seares.2015.02.005
Zhao, L., Zhao, Y., Xu, J., Zhang, W., Huang, L., Jiang, Z., Xiao, T., 2016.
Distribution and seasonal variation of picoplankton in Sanggou Bay,
China. Aquacult. Env. Interac. 8, 261–271.
https://doi.org/10.3354/aei00168
Climate change and its effects on marine food web with the concentration of pelagic fishes in the northern Arabian Sea
Oceanologia, 67 (1)/2025, 67110, 11 pp.
https://doi.org/10.5697/USFE4011
Imtiaz Kashani*, Sher Khan Panhwar, Kishwar Kumar Kachhi
Centre of Excellence in Marine Biology, University of Karachi, 75270, Sindh, Pakistan;
e-mail: imtiazkashani@gmail.com((I. Kashani)
*corresponding author
Keywords: Equivalent black carbon; Climate change; Ecosystem dynamics; Energy transformation; Food web dynamics; Pelagic
fishery; Northern Arabian Sea
Received: 20 August 2024; revised: 12 December 2024; accepted: 7 January 2025.
Highlights
- A comprehensive analysis of the pelagic fauna, including species composition, abundance, and distribution.
- The influence of environmental factors, such as temperature, salinity, and dissolved oxygen, on plankton communities and their subsequent impact on pelagic fish populations.
- Insights into potential consequences of climate change on fisheries and ecosystem health.
Abstract
The northern Arabian Sea, a vital ecosystem that sustains a significant population through its fisheries is increasingly
threatened by climate change, overharvest, and coastal pollution. To evaluate the combined effects of these pressures on
fishery health, microplankton, fish bycatch, and coastal environment data were examined between 2019 and 2023 from
key hotspots. Using the time-cumulated indicator (TCI) and efficiency cumulated indicator (ECI) approaches, we aimed
to determine broader spectrum of energy flow in the ecosystem. The findings revealed a delicate equilibrium in the
ecosystem. Although average temperatures remained stable, variations in rainfall patterns suggested potential changes
in salinity and dissolved oxygen levels, signaling subtle climate change influences. Biological indicators highlighted
dynamic shifts: species diversity fluctuated, suggesting community restructuring, while increased evenness implied
potential ecological stabilization. The production and biomass (P/B) ratio was higher in 2019, reflecting faster biomass
production compared to the slower rate observed in 2023. This instability may be attributed to environmental changes,
altered species composition, and a steady increase in fishing pressure. Notably, consistent fish catches amidst relatively
stable species diversity suggest complex population dynamics. In terms of energy flow and transformation, a significant
rise in TCI, suggests accelerated energy transfer, likely driven by a decline in predator population. Additionally, the
instability in Residence Time (RT) underscores intricate food web interactions. Our findings highlight the delicate
equilibrium of the northern Arabian Sea, as revealed by the overall data and assessment. Understanding these intricate
dynamics is crucial for developing effective conservation strategies and promoting sustainable fishing practices.
References
Aberle, N., Bauer, B., Lewandowska, A., Gaedke, U., Sommer, U., 2012.
Warming induces shifts in microzooplankton phenology and reduces time-lags
between phytoplankton and protozoan production. Mar. Biol. 159,
2441–2453.
https://doi.org/10.1007/s00227-012-1947-0
Asha Devi, C. R., Mondal, J., Vishnu, N.N.S., Sherin, C. K., Albin, K.J.,
Anandavelu, I., Gupta, G.V.M., 2024.
Factors regulating proliferation and
co-occurrence of loricate ciliates in the microzooplankton community from the
eastern Arabian Sea. Aquat. Sci. 86(2), 31.
https://doi.org/10.1007/s00027-024-01047-0
Benoit, E., Rochet, M.J., 2004.
A continuous model of biomass size spectra
governed by predation and the effects of fishing on them. J. Theor. Biol.
226(1), 9–21.
https://doi.org/10.1016/S0022-5193(03)00290-X
Britten, G.L., Dowd, M., Worm, B., 2016.
Changing recruitment capacity in
global fish stocks. P. Natl. Acad. SciBiol. 113(1), 134–139.
https://doi.org/10.1073/pnas.1504709112
Carpenter, K.E., Niem, V.H., 2001.
FAO species identification guide for
fishery purposes. The living marine resources of the Western Central
Pacific Vol. 5. Bony fish Pt. 3, (Menidae to Pomacentridae). FAO Library.
Chen, B., Landry, M. R., Huang, B., Liu, H., 2012.
