Oceanologia No. 67 (1) / 25


Original research article


Original research article



Vertical distribution of heterotrophic nanoflagellates in the Baltic Proper
Oceanologia, 67 (1)/2025, 67101, 13 pp.
https://doi.org/10.5697/JMZS3739

Kasia Piwosz1,*, Anetta Ameryk1, Klaudia Wdówka1, Marlena Mordec1, Uroosa1,2, Anastasiya Chuvakova1, Sohrab Khan1, Jared Vincent Lacaran1
1Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Kołłątaja 1, 81–332 Gdynia, Poland;
e-mail: kpiwosz@mir.gdynia.pl
2Institute of Oceanology of Polish Academy of Sciences, Sopot, Poland

*corresponding author

Keywords: Heterotrophic nanoflagellates; Microbial food web; Baltic Sea; Marine Stramenopiles (MAST); Cryptophytes CRY-1; Kathablepharidacea; CARD-FISH; Fluorescence in situ hybridisation

Received: 14 August 2024; revised: 29 October 2024; accepted: 6 November 2024.

Highlights

Abstract

Heterotrophic nanoflagellates (HNF) are key players in marine microbial food webs, but their distribution remains poorly understood. We investigated abundance patterns of eleven HNF lineages in the Baltic Proper from May to September 2021 using Catalysed Reporter Deposition-Fluorescence In Situ Hybridisation (CARD-FISH). HNF were most abundant in surface waters, where they reached above 12,000 cells ml−1, in May. Median cell size varied between 3.3–4.1 μm. CRY-1 cryptophytes, Marine Stramenopiles from MAST-2 lineage, and Kathablepharidacea dominated the HNF community in surface and suboxic/sulphidic waters below the halocline. Our results make an important contribution to the understanding of HNF ecology in the Baltic Sea.

  References   ref

Amann, R., Fuchs, B.M., 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6,339–348. https://doi.org/10.1038/nrmicro1888

Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., Stahl, D.A., 1990. Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flowcytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925.https: //doi.org/10.1128/aem.56.6.1919-1925.1990

Ameryk, A., Podgorska, B., Witek, Z., 2005. The dependence between bacterial production and environmental conditions in the Gulf of Gdansk. Oceanologia 47, 27-45.

Anderson, R., Winter, C., Jürgens, K., 2012. Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic–anoxic interfaces. Mar. Ecol. Prog. Ser. 467, 1–14. https://doi.org/10.3354/meps10001

Anderson, R., Wylezich, C., Glaubitz, S., Labrenz, M., Jurgens, K., 2013. Impact of protist grazing on a key bacterial group for biogeochemical cycling in Baltic Sea pelagic oxic/anoxic interfaces. Environ. Microbiol. 15, 1580–1594. https://doi.org/10.1111/1462-2920.12078

Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L., Thingsted, F., 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263.

Azam, F., Malfatti, F., 2007. Microbial structuring of marine ecosystems. Nature Rev. Microbiol. 5, 782–791. https://doi.org/10.1038/nrmicro1747

Behrens, S., Ruhland, C., Inacio, J., Huber, H., Fonseca, A., Spencer-Martins, I., Fuchs, B.M., 2003. In Situ Accessibility of Small-Subunit rRNA of Members of the Domains Bacteria, Archaea and Eucarya to Cy3-Labeled Oligonucleotide Probes. Appl. Environ. Microbiol. 69, 1748–1758. https://doi.org/10.1128/AEM.69.3.1748-1758.2003

Bennke, C.M., Reintjes, G., Schattenhofer, M., Ellrott, A., Wulf, J., Zeder, M., Fuchs, B.M., 2016. Modification of a High-Throughput Automatic Microbial Cell Enumeration System for Shipboard Analyses. Appl. Environ. Microbiol. 82, 3289–3296. https://doi.org/10.1128/aem.03931-15

Bergen, B., Herlemann, D.P., Labrenz, M., Jürgens, K., 2014. Distribution of the verrucomicrobial clade Spartobacteria along a salinity gradient in the Baltic Sea. Environ. Microbiol. Rep. 6, 625–630. https://doi.org/10.1111/1758-2229.12178

Bochdansky, A., Clouse, M., Herndl, G., 2017. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11, 362–373. https://doi.org/10.1038/ismej.2016.113

Bochdansky, A.B., Huang, L., 2010. Re-evaluation of the EUK516 probe for the domain Eukarya results in a suitable probe for the detection of kinetoplastids, an important group of parasitic and free-living flagellates. J. Eukaryot. Microbiol. 57, 229–235. https://doi.org/10.1111/j.1550-7408.2010.00470.x

Coleman, A.W., 1980. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnol. Oceanogr. 25, 948–951. https://doi.org/10.4319/lo.1980.25.5.0948

de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahe, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O., LimaMendez, G., Lukes, J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S.G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M.E., Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P., Karsenti, E., Tara Oceans, C., 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. https://doi.org/10.1126/science.1261605

del Campo, J., Kolisko, M., Boscaro, V., Santoferrara, L.F., Nenarokov, S., Massana, R., Guillou, L., Simpson, A., Berney, C., de Vargas, C., Brown, M.W., Keeling, P.J., Wegener Parfrey, L., 2018. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 16, e2005849. https://doi.org/10.1371/journal.pbio.2005849

Flegontova, O., Flegontov, P., Malviya, S., Audic, S., Wincker, P., de Vargas, C., Bowler, C., Lukeš, J., Horák, A., 2016. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065. https://doi.org/10.1016/j.cub.2016.09.031

Flegontova, O., Flegontov, P., Malviya, S., Poulain, J., de Vargas, C., Bowler, C., Lukeš, J., Horák, A., 2018. Neobodonids are dominant kinetoplastids in the global ocean. Environ. Microbiol. 20, 878–889. https://doi.org/10.1111/1462-2920.14034

Giner, C.R., Forn, I., Romac, S., Logares, R., de Vargas, C., Massana, R., 2016. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl. Environ. Microbiol. 82, 4757–4766. https://doi.org/10.1128/aem.00560-16

Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods for sea water analysis. Verlag Chemie GmbH, 419 pp.

Grujčić, V., Nuy, J.K., Salcher, M.M., Shabarova, T., Kasalický, V., Boenigk, J., Jensen, M., Šimek, K., 2018. Cryptophyta as major bacterivores in freshwater summer plankton. ISME J. 12, 1668–1681. https://doi.org/10.1038/s41396-018-0057-5

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B.,Holzmann, M., Kooistra, W., Lara, E., Le Bescot, N., Logares, R., Mahe, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2013. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-UnitrRNA s equences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160

Herlemann, D.P.R., Labrenz, M., Juergens, K., Bertilsson, S., Waniek, J.J., Andersson, A.F., 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579. https://doi.org/10.1038/ismej.2011.41

Herlemann, D.P.R., Woelk, J., Labrenz, M., Jürgens, K., 2014. Diversity and abundance of “Pelagibacterales” (SAR11) in the Baltic Sea salinity gradient. Syst. Appl. Microbiol. 37, 601–604. https://doi.org/10.1016/j.syapm.2014.09.002

Hu, Y.O.O., Karlson, B., Charvet, S., Andersson, A.F., 2016. Diversity of pico- to mesoplankton along the 2000 km salinity gradient of the Baltic Sea. Front. Microbiol. 7, 679. https://doi.org/10.3389/fmicb.2016.00679

Jürgens, K., Massana, R., 2008. Protistan grazing in marine bacterioplankton. [In:] Kirchman, D.L. (Ed.), Microbial Ecology of the Oceans. Wiley-Blackwell, New Jersey, 383–441.

Katoh, K., Rozewicki, J., Yamada, K.D., 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20, 1160–1166. https://doi.org/10.1093/bib/bbx108

Kavagutti, V.S., Bulzu, P.-A., Chiriac, C.M., Salcher, M.M., Mukherjee, I., Shabarova, T., Grujčić, V., Mehrshad, M., Kasalický, V., Andrei, A.-S., Jezberová, J., Seďa, J., Rychtecký, P., Znachor, P., Šimek, K., Ghai, R., 2023. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome 11, 15. https://doi.org/10.1186/s40168-022-01451-4

Lapoussière, A., Michel, C., Starr, M., Gosselin, M., Poulin, M., 2011. Role of free-living and particle-attached bacteria in the recycling and export of organic material in the Hudson Bay system. J. Marine Syst. 88, 434–445. https://doi.org/10.1016/j.jmarsys.2010.12.003

Lim, E.L., Dennett, M.R., Caron, D.A., 1999. The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol. Oceanogr. 44, 37–51. https://doi.org/10.4319/lo.1999.44.1.0037

Logares, R., Lindstrom, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., Rengefors, K., Tranvik, L., Bertilsson, S., 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948. https://doi.org/10.1038/ismej.2012.168

Lopez-Garcia, P., Rodriguez-Valera, F., Pedros-Alio, C., Moreira, D., 2001. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607. https://doi.org/10.1038/35054537

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., Schleifer, K.H., 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371. https://doi.org/10.1093/nar/gkh293

Mangot, J.F., Lepere, C., Bouvier, C., Debroas, D., Domaizon, I., 2009. Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. Appl. Environ. Microbiol. 75, 6373–6381. https://doi.org/10.1128/AEM.00607-09

Massana, R., Gobet, A., Audic, S., Bass, D., Bittner, L., Boutte, C., Chambouvet, A., Christen, R., Claverie, J.-M., Decelle, J., Dolan, J., Dunthorn, M., Edvardsen, B., Forn, I., Forster, D., Guillou, L., Jaillon, O., Kooistra, W., Logares, R., de Vargas, C., 2015. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035–4049. https://doi.org/10.1111/1462-2920.12955

Massana, R., Guillou, L., Diez, B., Pedros-Alio, C., 2002. Unveiling the Organisms behind Novel Eukaryotic Ribosomal DNA Sequences from the Ocean. Appl. Environ. Microbiol. 68, 4554–4558. https://doi.org/10.1128/AEM.68.9.4554-4558.2002

Massana, R., Guillou, L., Terrado, R., Forn, I., Pedros-Alio, C., 2006a. Growth of uncultured heterotrophic flagellates in unamended seawater incubations. Aquat. Microb. Ecol. 45, 171–180. https://doi.org/10.3354/ame045171

Massana, R., Terrado, R., Forn, I., Lovejoy, C., Pedros-Alio, C., 2006b. Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ. Microbiol. 8, 1515–1522. https://doi.org/10.1111/j.1462-2920.2006.01042.x

Mazur-Marzec, H., Andersson, A.F., Błaszczyk, A., Dąbek, P., Górecka, E., Grabski, M., Jankowska, K., JurczakKurek, A., Kaczorowska, A.K., Kaczorowski, T., Karlson, B., Kataržytė, M., Kobos, J., Kotlarska, E., Krawczyk, B., Łuczkiewicz, A., Piwosz, K., Rybak, B., Rychert, K., Sjöqvist, C., Surosz, W., Szymczycha, B., Toruńska-Sitarz, A., Węgrzyn, G., Witkowski, A., Węgrzyn, A., 2024. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol. Rev. 48(5), fuae024. https://doi.org/10.1093/femsre/fuae024

Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A., Lanfear, R., 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015

Moon-van der Staay, S.Y., De Wachter, R., Vaulot, D., 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607–610. https://doi.org/10.1038/35054541

Mukherjee, I., Grujčić, V., Salcher, M.M., Znachor, P., Seďa, J., Devetter, M., Rychtecký, P., Šimek, K., Shabarova, T., 2024. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. Environ. Microbiome 19, 31. https://doi.org/10.1186/s40793-024-00574-5

Mukherjee, I., Hodoki, Y., Nakano, S.-i., 2015. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol. Ecol. 91, fiv083. https://doi.org/10.1093/femsec/fiv083

Mukherjee, I., Salcher, M.M., Andrei, A.-Ş., Kavagutti, V.S., Shabarova, T., Grujčić, V., Haber, M., Layoun, P., Hodoki, Y., Nakano, S.-i., Šimek, K., Ghai, R., 2020. A freshwater radiation of diplonemids. Environ. Microbiol. 22, 4658–4668. https://doi.org/10.1111/1462-2920.15209

Piwosz, K., 2019. Weekly dynamics of abundance and size structure of specific nanophytoplankton lineages in coastal waters (Baltic Sea). Limnol. Oceanogr. 64, 2172–2186. https://doi.org/10.1002/lno.11177

Piwosz, K., Całkiewicz, J., Gołębiewski, M., Creer, S., 2018. Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (Gulf of Gdańsk, Baltic Sea). Estuar. Coast. Shelf Sci. 207, 242–249. https://doi.org/10.1016/j.ecss.2018.04.013

Piwosz, K., Kownacka, J., Ameryk, A., Zalewski, M., Pernthaler, J., 2016. Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea). J. Phycol. 52, 626–637. https://doi.org/10.1111/jpy.12424

Piwosz, K., Mukherjee, I., Salcher, M.M., Grujčić, V., Šimek, K., 2021. CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology. Front. Microbiol. 12, 640066. https://doi.org/10.3389/fmicb.2021.640066

Piwosz, K., Pernthaler, J., 2010. Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ. Microbiol. 12, 364–377. https://doi.org/10.1111/j.1462-2920.2009.02074.x

Piwosz, K., Pernthaler, J., 2011. Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters. PLoS ONE 6, e24415. https://doi.org/10.1371/journal.pone.0024415

Piwosz, K., Shabarova, T., Pernthaler, J., Posch, T., Šimek, K., Porcal, P., Salcher, M.M., 2020. Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere 5, e00052-00020. https://doi.org/10.1128/msphere.00052-20

Santoferrara, L., Burki, F., Filker, S., Logares, R., Dunthorn, M., McManus, G.B., 2020. Perspectives from Ten Years of Protist Studies by High-Throughput Metabarcoding. J. Eukaryot. Microbiol. 67, 612–622. https://doi.org/10.1111/jeu.12813

Schoenle, A., Hohlfeld, M., Hermanns, K., Mahé, F., de Vargas, C., Nitsche, F., Arndt, H., 2021. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun. Biol. 4, 501. https://doi.org/10.1038/s42003-021-02012-5

Steenwyk, J.L., Buida, T.J., 3rd, Li, Y., Shen, X.-X., Rokas, A., 2020. it ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007. https://doi.org/10.1371/journal.pbio.3001007

Strom, L.S., Morello, T.A., Kelley, J.B., 1998. Protozoan size influences algal pigment degradation during grazing. Mar. Ecol. Prog. Ser. 164, 189–197.

Tedersoo, L., Hosseyni Moghaddam, M.S., Mikryukov, V., Hakimzadeh, A., Bahram, M., Nilsson, R.H., Yatsiuk, I., Geisen, S., Schwelm, A., Piwosz, K., Prous, M., Sildever, S., Chmolowska, D., Rueckert, S., Skaloud, P., Laas, P., Tines, M., Jung, J.-H., Choi, J.H., Alkahtani, S., Anslan, S., 2024. EUKARYOME: the rRNA gene reference database for identification of all eukaryotes. Database 2024, baae043. https://doi.org/10.1093/database/baae043

Telesh, I., Schubert, H., Skarlato, S., 2013. Life in the salinity gradient: Discovering mechanisms behind a new biodiversity pattern. Estuar. Coast. Shelf Sci. 135, 317–327. https://doi.org/10.1016/j.ecss.2013.10.013

Telesh, I.V., Schubert, H., Skarlato, S.O., 2011. Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Mar. Ecol. Prog. Ser. 421, 1–11. https://doi.org/10.3354/meps08928

Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., et al., A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463. https://doi.org/10.1038/nature24621

Vaulot, D., Geisen, S., Mahé, F., Bass, D., 2022. pr2-primers: An 18S rRNA primer database for protists. Mol. Ecol. Resour. 22, 168–179. https://doi.org/10.1111/1755-0998.13465

Villarino, E., Watson, J.R., Jönsson, B., Gasol, J.M., Salazar, G., Acinas, S.G., Estrada, M., Massana, R., Logares, R., Giner, C.R., Pernice, M.C., Olivar, M.P., Citores, L., Corell, J., Rodrı́guez-Ezpeleta, N., Acuña, J.L., Molina-Ramı́rez, A., González-Gordillo, J.I., Cózar, A., Martı́, E., Cuesta, J.A., Agustı́, S., Fraile-Nuez, E., Duarte, C.M., Irigoien, X., Chust, G., 2018. Large-scale ocean connectivity and planktonic body size. Nat. Commun. 9, 142. https://doi.org/10.1038/s41467-017-02535-8

Weber, F., Anderson, R., Foissner, W., Mylnikov, A.P., Jürgens, K., 2014. Morphological and molecular approaches reveal highly stratified protist communities along Baltic Sea pelagic redox gradients. Aquat. Microb. Ecol. 73, 1–16. https://doi.org/10.3354/ame01702

Witek, Z., Ochocki, S., Maciejowska, M., Pastuszak, M., Nakonieczny, J., Podgorska, B., Kownacka, J.M., Mackiewicz, T., Wrzesinska-Kwiecien, M., 1997. Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169–186. https://doi.org/10.3354/meps148169

Worden, A.Z., Follows, M.J., Giovannoni, S.J., Wilken, S., Zimmerman, A.E., Keeling, P.J., 2015. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science 347, 1257594. https://doi.org/10.1126/science.1257594

Wylezich, C., Herlemann, D.P.R., Jürgens, K., 2018. Improved 18S rDNA amplification protocol for assessing protist diversity in oxygen-deficient marine systems. Aquat. Microb. Ecol. 81, 83–94. https://doi.org/10.3354/ame01864

Wylezich, C., Juergens, K., 2011. Protist diversity in suboxic and sulfidic waters of the Black Sea. Environ. Microbiol. 13, 2939–2956. https://doi.org/10.1111/j.1462-2920.2011.02569.x

Zillén, L., Conley, D.J., Andrén, T., Andrén, E., Björck, S., 2008. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Sci. Rev. 91, 77–92. https://doi.org/10.1016/j.earscirev.2008.10.001

full, complete article - PDF


Impact of Indian Ocean Dipole on the mesoscale eddies and their energy in the Bay of Bengal
Oceanologia, 67 (1)/2025, 67102, 15 pp.
https://doi.org/10.5697/LOZC6742 https://doi.org/10.5697/ygvi7171

Navin Chandra1,2, Vimlesh Pant1,*
1Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India;
e-mail: vimlesh@cas.iitd.ac.in (V. Pant)
2National Centre for Medium Range Weather Forecasting, Ministry of Earth Sciences, Noida, India
*corresponding author

Keywords: Mesoscale eddies; Indian Ocean Dipole; Bay of Bengal; Numerical Ocean model; Eddy kinetic energy

Received: 19 January 2024; revised: 2 November 2024; accepted: 6 November 2024.

Highlights

Abstract

Oceanic mesoscale eddies and their physical and dynamical characteristics are studied using a high-resolution numerical model in the Bay of Bengal (BoB), a semi-enclosed bay based in the northeast Indian Ocean (IO). The formation, duration, and kinetic energy of these eddies are primarily influenced by the intensity of surface currents, upper-ocean stratification, and regional bathymetry. The Indian Ocean Dipole (IOD) is a dominant mode of interannual variability in the IO, which influences ocean currents in the BoB apart from the well-known dipole observed in sea surface temperature between eastern and western IO. The high-resolution numerical experiments with positive and negative phases of IOD atmospheric forcing reveal the influence of anomalous circulation prevailing in the negative IOD (nIOD) and positive IOD (pIOD) on mesoscale eddies and their kinetic energy in the BoB. A notable disparity in the eddies’ characteristics was observed in both nIOD and pIOD and compared to normal years. In pIOD or nIOD, the number of eddies enhanced but their average lifespan reduced in the BoB. The increase in eddies was higher (38%) in nIOD than pIOD (11.2%) when compared to normal (non-IOD) years. The contribution of eddies to the total eddy kinetic energy (EKE) of the BoB increased from about 10% in normal years to about 25% in either of the IOD phases. The largest influence of IOD is seen at the thermocline depth. Within the BoB, the Andaman Sea region experienced the largest variations in eddies during IOD years.

  References   ref

Anila, S., Gnanaseelan, C., 2023. Coupled feedback between the tropics and subtropics of the Indian Ocean with emphasis on the coupled interaction between IOD and SIOD. Glob. Planet. Change 223, 104091. https://doi.org/10.1016/j.gloplacha.2023.104091

Aparna, S.G., McCreary, J.P., Shankar, D., Vinayachandran, P.N., 2012. Signatures of Indian Ocean Dipole and El Niño–Southern Oscillation events in sea level variations in the Bay of Bengal. J. Geophys. Res. Oceans 117, 2012JC008055. https://doi.org/10.1029/2012JC008055

Arakawa, A., Lamb, V.R., 1977. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, [in:] Methods in Computational Physics: Advances in Research and Applications. Elsevier, 173–265. https://doi.org/10.1016/B978-0-12-460817-7.50009-4

Ashok, K., Guan, Z., Saji, N.H., Yamagata, T., 2004. Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. J. Clim. 17, 3141–3155. https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2

Behera, S.K., Krishnan, R., Yamagata, T., 1999. Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett. 26, 3001–3004. https://doi.org/10.1029/1999GL010434

Behera, S.K., Ratnam, J.V., 2018. Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD. Sci. Rep. 8, 123. https://doi.org/10.1038/s41598-017-18396-6

Carton, J.A., Chepurin, G.A., Chen, L., 2018. SODA3: A New Ocean Climate Reanalysis. J. Clim. 31, 6967–6983. https://doi.org/10.1175/JCLI-D-18-0149.1

Chaigneau, A., Le Texier, M., Eldin, G., Grados, C., Pizarro, O., 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res. Oceans 116, 2011JC007134. https://doi.org/10.1029/2011JC007134

Chanda, A., Das, S., Mukhopadhyay, A., Ghosh, A., Akhand, A., Ghosh, P., Ghosh, T., Mitra, D., Hazra, S., 2018. Sea surface temperature and rainfall anomaly over the Bay of Bengal during the El Niño-Southern Oscillation and the extreme Indian Ocean Dipole events between 2002 and 2016. Remote Sens. Appl. Soc. Environ. 12, 10–22. https://doi.org/10.1016/j.rsase.2018.08.001

Chassignet, E.P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D.B., Ma, C.-C., Mehra, A., Paiva, A.M., Sirkes, Z., 2000. DAMÉE-NAB: the base experiments. Dynam. Atmos. Oceans 32, 155–183. https://doi.org/10.1016/S0377-0265(00)00046-4

Chatterjee, A., Shankar, D., Shenoi, S.S.C., Reddy, G.V., Michael, G.S., Ravichandran, M., Gopalkrishna, V.V., Rama Rao, E.P., Udaya Bhaskar, T.V.S., Sanjeevan, V.N., 2012. A new atlas of temperature and salinity for the North Indian Ocean. J. Earth Syst. Sci. 121, 559–593. https://doi.org/10.1007/s12040-012-0191-9

Chelton, D.B., Schlax, M.G., Samelson, R.M., 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167–216. https://doi.org/10.1016/j.pocean.2011.01.002

Chelton, D.B., Schlax, M.G., Samelson, R.M., De Szoeke, R.A., 2007. Global observations of large oceanic eddies. Geophys. Res. Lett. 34, 2007GL030812. https://doi.org/10.1029/2007GL030812

Chen, G., Han, G., 2019. Contrasting Short? Lived With Long? Lived Mesoscale Eddies in the Global Ocean. J. Geophys. Res. Oceans 124, 3149–3167. https://doi.org/10.1029/2019JC014983

Chen, G., Li, Y., Xie, Q., Wang, D., 2018. Origins of Eddy Kinetic Energy in the Bay of Bengal. J. Geophys. Res. Oceans 123, 2097–2115. https://doi.org/10.1002/2017JC013455