Does warming enhance
the effect of microzooplankton grazing on marine phytoplankton in the
ocean? Limnol. Oceanogr. 57(2), 519–526.
https://doi.org/10.4319/lo.2012.57.2.0519
Cheung, W.W., Lam, V.W., Sarmiento, J.L., Kearney, K., Watson, R.E.G., Zeller,
D., Pauly, D., 2010.
Large scale redistribution of maximum fisheries catch
potential in the global ocean under climate change. Global Change Biol.
16(1), 24–35.
https://doi.org/10.1111/j.1365-2486.2009.01995.x
Christensen, V., Coll, M., Piroddi, C., Steenbeek, J., Buszowski, J., Pauly,
D., 2014.
A century of fish biomass decline in the ocean. Mar.
Ecol.Prog.Ser. 512, 155–66.
https://doi.org/10.3354/meps10946
Cury, P.M., Shannon, L.J., Roux, J.P., Daskalov, G.M., Jarre, A., Moloney,
C.L., Pauly, D., 2005.
Trophodynamic indicators for an ecosystem approach
to fisheries. ICES J. Mar. Sci. 62(3), 430–442.
https://doi.org/10.1016/j.icesjms.2004.12.006
D’Alelio, D., Libralato, S., Wyatt, T., Ribera d’Alcalà, M., 2016.
Ecological-network models link diversity, structure and function in the
plankton food-web. Sci. Rep. UK. 6(1), 21806.
https://doi.org/10.1038/srep21806
Dafner, E.V., Wangersky, P.J., 2002. A
brief overview of modern directions
in marine DOC studies. Part II – Recent progress in marine DOC studies.
J. Environ. Monit. 4(1), 55–69.
https://doi.org/10.1039/B107279J
Eduardo, L.N., Mincarone, M.M., Sutton, T., Bertrand, A., 2024.
Deep-Pelagic Fishes Are Anything But Similar: A Global Synthesis. Eco.
Lett. 27(9), e14510.
https://doi.org/10.1111/ele.14510
Fanelli, E., Da Ros, Z., Menicucci, S., Malavolti, S., Biagiotti, I.,
Canduci, G., Leonori, I., 2023.
The pelagic food web of the Western
Adriatic Sea: a focus on the role of small pelagics. Sci. Rep. UK. 13(1), 14554.
https://doi.org/10.1038/s41598-023-40665-w
Farooq, N., Qamar, N. Panhwar, S.K., 2017.
Characterization of feeding
habits and prey diversity, diet overlap of two sympatric species the bronze sea
catfish, Netuma bilineata and blacktip sea catfish, Plicofollis dussumieri from
the northern Arabian Sea. J. Appl. Ichthyol. 33(4), 709–719.
https://doi.org/10.1111/jai.13377
Fischer, W., Sousa, I., Silva, C., De Freitas, A., Poutiers, J.M., Schneider,
W., Borges, T.C., Feral, J.P., Massinga, A., 1990.
Fichas FAO de
identificaçao de espécies para actividades de pesca. Guia de campo das
espéciescomerciaismarinhas e de águassalobras de Moçambique. Publ.
collabort. Inst. Investig. Pesq. Moçambique, Proj. PNUD/FAO MOZ/86/030 NORAD.
Roma, FAO.
Froese, R., Pauly, D., 2024.
FishBase. World Wide Web electronic
publication. www.fishbase.org (accessed 01/2024).
Garrison, D.L., Gowing, M.M., Hughes, M.P., Campbell, L., Caron, D.A., Dennett,
M.R., Smith, D.C., 2000.
Microbial food web structure in the Arabian Sea: a
US JGOFS study. Deep-Sea Res. Pt. II 47(7–8), 1387–1422.
https://doi.org/10.1016/S0967-0645(99)00148-4
Gascuel, D., Morissette, L., Palomares, M.L.D., Christensen, V., 2008.
Trophic flow kinetics in marine ecosystems: toward a theoretical approach
to ecosystem functioning. Ecol. Model. 217(1-2), 33–47.
https://doi.org/10.1016/j.ecolmodel.2008.05.012
Gibbons M.J., Richardson A.J., 2009.
Patterns of jellyfish abundance in the
North Atlantic. Hydrobiologia. 616, 51–65.
https://doi.org/10.1007/978-1-4020-9749-2_4
Gleiber, M.R., Hardy, N.A., Roote, Z., Krug-MacLeod, A.M., Morganson, C.J.,
Tandy, Z., Green, SJ., 2024.
The Pelagic Species Trait Database, an open
data resource to support trait-based ocean research. Sci. Data 11(1), 2.
https://doi.org/10.1038/s41597-023-02689-9
He, Q., Silliman, B.R., 2019.