Chen, X., Qiu, B., Chen, S., Qi, Y., Du, Y., 2015. Seasonal eddy kinetic energy modulations along the North Equatorial Countercurrent in the western Pacific. J. Geophys. Res. Oceans 120, 6351–6362. https://doi.org/10.1002/2015JC011054

Copernicus Climate Change Service, 2023. Complete ERA5 global atmospheric reanalyis. https://doi.org/10.24381/CDS.143582CF

Dai, A., 2017. Dai and Trenberth Global River Flow and Continental Discharge Dataset. https://doi.org/10.5065/D6V69H1T

Dandapat, S., Chakraborty, A., Kuttippurath, J., 2018. Interannual variability and characteristics of the East India Coastal Current associated with Indian Ocean Dipole events using a high resolution regional ocean model. Ocean Dynam. 68, 1321–1334. https://doi.org/10.1007/s10236-018-1201-5

Eigenheer, A., Quadfasel, D., 2000. Seasonal variability of the Bay of Bengal circulation inferred from TOPEX/Poseidon altimetry. J. Geophys. Res. Oceans 105, 3243–3252. https://doi.org/10.1029/1999JC900291

Epps, B., 2017. Review of Vortex Identification Methods. 55th AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2017-0989

Guo, H., Zhan, C., Ning, L., Li, Z., Hu, S., 2022. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the runoff. Theor. Appl. Climatol. 149, 1451–1470. https://doi.org/10.1007/s00704-022-04118-0

Haidvogel, D.B., Arango, H., Budgell, W.P., Cornuelle, B.D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W.R., Hermann, A.J., Lanerolle, L., Levin, J., McWilliams, J.C., Miller, A.J., Moore, A.M., Powell, T.M., Shchepetkin, A.F., Sherwood, C.R., Signell, R.P., Warner, J.C., Wilkin, J., 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. J. Comput. Phys. 227, 3595–3624. https://doi.org/10.1016/j.jcp.2007.06.016

Haidvogel, D.B., Arango, H.G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P., Shchepetkin, A.F., 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynam. Atmos. Oceans 32, 239–281. https://doi.org/10.1016/S0377-0265(00)00049-X

Halo, I., 2012. The Mozambique Channel eddies: Characteristics and mechanisms of formation. Univ. Cape Town.

Halo, I., Backeberg, B., Penven, P., Ansorge, I., Reason, C., Ullgren, J.E., 2014. Eddy properties in the Mozambique Channel: A comparison between observations and two numerical ocean circulation models. Deep Sea Res. Pt. II 100, 38–53. https://doi.org/10.1016/j.dsr2.2013.10.015

Hormann, V., Centurioni, L.R., Gordon, A.L., 2019. Freshwater export pathways from the Bay of Bengal. Deep Sea Res. Pt. II 168, 104645. https://doi.org/10.1016/j.dsr2.2019.104645

Isern-Fontanet, J., Garcı́a-Ladona, E., Font, J., 2006. Vortices of the Mediterranean Sea: An Altimetric Perspective. J. Phys. Oceanogr. 36, 87–103. https://doi.org/10.1175/JPO2826.1

Jensen, T., Wijesekera, H., Nyadjro, E., Thoppil, P., Shriver, J., Sandeep, K.K., Pant, V., 2016. Modeling Salinity Exchanges Between the Equatorial Indian Ocean and the Bay of Bengal. Oceanography 29, 92–101. https://doi.org/10.5670/oceanog.2016.42

Ji, J., Ma, J., Dong, C., Chiang, J., Chen, D., 2020. Regional Dependence of Atmospheric Responses to Oceanic Eddies in the North Pacific Ocean. Remote Sens. 12, 1161. https://doi.org/10.3390/rs12071161

Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363–403. https://doi.org/10.1029/94RG01872

Lian, Z., Sun, B., Wei, Z., Wang, Y., Wang, X., 2019. Comparison of Eight Detection Algorithms for the Quantification and Characterization of Mesoscale Eddies in the South China Sea. J. Atmospheric Ocean. Technol. 36, 1361–1380. https://doi.org/10.1175/JTECH-D-18-0201.1

Lin, P., Liu, H., Ma, J., Li, Y., 2019. Ocean mesoscale structureinduced air–sea interaction in a high–resolution coupled model. Atmospheric Ocean Sci. Lett. 12, 98–106. https://doi.org/10.1080/16742834.2019.1569454

Marchesiello, P., McWilliams, J.C., Shchepetkin, A., 2003. Equilibrium Structure and Dynamics of the California Current System. J. Phys. Oceanogr. 33, 753–783. https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2

Nigam, T., Pant, V., Prakash, K.R., 2018. Impact of Indian ocean dipole on the coastal upwelling features off the southwest coast of India. Ocean Dynam. 68, 663–676. https://doi.org/10.1007/s10236-018-1152-x

Okubo, A., 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abstr. 17, 445–454. https://doi.org/10.1016/0011-7471(70)90059-8

Penven, P., Echevin, V., Pasapera, J., Colas, F., Tam, J., 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res. Oceans 110, 2005JC002945. https://doi.org/10.1029/2005JC002945

Rao, R.R., Girish Kumar, M.S., Ravichandran, M., Rao, A.R., Gopalakrishna, V.V., Thadathil, P., 2010. Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea Res. Part Oceanogr. Res. Pap. 57, 1–13. https://doi.org/10.1016/j.dsr.2009.10.008

Sadhukhan, B., Chakraborty, A., 2023. Role of local and remote forcing on the decadal variability of Mixed Layer Depth in the Bay of Bengal. Dynam. Atmospheres Oceans 102, 101349. https://doi.org/10.1016/j.dynatmoce.2022.101349

Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363. https://doi.org/10.1038/43854

Sandeep, K.K., Pant, V., 2018. Evaluation of Interannual Simulations and Indian Ocean Dipole Events During 2000–2014 from a Basin Scale General Circulation Model. Pure Appl. Geophys. 175, 4579–4603. https://doi.org/10.1007/s00024-018-1915-9

Shankar, D., Shetye, S.R., 1999. Are interdecadal sea level changes along the Indian coast influenced by variability of monsoon rainfall? J. Geophys. Res. Oceans 104, 26031–26042. https://doi.org/10.1029/1999JC900218

Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52, 63–120. https://doi.org/10.1016/S0079-6611(02)00024-1

Shchepetkin, A.F., McWilliams, J.C., 2005. The regional oceanic modeling system (ROMS): a split–explicit, free– surface, topography–following-coordinate oceanic model. Ocean Model. 9, 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002

Shchepetkin, A.F., McWilliams, J.C., 2003. A method for computing horizontal pressure–gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. Oceans 108, 2001JC001047. https://doi.org/10.1029/2001JC001047

Shchepetkin, A.F., McWilliams, J.C., 1998. Quasi-Monotone Advection Schemes Based on Explicit Locally Adaptive Dissipation. Mon. Weather Rev. 126, 1541–1580. https://doi.org/10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2

Sherin, C.K., Sarma, V.V.S.S., Rao, G.D., Viswanadham, R., Omand, M.M., Murty, V.S.N., 2018. New to total primary production ratio (f-ratio) in the Bay of Bengal using isotopic composition of suspended particulate organic carbon and nitrogen. Deep Sea Res. Oceanogr. Res. Pap. 139, 43–54. https://doi.org/10.1016/j.dsr.2018.06.002

Shetye, S.R., Gouveia, A.D., Shenoi, S.S.C., Sundar, D., Michael, G.S., Nampoothiri, G., 1993. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal. J. Geophys. Res. Oceans 98, 945–954. https://doi.org/10.1029/92JC02070

Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

Song, Y., Haidvogel, D., 1994. A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following Coordinate System. J. Comput. Phys. 115, 228–244. https://doi.org/10.1006/jcph.1994.1189

Thompson, B., Gnanaseelan, C., Salvekar, P.S., 2006. Variability in the Indian Ocean circulation and salinity and its impact on SST anomalies during dipole events. J. Mar. Res. 64, 853–880. https://doi.org/10.1357/002224006779698350

Varna, M., Jithin, A.K., Francis, P.A., 2023. Characteristics and dynamics of mesoscale eddies in the eastern Arabian Sea. Deep Sea Res. Pt. II 207, 105218. https://doi.org/10.1016/j.dsr2.2022.105218

Weiss, J., 1991. The dynamics of enstrophy transfer in twodimensional hydrodynamics? Phys. Nonlinear Phenom. 48, 273–294. https://doi.org/10.1016/0167-2789(91)90088-Q

Wunsch, C., 2020. Is the Ocean Speeding Up? Ocean Surface Energy Trends. J. Phys. Oceanogr. 50, 3205–3217. https://doi.org/10.1175/JPO-D-20-0082.1

Yadidya, B., Rao, A.D., 2022. Interannual variability of internal tides in the Andaman Sea: an effect of Indian Ocean Dipole. Sci. Rep. 12, 11104. https://doi.org/10.1038/s41598-022-15301-8

Yu, L., O’Brien, J.J., Yang, J., 1991. On the remote forcing of the circulation in the Bay of Bengal. J. Geophys. Res. Oceans 96, 20449–20454. https://doi.org/10.1029/91JC02424

Zeytounian, R., 1990. The Boussinesq Approximation, in: Asymptotic Modeling of Atmospheric Flows. Springer, Berlin, Heidelberg, 142–176. https://doi.org/10.1007/978-3-642-73800-5_8

Zhao, W.-W., Wang, J.-H., Wan, D.-C., 2020. Vortex identification methods in marine hydrodynamics. J. Hydrodynamics 32, 286–295. https://doi.org/10.1007/s42241-020-0022-4

full, complete article - PDF


Attribution of alterations in coastal processes in the southern and eastern Baltic Sea to climate change-driven modifications of coastal drivers
Oceanologia, 67 (1)/2025, 67103, 38 pp.
https://doi.org/10.5697/LXTZ5389

Maris Eelsalu 1,*, Tarmo Soomere1,2, Kevin Parnell1, Maija Viška3
1Department of Cybernetics, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia;
e-mail: maris.eelsalu@taltech.ee (M. Eelsalu)
2Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
3Latvian Institute of Aquatic Ecology, Riga, Latvia
*corresponding author

Keywords: Baltic Sea; Climate change; Coastal drivers; Coastal changes

Received: 18 March 2024; revised: 8 August 2024; accepted: 19 November 2024.

Highlights

Abstract

The main drivers of coastal processes, such as wave activity, variations in the water level, ice cover, and wind drift, may act differently in different segments of marginal seas with complex shapes. We analyse how the relative role of these drivers on the evolution of sedimentary shores changes along the southern and eastern Baltic Sea. While changes in the average water level have a strong impact along the southern shores of the Baltic Sea, rapid increases in the water level extremes affect most of the eastern subbasins of the Gulf of Finland and Gulf of Riga. The presence of a two-peak structure of predominant winds creates a fragile balance of alongshore sediment transport on the northeastern part of the Baltic proper and the Gulf of Riga. This balance could be changed by a rotation of predominant wave directions by a few degrees. Severe waves usually occur on the southern shores of the sea during water levels that are close to the long-term mean, while synchronisation of strong waves and high-water level is common on the eastern shore. The presence of sea ice is uncommon and insignificantly damps coastal processes in the southern part of the sea but the frequent presence of ice cover and freezing temperatures during the windy season stabilise the beaches of the north-eastern shores. Climate driven changes in ice cover duration may lead to erosion of many beaches in this part of the sea. The core message is that the impact of a single manifestation of climate change may vary greatly in different parts of the Baltic Sea and the reaction of coastal processes to this impact is substantially site-specific.

  References   ref

Ågren, J., Svensson, R., 2007. Postglacial land uplift model and system definition for the new swedish height system RH 2000. Reports in Geodesy and Geographical Information Systems, Gävle.