Climate change, human impacts, and coastal
ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021–R1035.
https://doi.org/10.1016/j.cub.2019.08.042
Hetherington, E.D., Close, H.G., Haddock, S.H., Damian Serrano, A., Dunn, C.W.,
Wallsgrove, N.J., Choy, C.A., 2024.
Vertical trophic structure and niche
partitioning of gelatinous predators in a pelagic food web: Insights from
stable isotopes of siphonophores. Limnol. Oceanogr. 69(4), 902–919.
https://doi.org/10.1002/lno.12536
Jan, M., Panhwar, S.K., Zafar, F.H.S., 2022.
Ecosystem based approach to
delineate coastal degradation of Hawks bay, Karachi, Pakistan. Chemosphere
301, p.134648.
https://doi.org/10.1016/j.chemosphere.2022.134648
Jennings, S., Brander, K., 2010.
Predicting the effects of climate change
on marine communities and the consequences for fisheries. J. Marine Syst.
79(3–4), 418–426.
https://doi.org/10.1016/j.jmarsys.2008.12.016
Jennings, S., Collingridge, K., 2015.
Predicting consumer biomass,
size-structure, production, catch potential, responses to fishing and
associated uncertainties in the world’s marine ecosystems. Plos ONE,
10(7), e0133794.
https://doi.org/10.1371/journal.pone.0133794
Jochum, M., Schneider, F.D., Crowe, T.P., Brose, U., O’Gorman, E.J., 2012.
Climate-induced changes in bottomup and top-down processes independently
alter a marine ecosystem. Philos. T. Roy. Soc. B. 367(1605), 2962–2970.
https://doi.org/10.1098/rstb.2012.0237
Kachhi, K.K., Akhter, N., Panhwar, S.K., Kashani, I., 2024.
Escalating
Trends of Hydrogen Sulphide (H2S) and its Role in Structuring Pakistan Coastal
Zones Barren. Pollution 10(1), 256–264.
https://doi.org/10.22059/poll.2023.364144.2036
Kamiyama, T., 2015.
Planktonic ciliates: diverse ecological function in
seawater. Marine Protists: Diversity and Dynamics, 277–309.
https://doi.org/10.1007/978-4-431-55130-0_11
Kashani, I., Panhwar, S.K., 2023.
Intraspecific Population Variability in
Goldstripe Ponyfish, Karalla daura Sampled along the Pakistan Coast Based on
Geo-Morphometric Approach. Pak. J. Zool. 55, 1585–1591.
Law, R., Planhttps, M.J., James, A., Blanchard, J.L., 2009.
Size-spectra
dynamics from stochastic predation and growth of individuals. Ecology
90(3), 802–811.
https://doi.org/10.1890/07-1900.1
Lefcheck, J.S., Hughes, B.B., Johnson, A. J., Pfirrmann, B.W., Rasher, D.B.,
Smyth, A.R., Orth, R.J., 2019.
Are coastal habitats important nurseries? A
meta analysis. Conserv. Lett. 12(4), e12645.
https://doi.org/10.1111/conl.12645
Li, H., Wang, C., Zhao, L., Dong, Y., Zhao, Y., Zhang, W., 2023.
Variability of tintinnid ciliate communities with water masses in the
western Pacific Ocean. J. Plankton Res. 45(3), 509–522.
https://doi.org/10.1093/plankt/fbad011
Lin, M., Turvey, S.T., Han, C., Huang, X., Mazaris, A.D., Liu,M., Li, S.,
2022.
Functional extinction of dugongs in China. Roy. Soc. Open. Sci.
9(8), 211994.
https://doi.org/10.1098/rsos.211994
Maureaud, A., Gascuel, D., Colléter, M., Palomares, M.L., Du Pontavice, H.,
Pauly, D., Cheung, W.W., 2017.
Global change in the trophic functioning of
marine food webs. PlosONE 12(8), e0182826.
https://doi.org/10.1371/journal.pone.0182826
McKenzie, D., Geffroy, B., Farrell, A.P., 2021.
Effects of global warming
on fishes and fisheries. J. Fish Biol. 98(6), 1489–1492.
https://doi.org/10.1111/jfb.14762
Morris, B.E., Henneberger, R., Huber, H., Moissl-Eichinger, C., 2013.
Microbial syntrophy: interaction for the common good. FEMS Microbiol.
Rev. 37(3), 384–406.
https://doi.org/10.1111/1574-6976.12019
Moustaka-Gouni, M., Kormas, K.A., Scotti, M., Vardaka, E., Sommer, U., 2016.
Warming and acidification effects on planktonic heterotrophic pico-and
nanoflagellates in a mesocosm experiment. Protist, 167(4), 389–410.
https://doi.org/10.1016/j.protis.2016.06.004
Olsen, E.M., Heino, M., Lilly, G.R., Morgan, M.J., Brattey, J., Ernande, B.,
Dieckmann, U., 2004.