Andrée, E., Su, J., Dahl Larsen, M.A., Drews, M., Stendel, M., Skovgaard Madsen, K., 2023. The role of preconditioning for extreme storm surges in the western Baltic Sea. Natural Hazards Earth Syst. Sci. 23, 1817–1834. https://doi.org/10.5194/nhess-23-1817-2023

Angnuureng, D.B., Almar, R., Senechal, N., Castelle, B., Addo, K.A., Marieu, V., Ranasinghe, R. 2017. Shoreline resilience to individual storms and storm clusters on a mesomacrotidal barred beach. Geomorphology 290, 265– 276. https://doi.org/10.1016/j.geomorph.2017.04.007

Averkiev, A.S., Klevannyy, K.A., 2010. A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland. Cont. Shelf Res. 30, 707–714. https://doi.org/10.1016/j.csr.2009.10.010

Babakov, A.N., Chubarenko, B.V., 2019. The structure of the net alongshore sediment transport in the eastern Gulf of Gdansk. Water Res. 46 (4), 515–529. https://doi.org/10.1134/S0097807819040031

BACC, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. The BACC II Author Team. Regional Climate Studies. Springer, Cham, Heidelberg, New York, Dordrecht, London. https://doi.org/10.1007/978-3-319-16006-1

Badur, J., Cieślikiewicz, W., 2018. Spatial variability of longterm trends in significant wave height over the Gulf of Gdańsk using System Identification techniques. Oceanol. Hydrobiol. Studies 47 (2), 190–201. https://doi.org/10.1515/ohs-2018-0018

Badyukova, E.N., Zindarev, L.A., Lukyanova, S.A., Solovieva, G.D., 2018. Structure of the south-western part of the Curonian Spit. Arch. Hydro-Eng. Environ. Mech. 65 (2), 109–122. https://doi.org/10.1515/heem-2018-0008

Bagdanavičiūtė, I., Kelpšaitė, L., Daunys, D., 2012. Assessment of shoreline changes along the Lithuanian Baltic Sea coast during the period 1947–2010. Baltica 25 (2),171–184. https://doi.org/10.5200/baltica.2012.25.17

Bagdanavičiūtė, I., Kelpšaitė, L., Soomere, T., 2015. Multicriteria evaluation approach to coastal vulnerability index development in micro-tidal low-lying areas. Ocean Coast Manage. 104, 124–135. https://doi.org/10.1016/j.ocecoaman.2014.12.011

Baldock, T.E., Birrien, F., Atkinson, A., Shimamoto, T., Callaghan, D.P., Nielsen, P., 2017. Morphological hysteresis in the evolution of beach profiles under sequences of wave climates – Part 1; observations. Coast. Eng. 128, 92–105. https://doi.org/10.1016/j.coastaleng.2017.08.005

Barnes, P.W., Kempema, E.W., Reimnitz, E., McCormick, M., 1994. The influence of ice on southern Lake-Michigan coastal erosion. Great Lakes Res. 20 (1), 179–195. https://doi.org/10.1016/S0380-1330(94)71139

Barnes, P.W., Kempema, E.W., Reimnitz, E., McCormick, M., Weber, W.S., Hayden, E.C., 1993. Beach profile modification and sediment transport by ice – An overlooked process on Lake-Michigan. J. Coast. Res. 9 (1), 65–86.

Barnhart, K.R., Overeem, I., Anderson, R.S., 2014. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8 (5), 1777–1799. https://doi.org/10.5194/tc-8-1777-2014

Bärring, L., von Storch, H., 2004. Scandinavian storminess since about 1800. Geophys. Res. Lett. 31 (20), L20202. https://doi.org/10.1029/2004GL020441

Bidorn, B., Sok, K., Bidorn, K., Burnett, W., 2021. An analysis of the factors responsible for the shoreline retreat of the Chao Phraya Delta (Thailand). Sci. Total Environ. 769, 145253. https://doi.org/10.1016/j.scitotenv.2021.145253

Bierstedt, S.E., Hünicke, B., Zorita, E., 2015. Variability of wind direction statistics of mean and extreme wind events over the Baltic Sea region. Tellus A 67, 29073. https://doi.org/10.3402/tellusa.v67.29073

Bird, E.C.F., 2008. Coastal Geomorphology: An Introduction. 2nd ed., Wiley and Sons, Chichester, 436 pp.

Birkemeier, W.A., Nicholls, R.J., Lee, G.H., 1999. Storms, storm groups and nearshore morphologic change, [in:] Kraus, N.C., McDougal, W.G. (eds.), 4th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, Hauppauge, NY, June 21–23, 1999. Coastal Sediments ’99, 1–3, 1109–1122.

Björkqvist, J.V., Lukas, I., Alari, V., van Vledder, G.P., Hulst, S., Pettersson, H., Behrens, A., Männik, A., 2018. Comparing a 41-year model hindcast with decades of wave measurements from the Baltic Sea. Ocean Eng. 152, 57–71. https://doi.org/10.1016/j.oceaneng.2018.01.048

Blum, M.D., Roberts, H.H., 2009. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea level rise. Nat. Geosci. 2 (7), 488–491. https://doi.org/10.1038/ngeo553

Bobykina, V.P. Stont, Zh.I., 2015. Winter storm activity in 2011–2012 and its consequences for the southeastern Baltic coast. Water. Resour. 42 (3), 371–377. https://doi.org/10.1134/S0097807815030021

Bobykina, V.P., Stont, Zh.I., Kileso, A.W., 2021. Deformations of the sea shore of the Curonian Spit (southeastern Baltic) under the influence of storms autumn-winter season 2018–2019. Vestnik of IKBFU. Series: Natural and Medical Sciences 2 (C), 73–83 (in Russian).

Boldyrev, V.L., Teplyakov, G.N., 2003. Formation, condition and problems of preservation of landscapes of the Curonian spit, [in:] Problems of studying and protection of natural and cultural heritage, Moscow, 20–40 (in Russian).

Boldyrev, V.L., Lashenkov, V.M., Ryabkova, O.I., 1990. Storm deformation of coasts of the Kaliningrad region, Baltic Sea, [in:] Issues of Coastal Dynamics and Paleogeography of the Baltic Sea Coastal Zone, 1, 97–129 (in Russian).

Boniecka, H., Kubacka, M., 2024. Artificial nourishment schemes along the Polish coast and lagoon shores between 1980 and 2020, with a particular focus on the Hel Peninsula. Water 16(7), 1005. https://doi.org/10.3390/w16071005

Brenninkmeyer, B.M., 1982. Cut and fill. In: Beaches and Coastal Geology. [in:] Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387-30843-1

Broman, B., Hammarklint, T., Rannat, K., Soomere, T., Valdmann, A., 2006. Trends and extremes of wave fields in the north-eastern part of the Baltic Proper. Oceanologia, 48 (S), 165–184.

Cai, F., Su, X., Liu, J., Li, B., Lei, G., 2009. Coastal erosion in China under the condition of global climate change and measures for its prevention. Prog. Nat. Sci. 19 (4), 415–426. https://doi.org/10.1016/j.pnsc.2008.05.034

Čepienė, E., Dailidytė, L., Stonevičius, E., Dailidienė, I. 2022. Sea level rise impact on compound coastal river flood risk in Klaipeda City (Baltic coast, Lithuania). Water 14 (3), 414. https://doi.org/10.3390/w14030414

Coco, G., Senechal, N., Rejas, A., Bryan, K.R., Capo, S., Parisot, J.P., Brown, J.A., MacMahan, J.H.M., 2014. Beach response to a sequence of extreme storms. Geomorphology 204, 493–501. https://doi.org/10.1016/j.geomorph.2013.08.028

Chechko, V.A., Chubarenko, B.V., Boldyrev, V.L., Bobykina, V.P., Kurchenko, V.Y., Domnin, D.A., 2008. Dynamics of the marine coastal zone of the sea near the entrance moles of the Kaliningrad seaway channel. Water Res. 35 (6), 652–661. https://doi.org/10.1134/S0097807808060043

Cieślikiewicz, W., Paplińska-Swerpel B., 2008. A 44-year hindcast of wind wave fields over the Baltic Sea. Coast.Eng. 55, 894–905. https://doi.org/10.1016/j.coastaleng.2008.02.017

Dailidienė, I., Davulienė, L., Tilickis, B., Stankevičius, A., Myrberg, K., 2006. Sea level variability at the Lithuanian coast of the Baltic Sea. Boreal Environ. Res. 11, 109 –121.

Davis, R.A., 2011. Sea-level Change in the Gulf of Mexico. Texas A&M University Press, College Station, TX, USA. Dean, R., Dalrymple, R., 2002. Coastal Processes with Engineering Applications. Cambridge University Press, Cambridge, 475 pp.

Deng, J., Harff, J., Zhang, W., Schneider, R., Dudzińska-Nowak, J., Giza, A., Terefenko, P., Furmańczyk, K., 2017. The Dynamic Equilibrium Shore Model for the Reconstruction and Future Projection of Coastal Morphodynamics, [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East. Coast. Res. Library, 19, Springer, Cham, 87–106. https://doi.org/10.1007/978-3-319-49894-2_6

Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015. Effects of storm clustering on beach/dune evolution. Mar. Geol. 370, 63–75. https://doi.org/10.1016/j.margeo.2015.10.010

Divinsky, B.V., Ryabchuk, D.V., Kosyan, R.D., Sergeev, A.Y., 2021. Development of the sandy coast: Hydrodynamic and morphodynamic conditions (on the example of the Eastern Gulf of Finland). Oceanologia, 63 (2), 214–226. https://doi.org/10.1016/j.oceano.2020.12.002

Dluzewski, M., Dluzewska, J.R., Hesp, P.A., Tomczak, J.O., Dubis, L., 2023. Impact of coastline orientation on the dynamics of foredune growth (Łeba Barrier, south Baltic Sea coast, Poland). Miscellanea Geographica 27 (4), 147–156. https://doi.org/10.2478/mgrsd-2023-0020

Dodge, S.E., Zoet, L.K., Rawling, J.E., Theuerkauf, E.J., Hansen, D.D., 2022. Transport properties of fast ice within the nearshore. Coast. Eng. 177, 104176. https://doi.org/10.1016/j.coastaleng.2022.104176

Dreier, N., Männikus, R., Fröhle, P., 2020. Long-term changes of waves at the German Baltic Sea soast: Are there trends from the past? J. Coast. Res. 95(Sp. Iss.), 1416 –1421. https://doi.org/10.2112/SI95-274.1

Dudzińska-Nowak, J., 2017. Morphodynamic processes of the Swina Gate coastal zone development (southern Baltic Sea), [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East. Coastal Res. Library 19, Springer, Cham. https://doi.org/10.1007/978-3-319-49894-2_11

Eberhards, G. and Lapinskis, J., 2008. Processes on the Latvian coast of the Baltic Sea: atlas. Riga. University of Latvia, Riga.

Eberhards, G., 2003. The sea coast of Latvia. University of Latvia, Riga, 294 pp. (in Latvian).

Eberhards, G., Lapinskis, J., Saltupe, B., 2006. Hurricane Erwin 2005 coastal erosion in Latvia. Baltica 19 (1), 10–19.

Eelsalu, M., Parnell, K.E., Soomere, T., 2022. Sandy beach evolution in the low-energy microtidal Baltic Sea: attribution of changes to hydrometeorological forcing. Geomorphology 414, 108383. https://doi.org/10.1016/j.geomorph.2022.108383

Eelsalu, M., Soomere, T., Jankowski, M.Z., 2024. Climate change-driven alongshore variations of directional forcing of sediment transport on the eastern Baltic Sea coast. J. Coast. Res. 113 (Sp. Iss.), 256–260. https://doi.org/10.2112/JCR-SI113-051.1

Eelsalu, M., Soomere, T., Julge, K., 2015. Quantification of changes in the beach volume by the application of an inverse of the Bruun Rule and laser scanning technology. Proc. Estonian Acad. Sci. 64 (3), 240–248. https://doi.org/10.3176/proc.2015.3.06

Eelsalu, M., Soomere, T., Pindsoo, K., Lagemaa, P., 2014. Ensemble approach for projections of return periods of extreme water levels in Estonian waters. Cont. Shelf Res. 91, 201–210. https://doi.org/10.1016/j.csr.2014.09.012

Eichentopf, S., Alsina, J.M., Christou, M., Kuriyama, Y., Karunarathna, H., 2020. Storm sequencing and beach profile variability at Hasaki, Japan. Mar. Geol. 424, 106153. https://doi.org/10.1016/j.margeo.2020.106153

Erikson, L., Morim, J., Hemer, M., Young, I., Wang, X.L., Mentaschi, L., Mori, N., Semedo, A., Stopa, J., Grigorieva, V., Gulev, S., Aarnes, O., Bidlot, J.R., Breivik, O., Bricheno, L., Shimura, T., Menendez, M., Markina, M., Sharmar, V., Trenham, C., Wolf, J., Appendini, C., Caires, S., Groll, N., Webb, A., 2022. Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multiproduct ensemble. Commun. Earth Environ. 3(1), 320. https://doi.org/10.1038/s43247-022-00654-9

Feng, J., Li, D., Dang, W., Zhao, L., 2023. Changes in storm surges based on a bias-adjusted reconstruction dataset from 1900 to 2010. J. Hydrol. Pt. A, 617, 128759. https://doi.org/10.1016/j.jhydrol.2022.128759

Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., Xia, L., 2015. Storminess over the North Atlantic and northwestern Europe – a review. Q. J. R. Meteorol. Soc. B 141 (687), 350–382. https://doi.org/10.1002/qj.2364

Furmańczyk, K., 2013. Poland, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 81–95.

Gao, J.J., Kennedy, D.M., Konlechner, T.M., 2020. Coastal dune mobility over the past century: A global review. Prog. Phys. Geog. Environ. 44 (6), 814–836. https://doi.org/10.1177/0309133320919612

Garcı́a-Romero, L., Hesp, P.A., Peña-Alonso, C., da Silva, G.M., Hernández-Calvento, L., 2019. Climate as a control on foredune mode in Southern Australia. Total Environ. 694, 133768. https://doi.org/10.1016/j.scitotenv.2019.133768

Girjatowicz, J.P., 2011. Ice conditions on the southern Baltic Sea coast. J. Cold Reg. Eng. 25 (1), 1–15. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000020

Girjatowicz, J.P., Łabuz, T.A., 2020. Forms of piled ice at the southern coastal of the Baltic Sea. Estuar. Coast. Shelf Sci. 239, 106746. https://doi.org/10.1016/j.ecss.2020.106746

Girjatowicz, J.P., Świątek, M., 2020. Relationships between the Baltic Sea ice extent and ice parameters in the sheltered basins of the southern Baltic coast. Oceanol. Hydrobiol. Stud. 49 (3), 291–303. https://doi.org/10.1515/ohs-2020-0026

Girjatowicz, J.P., Światek, M., 2021. Relationship between air temperature change and southern Baltic coastal lagoons ice conditions. Atmosphere 12 (8), 931. https://doi.org/10.3390/atmos12080931

Grinsted, A., 2015. Projected Change – Sea Level, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, 253–263. https://doi.org/10.1007/978-3-319-16006-1_14

Gudelis, V., 1967. The morphogenetic types of Baltic Sea coasts. Baltica 3, 123–145 (In Russian).

Gudelis, V., 1998. Offshore and nearshore of Lithuania. Vilnius, 444 pp. (in Lithuanian).

Haapala, J.J., Ronkainen, I., Schmelzer, N., Sztobryn, M., 2015. Recent change–sea ice, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies. Springer, Cham, 145–153. https://doi.org/10.1007/978-3-319-16006-1_8

Harff, J., Meyer, M., 2011. Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate: examples from the southern Baltic. [in:] Harff, J., Björck, S., Hoth, P. (Eds.), The Baltic Sea Basin, Springer, Berlin, Heidelberg, 149–164.

Harff, J., Deng, J.J., Dudzinska-Nowak, J., Fröhle, P., Groh, A., Hünicke, B., Soomere, T., Zhang, W.Y., 2017. What Determines the Change of Coastlines in the Baltic Sea? [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds), Coastline Changes of the Baltic Sea from South to East: Past and Future Projection. Coastal Research Library 19, 15–35. https://doi.org/10.1007/978-3-319-49894-2_2

HELCOM, 2013. Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Baltic Sea Environ. Proc. No. 137.

HELCOM/Baltic Earth 2021. Climate Change in the Baltic Sea. 2021 Fact Sheet. Baltic Sea Environ. Proc. 180. Hoffmann, G., Lampe, R., Barnasch, J., 2005. Postglacial evolution of coastal barriers along the West Pomeranian coast, NE Germany. Quaternary International 133–134, 47–59. https://doi.org/10.1016/j.quaint.2004.10.014

Huang, W.P., 2022. Impact of coastal development on coastal morphology of Taiwan: Case studies and proposed countermeasures. J. Sea Res. 186, 102234. https://doi.org/ 10.1016/j.seares.2022.102234

Hünicke, B., Zorita, E., Soomere, T., Madsen, K.S., Johansson, M., Suursaar, Ü., 2015. Recent Change – Sea Level and Wind Waves, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, Springer, Cham, 155– 185. https://doi:10.1007/978-3-319-16006-1_9

IPCC, 2019. Summary for Policymakers, [in:] Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegrı́a, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer. N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge Univ. Press, Cambridge, UK and New York, NY, USA, 3–35. https://doi.org/10.1017/9781009157964.001

Jaagus, J., 2006. Trends in sea ice conditions in the Baltic Sea near the Estonian coast during the period 1949/1950– 2003/2004 and their relationships to large-scale atmospheric circulation. Boreal Environ. Res. 11, 169–183. Jaagus, J., Kull, A., 2011. Changes in surface wind directions in Estonia during 1966–2008 and their relationships with large-scale atmospheric circulation. Estonian J. Earth Sci. 60 (4), 220–231. https://doi.org/10.3176/earth.2011.4.03

Jaagus, J., Suursaar, Ü., 2013. Long-term storminess and sea level variations on the Estonian coast of the Baltic Sea in relation to large-scale atmospheric circulation. Estonian J. Earth Sci. 62 (2), 73–92. https://doi.org/10.3176/earth.2013.07

Jackson, D.W.T., Costas, S., Gonzalez-Villanueva, R., Cooper, A., 2019. A global ’greening’ of coastal dunes: An integrated consequence of climate change?. Glob. Planet. Change, 182, 103026. https://doi:10.1016/j.gloplacha.2019.103026

Jankowski, M.Z., Soomere, T., Parnell, K.E., Eelsalu, M., 2024. Alongshore sediment transport in the Eastern Baltic Sea. J. Coast. Res. 113 (Sp. Iss.), 261–265. https://doi.org/10.2112/JCR-SI113-052.1

Janušaitė, R., Jarmalavičius, D., Jukna, L., Žilinskas, G., Pupienis, D., 2022. Analysis of interannual and seasonal nearshore bar behaviour observed from decadal optical satellite data in the Curonian Spit, Baltic Sea. Remote Sens. 14 (14), 3423. https://doi.org/10.3390/rs14143423

Jarmalavičius, D., Šmatas, V., Stankunavičius, G., Pupienis, D., Žilinskas, G., 2016. Factors controlling coastal erosion during storm events. J. Coast. Res., 75 (Sp. Iss.), 1112–1116.

Järvelill, J.I., 2019. Development of the Narva-Joesuu beach, mineral composition of beach deposits and destruction of the pier, southeastern coast of the Gulf of Finland.Open Geosci. 11 (1), 961–968. https://doi.org/10.1515/geo-2019-0074

Jensen, J., Schwarzer, K., 2013. Germany, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe. Routledge, London, 108–135.

Julge, K., Eelsalu, M., Grünthal, E., Talvik, S., Ellmann, A., Soomere, T., Tõnisson, H., 2014. Combining airborne and terrestrial laser scanning to monitor coastal processes, [in:] 2014 IEEE/OES Baltic International Symposium “Measuring and Modeling of Multi-Scale Interactions in the Marine Environment”, May 26–29, 2014, Tallinn, Estonia. IEEE Conf. Proc. https://doi.org/10.1109/BALTIC.2014.6887874

Kall, T., Oja, T., Tänavsuu, K., 2014. Postglacial land uplift in Estonia based on four precise levelings. J. Tectonophys. 610, 25–38. https://doi.org/10.1016/j.tecto.2013.10.002

Karaliunas, V., Jarmalavičius, D., Pupienis, D., Janušaitė, R., Zilinskas, G., Karlonienė, D., 2020. Shore nourishment impact on coastal landscape transformation: An example of the Lithuanian Baltic Sea coast. J. Coast. Res. 95 (Sp. Iss.), 840–844. https://doi.org/10.2112/SI95-163.1

Karmanov, K., Burnashov, E., Chubarenko, B., 2018. Contemporary dynamics of the sea shore of Kaliningrad Oblast. Arch. Hydro-Eng. Environ. Mech. 65 (2), 143–159. https://doi.org/10.1515/heem-2018-0010

Keevallik, S., 2003. Possibilities of reconstruction of the wind regime over Tallinn Bay. Proc. Estonian Acad. Sci. Eng. 9 (3), 209–219.

Keevallik, S., 2011. Shifts in meteorological regime of late winter and early spring in Estonia during recent decades. Theor. Appl. Climatol. 105, 209–215. https://doi.org/10.1007/s00704-010-0356-x

Keevallik, S., Soomere, T., 2014. Regime shifts in the surfacelevel average air flow over the Gulf of Finland during 1981–2010. Proc. Estonian Acad. Sci. 63 (4), 428–437. https://doi.org/10.3176/proc.2014.4.08

Kelpšaitė, L., Dailidienė, I., 2011. Influence of wind wave climate change on coastal processes in the eastern Baltic Sea. J. Coast. Res. 64 (Sp. Iss.), 220–224.

Kelpšaitė, L., Dailidiene, I., Soomere, T., 2011. Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008. Boreal Environ. Res. 16 (Suppl A), 220–232.

Kelpšaitė-Rimkienė, L., Parnell, K.E., Žaromskis, R., Kondrat, V., 2021. Cross-shore profile evolution after an extreme erosion event – Palanga, Lithuania. J. Mar. Sci. Eng. 9, 38. https://doi.org/10.3390/jmse9010038

Kl̦avinš, M., Avotniece, Z., Rodinovs, V., 2016. Dynamics and impacting factors of ice regimes in Latvia inland and coastal waters. Proc. Latvian Acad. Sci. B 70 (6/705), 400–408. https://doi.org/10.1515/prolas-2016-0059

Knaps, R.J., 1966. Sediment transport near the coasts of the Eastern Baltic, [in:] Development of sea shores under the conditions of oscillations of the Earth’s crust. Valgus, Tallinn, 21–29 (in Russian).

Kobelyanskaya, J., Bobykina, V.P., Piekarek-Jankowska, H., 2011. Morphological and lithodynamic conditions in the marine coastal zone of the Vistula Spit (Gulf of Gdańsk, Baltic Sea). Oceanologia 53 (4), 1027–1043. https://doi.org/10.5697/oc.53-4.1027

Kondrat, V., Šakurova, I., Baltranaitė, E., Kelpšaitė-Rimkienė, L., 2021. Natural and anthropogenic factors shaping the shoreline of Klaipeda, Lithuania. J. Mar. Sci. Eng. 9 (12), 1456. https://doi.org/10.3390/jmse9121456

Kont, A., Endjärv, E., Jaagus, J., Lode, E., Orviku, K., Ratas, U., Rivis, R., Suursaar, Ü., Tõnisson, H., 2007. Impact of climate change on Estonian coastal and inland wetlands – a summary with new results. Boreal Environ. Res. 12, 653–671.