Maturation trends indicative of rapid evolution
preceded the collapse of northern cod. Nature 428(6986), 932–935.
https://doi.org/10.1038/nature02430
Panhwar, S.K., Mairaj, M., 2022.
An assessment of phytoplankton diversity
in relation to environmental variables in the Indus river estuary, Sindh,
Pakistan. Pak. J. Bot. 54(4).
http://dx.doi.org/10.30848/PJB2022-4(31)
Perry, R.I., Cury, P., Brander, K., Jennings, S., Möllmann, C., Planque, B.,
2010.
Sensitivity of marine systems to climate and fishing: concepts,
issues and management responses. J. Marine Syst. 79(3–4), 427–435.
https://doi.org/10.1016/j.jmarsys.2008.12.017
Peter, K.H., Sommer, U., 2012.
Phytoplankton cell size: intraand
interspecific effects of warming and grazing. PlosONE 7(11), e49632.
https://doi.org/10.1371/journal.pone.0049632
Psomadakis P.N., 2015.
Field identification guide to the living marine
resources of Pakistan. Roma, FAO.
Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F.,
Vucic-Pestic, O., Petchey, O.L., 2012.
Universal temperature and body-mass
scaling of feeding rates. Philos. T. Roy. Soc. B. 367(1605), 2923–2934.
https://doi.org/10.1098/rstb.2012.0242
Reiss, J., Bridle, J.R., Montoya, J.M., Woodward, G., 2009.
Emerging
horizons in biodiversity and ecosystem functioning research. Trends Eco.
Evol. 24(9), 505–514.
https://doi.org/10.1016/j.tree.2009.03.018
Shao, Q., Sun, D., Fang, C., Feng, Y., Wang, C., 2023.
Microbial food webs
share similar biogeographic patterns and driving mechanisms with depths in
oligotrophic tropical western Pacific Ocean. Front. Microbiol. 14,
1098264.
https://doi.org/10.3389/fmicb.2023.1098264
Shi, Y., Wang, J., Zuo, T., Shan, X., Jin, X., Sun, J., Pakhomov, E.A., 2020.
Seasonal changes in zooplankton community structure and distribution
pattern in the Yellow Sea, China. Front. Mar. Sci. 7, 391.
https://doi.org/10.3389/fmars.2020.00391
Sievers, M., Brown, C.J., Tulloch, V.J., Pearson, R.M., Haig, J. A.,
Turschwell, M.P., Connolly, R.M., 2019.
The role of vegetated coastal
wetlands for marine megafauna conservation. Trends Eco. Evol. 34(9),
807–817.
https://doi.org/10.1016/j.tree.2019.04.004
Simpson, S.D., Jennings, S., Johnson, M.P., Blanchard, J.L., Schön, P.J.,
Sims, D.W., Genner, M.J., 2011.
Continental shelf-wide response of a fish
assemblage to rapid warming of the sea. Curr. Biol. 21(18), 1565–1570.
https://doi.org/10.1016/j.cub.2011.08.016
Stawiarski, B., Buitenhuis, E.T., Le Quéré, C., 2016
. The physiological
response of picophytoplankton to temperature and its model representation.
Front. Mar. Sci. 3, 164.
https://doi.org/10.3389/fmars.2016.00164
Tremblay-Boyer, L., Gascuel, D., Watson, R., Christensen, V., Pauly, D., 2021.
Modelling the effects of fishing on the biomass of the world’s oceans
from 1950 to 2006. Mar. Ecol. Prog. Ser. 442, 169–185.
https://doi.org/10.3354/meps09375
Trombetta, T., Vidussi, F., Roques, C., Scotti, M., Mostajir, B., 2020.
Marine microbial food web networks during phytoplankton bloom and non-bloom
periods: Warming favors smaller organism interactions and intensifies trophic
cascade. Front. Microbiol. 11, 502336.
https://doi.org/10.3389/fmicb.2020.502336
Vallivattathillam, P., Lachkar, Z., Lévy, M., 2023.
Shrinking of the
Arabian Sea oxygen minimum zone with climate change projected with a downscaled model. Front. Mar. Sci. 10, 1123739.
https://doi.org/10.3389/fmars.2023.1123739
Vergés, A., Steinberg, P.D., Hay, M.E., Poore, A.G., Campbell, A.H.,
Ballesteros, E., Wilson, S.K., 2014.
The tropicalization of temperate
marine ecosystems: climate-mediated changes in herbivory and community phase
shifts. P. Roy. Soc. B-Biol.