Kont, A., Jaagus, J., Orviku, K., Palginõmm, V., Ratas, U., Rivis, R., Suursaar, Ü., Tõnisson, H., 2011. Natural development and human activities on Saaremaa Island (Estonia) in the context of climate change and integrated coastal zone management, [in:] Schernewski, G., Hofstede, J., Neumann, T. (Eds.), Global change and Baltic coastal zones, Coastal Res. Library 1, Springer, 117– 134. https://doi.org/10.1007/978-94-007-0400-8_8

Kont, A., Tõnisson, H., Jaagus, J., Suursaar, Ü., Rivis, R., 2022. Eesti randade areng viimastel aastakümnetel kliima ja rannikumere hüdrodünaamiliste muutuste tagajärjel. Terasmaa, J., Truus, L., Kont, A. (Toim.) 30 aastat keskkonnaökoloogiat. Ökoloogia keskus 1992–2022. (9–58). Tallinna Ülikool. (Tallinna Ülikooli ökoloogia instituudi/keskuse publikatsioonid; 13).

Kosyan, R., Krylenko, M., Ryabchuk, D., Chubarenko, B., 2013. Russia, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 9–30.

Kotta, J., Herkül, K., Jaagus, J., Kaasik, A., Raudsepp, U., Alari, V., Arula, T., Haberman, J., Järvet, A., Kangur, K., Kont, A., Kull, A., Laanemets, J., Maljutenko, I., Männik, A., Nõges, P., Nõges, T., Ojaveer, H., Peterson, A., Reihan, A., Rõõm, R., Sepp, M., Suursaar, Ü., Tamm, O., Tamm, T., Tõnisson, H., 2018. Linking atmospheric, terrestrial and aquatic environments: Regime shifts in the Estonian climate over the past 50 years. PLoS ONE 13 (12), e0209568. https://doi.org/10.1371/journal.pone.0209568

Kovaleva, O., Eelsalu, M., Soomere, T., 2017. Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast. Renew. Sustain. Energy Rev. 74, 424–437. https://doi.org/10.1016/j.rser.2017.02.033

Krek, A., Stont, Z., Ulyanova, M., 2016. Alongshore bed load transport in the southeastern part of the Baltic Sea under changing hydrometeorological conditions: Recent decadal data. Regional Stud. Mar. Sci. 7, 81–87. https://doi.org/10.1016/j.rsma.2016.05.011

Kudryavtseva, N., Räämet, A., Soomere, T., 2020. Coastal flooding: Joint probability of extreme water levels and waves along the Baltic Sea coast. J. Coast. Res. 95 (Sp. Iss.), 1146–1151. https://doi.org/10.2112/SI95-222.1

Kudryavtseva, N., Soomere, T., 2017. Satellite altimetry reveals spatial patterns of variations in the Baltic Sea wave climate. Earth Syst. Dynam. 8, 697–706. https: //doi.org/10.5194/esd-8-697-2017

Kudryavtseva, N., Soomere, T., Männikus, R., 2021. Nonstationary analysis of water level extremes in Latvian waters, Baltic Sea, during 1961–2018. Nat. Hazards Earth Syst. Sci. 21 (4), 1279–1296. https://doi.org/10.5194/nhess-21-1279-2021

Kupfer, S., MacPherson, L.R., Hinkel, J., Arns, A., Vafeidis, A.T., 2024. A comprehensive probabilistic flood assessment accounting for hydrograph variability of ESL events. J. Geophys. Res. 129 (1), e2023JC019886. https://doi.org/10.1029/2023JC019886

Lampe, R., Naumann, M., Meyer, H., Janke, W., Ziekur, R., 2011, Holocene evolution of the southern Baltic Sea coast and interplay of sea-level variation, isostasy, accommodation and sediment supply, [in:] Harff J., Björck S., Hoth P., (Eds.), The Baltic Sea Basin. Springer, Berlin, Heidelberg, 233–251. https://doi.org/10.1007/978-3-642-17220-5_12

Lapinskis, J., 2010. Dynamic of the Kurzeme coast of the Baltic proper. Ph.D. Thesis, Univ. Latvia Press, Riga, 67 pp.

Larson, M., Hanson, H., 2013. Sweden, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 31–46.

Lehmann, A., Getzlaff, K., Harlaß, J., 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 46 (2), 185–196. https://doi.org/10.3354/cr00876

Leppäranta, M., 2012. Environmental impacts of land-ice interaction in the northern Baltic Sea, [in:] Li, Z., Lu, P. (Eds.), Meeting 21st IAHR International Symposium on Ice Location, Dalian University of Technology, Dalian, China, June 11–15, 2012. Ice Research for Sustainable Environment, Vol. I & II, 532–541.

Leppäranta, M., 2013. Land-ice interaction in the Baltic Sea. Estonian J. Earth Sci. 62 (1), 2–14. https://doi.org/10.3176/earth.2013.01

Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin, 378 pp. https://doi.org/10.1007/978-3-540-79703-6

Lorenz, M., Gräwe, U., 2023. Uncertainties and discrepancies in the representation of recent storm surges in a non-tidal semi-enclosed basin: A hind-cast ensemble for the Baltic Sea. Ocean Sci. 19 (6), 1753–1771. https://doi.org/10.5194/os-19-1753-2023

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Don chyts, G., Aarninkhof, S., 2018. The state of the world’s beaches. Sci. Rep. 8, 6641. https://doi.org/10.1038/s41598-018-24630-6

Łabuz, T., 2013. Polish coastal dunes – affecting factors and morphology. Landform Anal. 22, 33–59. https://doi.org/10.12657/landfana.022.004

Łabuz, T.A., 2005. Present-day dune environment dynamics on coast of Swina Gate Barrier (West Polish coast). Estuar. Coast. Shelf Sci. 62 (3), 507–520. https://doi.org/10.1016/j.ecss.2004.09.014

Łabuz, T.A., 2009. The West Pomerania coastal dunes – alert state of their development. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 160 (2), 113–122. https://doi.org/10.1127/1860-1804/2009/0160-0113

Łabuz, T.A., 2014. Erosion and its rate on an accumulative Polish dune coast: the effects of the January 2012 storm surge. Oceanologia 56 (2), 307–326. https://doi.org/10.5697/oc.56-2.307

Łabuz, T.A., 2015. Environmental Impacts – Coastal Erosion and Coastline Changes, [in:] The BACC II Author Team, Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Cham, 381–396. https://doi.org/10.1007/978-3-319-16006-1_20

Łabuz, T.A., 2022. Storm surges versus shore erosion: 21 years (2000–2020) of observations on the Swina Gate sandbar (southern Baltic coast). Quaest. Geogr. 41 (3), 5–31. https://doi.org/10.2478/quageo-2022-0023

Łabuz, T.A., 2023a. Causes and effects of coastal dunes erosion during storm surge Axel in January 2017 on the southern Baltic Polish coast. Quaest. Geogr. 42 (3), 67–87. https://doi.org/10.14746/quageo-2023-0024

Łabuz, T.A., 2023b. Influence of meteorological conditions in autumn/winter 2021–2022 on the development of storm surges and the dune erosion on the Polish Baltic coast as a result of climate changes. Studia Quaternaria 40 (2), 93–114. https://doi.org/10.24425/sq.2023.148035

Łabuz, T.A., Grunewald, R., Bobykina, V., Chubarenko, B., Česnulevičius, A., Bautrėnas, A., Morkūnaitė, R., Tõnisson, H., 2018. Coastal dunes of the Baltic Sea shores: A review. Quaest. Geogr 37 (1), 47–71. https://doi.org/10.2478/quageo-2018-0005

Łabuz, T.A., Kowalewska-Kalkowska, H., 2011. Coastal erosion by the heavy storm surge of November 2004 in the southern Baltic Sea. Clim. Res. 48 (1), 93–101. https://doi.org/10.3354/cr00927

Madsen, K.S., Høyer, J.L., Suursaar, Ü., She, J., Knudsen, P., 2019. Sea level trends and variability of the Baltic Sea from 2D statistical reconstruction and altimetry. Front. Earth Sci. 7, 243. https://doi.org.10.3389/feart.2019.00243

Mahmoud, A.M.A., Hussain, E., Novellino, A., Psimoulis, P., Marsh, S., 2021. Monitoring the dynamics of Formby sand dunes using airborne LiDAR DTMs. Remote Sens. 13, 4665. https://doi.org/10.3390/rs13224665

Männikus, R., Soomere, T., Kudryavtseva, N., 2019. Identification of mechanisms that drive water level extremes from in situ measurements in the Gulf of Riga during 1961–2017. Cont. Shelf Res. 182, 22–36. https://doi.org/10.1016/j.csr.2019.05.014

Männikus, R., Soomere, T., Viška, M., 2020.Variations in the mean, seasonal and extreme water level on the Latvian coast, the eastern Baltic Sea, during 1961–2018. Estuar. Coast. Shelf Sci. 245, 106827. https://doi.org/10.1016/j.ecss.2020.106827

Masselink, G., Hughes, M., Knight, J., 2011. Introduction to Coastal Processes and Geomorphology. 2nd ed., Hodder Education, 416 pp.

McInnes, K.L., Hubbert, G.D., 2003. A numerical modelling study of storm surges in Bass Strait. Australian Meteorol. Mag. 52, 3, 143–156. McInnes, K.L., Walsh, K.J.E., Hubbert, G.D., Beer, T., 2003. Impact of sea-level rise and storm surges on a coastal community. Nat. Hazards. 30 (2), 187–207. https://doi.org/10.1023/A:1026118417752

Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P. A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., Zhang, W., 2022. Climate change in the Baltic Sea region: A summary. Earth Syst. Dynam. 13, 457–593. https://doi.org/10.5194/esd-13-457-2022

Merkouriadi, I., Leppäranta, M., 2014. Long-term analysis of hydrography and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea. Clim. Change 124, 849–859. https://doi.org/10.1007/s10584-014-1130-3

Milne, G.A., Gehrels, W.R., Hughes, C.W., Tamisiea, M.E., 2009. Identifying the causes of sea-level change. Nat. Geosci. 2, 471–478. https://doi.org/10.1038/ngeo544

Miner, J.J., Powell, R.D., 1991. An evaluation of ice-rafted erosion caused by an icefoot complex, southwestern Lake-Michigan, USA. Artic and Alpine Res. 23 (3), 320– 327. https://doi.org/10.2307/1551610

Musielak, S., Furmańczyk, K., Bugajny, N., 2017. Factors and processes forming the Polish southern Baltic Sea coast on various temporal and spatial scales, [in:] Harff, J., Furmańczyk, K., von Storch, H. (Eds.), Coastline Changes of the Baltic Sea from South to East. Coast. Res. Lib. 19, Springer, Cham, 69–85. https://doi.org/10.1007/978-3-319-49894-2_5

Najafzadeh, F., Kudryavtseva, N., Soomere, T., 2021. Effects of large-scale atmospheric circulation on the Baltic Sea wave climate: application of the EOF method on multimission satellite altimetry data. Clim. Dynam. 57 (11), 3465–3478. https://doi.org/10.1007/s00382-021-05874-x

Najafzadeh, F., Kudryavtseva, N., Soomere, T., Giudici, A., 2022. Effect of ice cover on wave statistics and wavedriven processes in the northern Baltic Sea. Boreal Environ. Res. 27, 97–116. http://www.borenv.net/BER/archive/pdfs/ber27/ ber27-097-116.pdf

Najafzadeh, F., Soomere, T., 2024. Impact of changes in sea ice cover on wave climate of semi-enclosed seasonally ice-covered water bodies on temperate latitudes: A case study in the Gulf of Riga. Estonian J. Earth Sci. 73 (1), 26–36. https://doi.org/10.3176/earth.2024.03

Navrotskaya, S.E., Chubarenko, B.V., 2012. On the sea level rise in the Russian part of the Vistula Lagoon. Russian Meteorology and Hydrology 39(46), 37. https://doi.org/10.3103/S1068373912010062

Nerem, R.S., Beckley, B.D., Fasullo, J.T., Hamlington B.D., Masters, D., Mitchum, G.T., 2018. Climate-changedriven accelerated sea-level rise. Proc. Natl. Acad. Sci. U.S.A, 115 (9), 2022–2025. https://doi.org/10.1073/pnas.1717312115

Nicholls, R.J., Cazenave, A., 2010. Sea-level rise and its impact on coastal zones. Science, 328 (5985), 1517–1520. https://doi.org/10.1126/science.118578

Nicholls, R.J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A.T., Meyssignac, B., Hanson, S.E., Merkens, J-L., Fang, J., 2021. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Chang. 11, 338–342. https://doi.org/10.1038/s41558-021-00993-z

Oppenheimer, M., Glavovic, B.C., Hinkel, J., van de Wal, R., Magnan, A.K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R.M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., Sebesvari, Z., 2019. Sea level rise and implications for low-lying islands, coasts and communities, [in:] Pörtner, H.-O., Roberts, D.C., MassonDelmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegrı́a, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer. N.M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge Univ. Press, Cambridge, UK, New York, NY, USA, 321–445. https://doi.org/10.1017/9781009157964.00

Orviku, K., 2018. Beaches and coasts. Tallinn University Publishers (in Estonian).

Orviku, K., Jaagus, J., Kont, A., Ratas, U., Rivis, R., 2003. Increasing activity of coastal processes associated with climate change in Estonia. J. Coast. Res. 19 (2), 364–375.

Orviku, K., Jaagus, J., Tõnisson, H., 2011. Sea ice shaping the shores. J. Coastal Res. 64 (Sp. Iss.), 681–685.

Orviku, K., Suursaar, Ü., Tõnisson, H., Kullas, T., Rivis, R., Kont, A., 2009. Coastal changes in Saaremaa Island, Estonia, caused by winter storms in 1999, 2001, 2005 and 2007. J. Coast. Res. 65 (Sp. Is.), 1651–1655.

Osadczuk, A., Borówka, R.K., Dudzińska-Nowak, J. 2024. Two millennia of natural and anthropogenic changes of the Polish Baltic coast. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.896

Ostrowski, R., Pruszak Z., Babakov A., Chubarenko B., 2012. Anthropogenic effects on coastal sediment fluxes in a nontidal gulf system. J. Waterway Div.-ASCE, 138 (6), 491 –500. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000156

Ostrowski, R., Pruszak, Z., Babakov, A., 2014. Condition of south-eastern Baltic Sea shores and methods of protecting them. Arch. Hydro-Eng. Environ. Mech. 61 (1–2), 17–37. https://doi.org/10.1515/heem-2015-0002

Ostrowski, R., Schönhofer, J., Szmytkiewicz, P., 2016. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland. J. Marine Syst. 162, 89–97. https://doi.org/10.1016/j.jmarsys.2015.10.006

Overeem, I., Anderson, R.S., Wobus, C.W., Clow, G.D., Urban, F.E., Matell, N., 2011. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, 17. https://doi.org/10.1029/2011GL048681

Pettersson, H., Lindow, H., Brüning, T., 2013. Wave climate in the Baltic Sea 2012. Baltic Sea Environment Fact Sheet 2013. https://helcom.fi/wp-content/uploads/2019/08/Wave_climate_in_the_Baltic_Sea_2012_BSEFS2013.pdf

Pilkey, O.H., Cooper, J.A.G., 2014. Are natural beaches facing extinction?, J. Coast. Res. 70 (Sp. Iss. 1), 431–436. https://doi.org/10.2112/SI70-073.1

Pindsoo, K., Soomere, T., 2015. Contribution of wave set-up into the total water level in the Tallinn area. Proc. Est. Acad. Sci. 64 (3S), 338–348. https://doi.org/10.3176/proc.2015.3S.03

Pindsoo, K., Soomere, T., 2020. Basin-wide variations in trends in water level maxima in the Baltic Sea. Cont. Shelf Res. 193, 104029. https://doi.org/10.1016/j.csr.2019.104029

Polyak, L., Alley, R.B., Andrews, J.T., Brigham-Grette, J., Cronin, T.M., Darby, D.A., Dyke, A.S., Fitzpatrick, J.J., Funder, S., Holland, M., Jennings, A.E., Miller, G.H., O’Regan, M., Savelle, J., Serreze, M., St John, K., White, J.W.C., Wolff, E., 2010. History of sea ice in the Arctic. Quatern. Sci. Rev. 29 (15–16), 1757–1778. https://doi.org/10.1016/j.quascirev.2010.02.010

Prime, T., Brown, J.M., Plater, A.J., 2015. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities. PLoS ONE 10 (2), e0117030. https://doi.org/10.1371/journal.pone.0117030

Pruszak, Z., Zawadzka, E., 2005. Vulnerability of Poland’s coast to sea-level rise. Coast. Eng. 47 (2–3), 131–155. https://doi.org/10.1142/S0578563405001197

Pruszak, Z., Zawadzka, E., 2008. Potential implications of sea-level rise for Poland. J. Coast. Res. 24 (2), 410–422. https://doi.org/10.2112/07A-0014.1

Pupienis, D., Jarmalavičius, D., Zilinskas, G., Fedorovic, J., 2024. Beach nourishment experiment in Palanga, Lithuania. J. Coast. Res. 70 (Sp. Iss.), 490–495. https://doi.org/10.2112/SI70-083.1

Pye, K., Blott, S.J., 2008. Decadal-scale variation in dune erosion and accretion rates: An investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK. Geomorphology 102 (3–4), 652–666. https://doi.org/10.1016/j.geomorph.2008.06.011

Ranasinghe, R., 2016. Assessing climate change impacts on open sandy coasts: A review. Earth-Sci. Rev. 160, 320–332. https://doi.org/10.1016/j.earscirev.2016.07.011

Rantanen, M., van den Broek, D., Cornér, J., Sinclair, V.A., Johansson, M.M., Särkkä, J., Laurila, T..K., Jylhä, K., 2024. The impact of serial cyclone clustering on extremely high sea levels in the Baltic Sea. Geophys. Res. Lett. 51 (6), e2023GL107203. https://doi.org/10.1029/2023GL107203

Räämet A., Soomere T., Zaitseva-Pärnaste I., 2010. Variations in extreme wave heights and wave directions in the north-eastern Baltic Sea. Proc. Estonian Acad. Sci. 59 (2), 182–192. https://doi.org/10.3176/proc.2010.2.18

Räämet, A., Soomere, T., 2011. Spatial variations in the wave climate change in the Baltic Sea. J. Coast. Res. 64 (Sp. Iss.), 240–244.

Räämet, A., Soomere, T., 2021. Spatial patterns of quality of historical wave climate reconstructions for the Baltic Sea. Boreal Environ. Res. 26, 29–41.

Reckermann, M., Omstedt, A., Soomere, T., Aigars, J., Akhtar, N., Bełdowska, M., Bełdowski, J., Cronin, T., Czub, M., Eero, M., Hyytiäinen, K.P., Jalkanen, J.-P., Kiessling, A., Kjellström, E., Kuliński, K., Guo Larsén, X., McCrackin, M., Meier, H.E.M., Oberbeckmann, S., Parnell, K., PonsSeres de Brauwer, C., Poska, A., Saarinen, J., Szymczycha, B., Undeman, E., Wörman, A., Zorita, E., 2022. Human impacts and their interactions in the Baltic Sea region. Earth Syst. Dynam. 13, 1–80. https://doi.org/10.5194/esd-13-1-2022

Reiniks, M., Kalinka, M., Lazdans, J., Klive, J., Ratkus, B., 2010. Valsts augstuma izejas lımenanoteikšana (Determining the state height level output data). Sci. J. Riga Tech. Univ. Geomatics, 7–13.

Rosentau, A., Meyer, M., Harff, J., Dietrich, R., Richter, A., 2007. Relative sea level change in the Baltic Sea since the littorina transgression. Zeitschrift für Geologische Wissenschaften, 35 (1/2), 3–16.

Rosentau, A., Harff, J., Oja, T., Meyer, M., 2012. Postglacial rebound and relative sea level changes in the Baltic Sea since the Litorina transgression. Baltica 25 (2), 113–120. https://doi.org/10.5200/baltica.2012.25.11

Rotnicka, J., 2011. Factors controlling the development of foredunes along the Leba Barrier on the South Baltic coast of Poland. J. Coast. Res. 64 (Sp. Iss.), 308–313. Rotnicki, K., Rotnicka, J., 2010. Poland. [in:] Bird, E.C.F. (ed.), Encyclopedia of the World’s Coastal Landforms, Springer, Dordrecht, 627–638. https://doi.org/10.1007/978-1-4020-8639-7_107

Różyński, G., 2005. Long term shoreline response of a nontidal, barred coast. Coast. Eng. 52(1), 79–91. https://doi.org/10.1016/j.coastaleng.2004.09.007

Różyński, G., 2010. Long-term evolution of Baltic Sea wave climate near a coastal segment in Poland; its drivers and impacts. Ocean Eng., 37 (2–3), 186–199. https://doi.org/10.1016/j.oceaneng.2009.11.008

Różyński, G., 2023. Coastal protection challenges after heavy storms on the Polish coast. Cont. Shelf Res. 266, 105080. https://doi.org/10.1016/j.csr.2023.105080

Różyński, G., Lin, J.G., 2021. Can climate change and geological past produce enhanced erosion? A case study of the Hel Peninsula, Baltic Sea, Poland. Appl. Ocean Res. 115, 102852. https://doi.org/10.1016/j.apor.2021.102852

Ryabchuk, D., Kolesov, A., Chubarenko, B., Spiridonov, M., Kurennoy, D., Soomere, T. 2011a. Coastal erosion processes in the eastern Gulf of Finland and their links with geological and hydrometeorological factors. Boreal Environ. Res. 16 (Suppl. A), 117–137.

Ryabchuk, D., Leontyev, I., Sergeev, A., Nesterova, E., Sukhacheva, L., Zhamoida, V., 2011b. The morphology of sand spits and the genesis of longshore sand waves on the coast of the eastern Gulf of Finland. Baltica 24 (1), 13–24.

Ryabchuk, D., Sergeev, A., Burnashev, E., Khorikov, V., Neevin, I., Kovaleva, O., Budanov, L., Zhamoida, V., Danchenkov, A., 2020. Coastal processes in the Russian Baltic (eastern Gulf of Finland and Kaliningrad area). Q. J. Eng. Geol. Hydrogeol. 54 (1), qjegh2020-036. https://doi.org/10.1144/qjegh2020-036

Ryabchuk, D., Spiridonov, M., Zhamoida, V., Nesterova, E., Sergeev, A., 2012. Long term and short term coastal line changes of the eastern Gulf of Finland. Problems of coastal erosion. J. Coast. Conserv. 16, 233–242. https://doi:10.1007/s11852-010-0105-4

Šakurova, I., Kondrat, V., Baltranaitė, E., Vasiliauskienė, E., Kelpsaitė-Rimkienė, L., 2023. Assessment of coastal morphology on the south-eastern Baltic Sea coast: The case of Lithuania. Water, 15 (1), 79. https://doi.org/10.3390/w15010079

Sallenger, A., Doran, K., How, P., 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Clim. Change 2, 884–888. https://doi.org/10.1038/nclimate1597

Seleem, T.A., Parcharidis, I., Foumelis, M., Kourkouli, P., 2011. Detection of ground deformation over Sharm ElSheikh-Ras Nasrani coastal zone, South Sinai (Egypt), by using time series SAR interferometry. J. African Earth Sci. 59(4–5), 373–383. https://doi.org/10.1016/j.jafrearsci.2011.01.009

Sergeev, A., Ryabchuk, D., Zhamoida, V., Leontyev, I., Kolesov, A., Kovaleva, O., Orviku, K., 2018. Coastal dynamics of the eastern Gulf of Finland, the Baltic Sea: toward a quantitative assessment. Baltica, 31 (1), 49–62. https://doi.org/10.5200/baltica.2018.31.05

Shepard, F., 1948. Submarine Geology. Harper & Brothers. Shirzaei, M., Freymueller, J., Törnqvist, T.E., Galloway, D.L., Dura, T., Minderhoud, P.S.J., 2021. Measuring, modelling and projecting coastal land subsidence. Nature Rev. Earth Environ. 2(1), 40–58. https://doi.org/10.1038/s43017-020-00115-x

Sinitsyn, A.O., Guegan, E., Shabanova, N., Kokin, O., Ogorodov, S., 2020. Fifty four years of coastal erosion and hydrometeorological parameters in the Varandey region, Barents Sea. Coast. Eng. 157, 103610. https://doi.org/10.1016/j.coastaleng.2019.103610

Sokolov, A.N., Chubarenko, B.V., 2020. Temporal variability of the wind wave parameters in the Baltic Sea in 1979–2018 based on the numerical modeling results. Phys. Oceanogr. 27(4), 352–363. https://doi.org/10.22449/1573-160X-2020-4-352-363

Sokolov, A., Chubarenko, B., 2024. Baltic sea wave climate in 1979–2018: Numerical modelling results. Ocean Eng. 297, 117088. https://doi.org/10.1016/j.oceaneng.2024.117088

Sooäär, J., Jaagus, J., 2007. Long-term changes in the sea ice regime in the Baltic Sea near the Estonian coast. Estonian J. Eng. 13 (3), 189–200. https://doi.org/10.3176/eng.2007.3.02

Soomere, T., 2003. Anisotropy of wind and wave regimes in the Baltic proper. J. Sea Res. 49 (4), 305–316. https://doi.org/10.1016/S1385-1101(03)00034-0

Soomere, T., 2024. Climate change and coastal processes in the Baltic Sea. Oxford Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.897

Soomere, T., Behrens, A., Tuomi, L., Nielsen, J.W., 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci. 8 (1), 37–46. https://doi.org/10.5194/nhess-8-37-2008

Soomere, T., Bishop, S.R., Viška, M., Räämet, A., 2015a. An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim. Res. 62 (2), 163–171. https://doi.org/10.3354/cr01269

Soomere, T., Eelsalu, M., 2014. On the wave energy potential along the eastern Baltic Sea coast. Renew. Energy. 71, 221–233. https://doi.org/10.1016/j.renene.2014.05.025

Soomere, T., Eelsalu, M., Kurkin, A., Rybin, A., 2015b. Separation of the Baltic Sea water level into daily and multiweekly components. Cont. Shelf Res. 103, 23–32. https://doi.org/10.1016/j.csr.2015.04.018

Soomere, T., Eelsalu, M., Viigand, K., Giudici, A., 2024. Linking changes in the directional distribution of moderate and strong winds with changes in wave properties in the eastern Baltic proper. J. Coast. Res. 113 (Sp. Iss.), 190–194. https://doi.org/10.2112/JCR-SI113-038.1

Soomere, T., Keevallik, S., 2001. Anisotropy of moderate and strong winds in the Baltic Proper. Proc. Estonian Acad. Sci. Eng. 50 (1), 35–49. https://doi.org/10.3176/eng.2001.1.04

Soomere, T., Männikus, R., Pindsoo, K., Kudryavtseva, N., Eelsalu, M., 2017. Modification of closure depths by synchronisation of severe seas and high water levels. Geo-Mar. Lett. 37 (1), 35–46. https://doi.org/10.1007/s00367-016-0471-5

Soomere, T., Pindsoo, K., 2016. Spatial variability in the trends in extreme storm surges and weekly-scale high water levels in the eastern Baltic Sea. Cont. Shelf Res. 115, 53–64. https://doi.org/10.1016/j.csr.2015.12.016

Soomere, T., Pindsoo, K., Bishop, S.R., Käärd, A., Valdmann, A. 2013. Mapping wave set-up near a complex geometric urban coastline. Nat. Haz. Earth Syst. Sci. 13 (11), 3049–3061. https://doi.org/10.5194/nhess-13-3049-2013

Soomere, T., Räämet, A., 2011. Long-term spatial variations in the Baltic Sea wave fields. Ocean Sci. 7 (1), 141–150. https://doi.org/10.5194/os-7-141-2011

Soomere, T., Räämet, A., 2014. Decadal changes in the Baltic Sea wave heights. J. Marine Syst. 129, 86–95. https://doi.org/10.1016/j.jmarsys.2013.03.009

Soomere, T., Viška, M., 2014. Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea. J. Marine Syst. 129, 96–105. https://doi.org/10.1016/j.jmarsys.2013.02.001

Soomere, T., Viška, M., Lapinskis, J., Räämet, A. 2011. Linking wave loads with the intensity of erosion along the coasts of Latvia. Estonian J. Eng. 17 (4), 359–374. https://doi.org/10.3176/eng.2011.4.06

Soomere T., Weisse R., Behrens, A,. 2012. Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci. 8 (2), 287–300. https://doi.org/.5194/os-8-287-2012

Sørensen, P., 2013. Denmark, [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 96–107.

Stive, M.J.F., Aarninkhof, S.G.J., Hamm, L., Hanson, H., Larson, M., Wijnberg, K.M., Nicholls, R.J., Capobianco, M., 2002. Variability of shore and shoreline evolution. Coast. Eng. 47 (2), 211–235. https://doi.org/10.1016/S0378-3839(02)00126-6

Su, J., Murawski, J., Nielsen, J.W., Madsen, K.S., 2024. Coinciding storm surge and wave setup: A regional assessment of sea level rise impact. Ocean Eng. 305, 117885. https://doi.org/10.1016/j.oceaneng.2024.117885

Suursaar, Ü., Sooäär, J., 2007. Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea. Tellus A 59 (2), 249–260. https://doi.org/10.1111/j.1600-0870.2006.00220.x

Suursaar, Ü., Jaagus, J., Kullas, T., 2006. Past and future changes in sea level near the Estonian coast in relation to changes in wind climate. Boreal Environ. Res. 11, 123–142.

Suursaar, Ü., Jaagus, J. Tõnisson, H., 2015. How to quantify long-term changes in coastal sea storminess?. Estuar. Coast. Shelf Sci. 156, 31–41. https://doi.org/10.1016/j.ecss.2014.08.001

Suursaar, Ü., Jaagus, J., Kont, A., Rivis, R., Tõnisson, H., 2008. Field observations on hydrodynamic and coastal geomorphic processes off Harilaid Peninsula (Baltic Sea) in winter and spring 2006–2007. Estuar. Coast. Shelf Sci. 80 (1), 31–41. https://doi.org/10.1016/j.ecss.2008.07.007

Suursaar, Ü., Kall, T., 2018. Decomposition of relative sea level variations at tide gauges using results from four Estonian precise levelings and uplift models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (6), 1966–1974. https://doi.org/10.1109/JSTARS.2018.2805833

Szmytkiewicz, P., Szmytkiewicz, M., Uscinowicz, G., 2021. Lithodynamic processes along the seashore in the area of planned nuclear power plant construction: A case study on Lubiatowo at Poland. Energies, 14 (6), 1636. https://doi.org/10.3390/en14061636

Toimil, A., Camus, P., Losada, I.J., Le Cozannet, G., Nicholls, R.J., Idier, D., Maspataud, A. 2020b. Climate changedriven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. Earth-Sci. Rev. 202, 103110. https://doi.org/10.1016/j.earscirev.2020.103110

Toimil, A., Losada, I.J., Nicholls, R.J., Dalrymple, R.A., Stive, M.J.F., 2020a. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 156, 103611. https://doi.org/10.1016/j.coastaleng.2019.103611

Tõnisson, H., Orviku, K., Lapinskis, J., Gulbinskas, S., Žaromskis, R., 2013. The Baltic States – Estonia, Latvia and Lithuania. [in:] Pranzini, E., Williams, A. (Eds.), Coastal erosion and protection in Europe, Routledge, London, 47–80.

Tõnisson, H., Suursaar, Ü., Orviku, K., Jaagus, J., Kont, A., Willis, D.A., Rivis, R., 2011. Changes in coastal processes in relation to changes in large-scale atmospheric circulation, wave parameters and sea levels in Estonia. J. Coast. Res. 64 (Sp. Iss.), 701–705.

Tuomi L., Kahma K.K., Pettersson H. 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res. 16 (6), 451–472.

Ulsts, V., 1998. Latvian Coastal Zone of the Baltic Sea. Riga, 96 pp. (In Latvian).

Ulsts, V., Bulgakova, J., 1998. General lithological and geomorphological map of Latvian shore zone – Baltic Sea and Gulf of Riga. State Geological Survey of Latvia, Riga.

USACE, 2002. Coastal Engineering Manual. Department of the U.S. Army. U.S. Army Corps of Engineers, Manual No. 1110-2-1100.

Uścinowicz, G., Jegliński, W., Paczek, U., Szarafin, T., Szmytkiewicz, P., Uścinowicz, S., 2024. New insights into coastal processes in the southern Baltic Sea: relevance to modelling and future scenarios. Geol. Q. 68(1), 9. https://doi.org/10.7306/gq.1737

Valiela, I., Lloret, J., Bowyer, T., Miner, S., Remsen, D., Elrmstrom, E., Cogswell, D., Thieler, E.R., 2018. Transient coastal landscapes: rising sea level threatens salt marshes. Sci. Total Environ. 640–641, 1148–1156. https://doi.org/10.1016/j.scitotenv.2018.05.235

Vihma, T., Haapala, J., 2009. Geophysics of sea ice in the Baltic Sea: A review. Prog. Oceanogr. 80 (3–4), 129–148. https://doi.org/10.1016/j.pocean.2009.02.002

Viška, M., Soomere, T., 2013. Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast. Baltica 26 (2), 145–156. https://doi.org/10.5200/baltica.2013.26.15

Viška, M., Soomere, T., 2012. Hindcast of sediment flow along the Curonian Spit under different wave climates, [in:] Proceedings of the IEEE/OES Baltic 2012 International Symposium “Ocean: Past, Present and Future. Climate Change Research, Ocean Observation & Advanced Technologies for Regional Sustainability,” May 8–11, Klaipėda, Lithuania. IEEE Conf. Publ. https://doi.org/10.1109/BALTIC.2012.6249195

Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L.P., Feyen, L., 2018. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360. https://doi.org/10.1038/s41467-018-04692-w

Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E. 2021. Sea level dynamics and coastal erosion in the Baltic Sea region. Earth Syst. Dynam. 12, 871–898. https://doi.org/10.5194/esd-12-871-2021

Weisse, R., von Storch, H., Feser, F., 2005. Northeast Atlantic and North Sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J. Clim. 18, 465–479. https://doi.org/10.1175/JCLI-3281.1

Wolski, T., Wiśniewski, B., 2020. Geographical diversity in the occurrence of extreme sea levels on the coasts of the Baltic Sea. J. Sea Res. 159, 101890. https://doi.org/10.1016/j.seares.2020.101890

Wolski, T., Wisniewski, B., 2021. Characteristics and longterm variability of occurrences of storm surges in the Baltic Sea. Atmosphere 12 (12), 1679. https://doi.org/10.3390/atmos12121679

Wolski, T., Wisniewski, B., 2023. Characteristics of seasonal changes of the Baltic Sea extreme sea levels. Oceanologia 65 (1), 151–170. https://doi.org/10.1016/j.oceano.2022.02.006

Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaitė, Ž., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56 (2), 259–290. https://doi.org/10.5697/oc.56-2.259

Zakharchuk, E.A., Sukhachev, V.N., Tikhonova, N.A., 2021. Storm surges in the Gulf of Finland of the Baltic Sea. Vestnik of Saint Petersburg University, Earth Sciences, 66 (4), 781–805. https://doi.org/10.21638/spbu07.2021.408

Zawadzka-Kahlau, E., 1999. Tendencje rozwojowe polskich brzegów Bałtyku Południowego. IBW PAN, Gdańsk, 147 pp.

Zeidler, R.B., Wróblewski, A., Miętus, M., Dziadziuszko, Z., Cyberski J., 1995. Wind, wave, and storm surge regime at the Polish Baltic coast. J. Coast. Res. 22 (Sp. Iss.), 33–55.

Zhang, K., Douglas, B.C., Leatherman, S.P., 2004. Global warming and coastal erosion. Clim. Change 64 (1/2), 41–58. https://doi.org/10.1023/B:CLIM.0000024690.32682.48

Žilinskas, G., Janušaitė, R., Jarmalavičius, D., Pupienis, D., 2020. The impact of Klaipeda Port entrance channel dredging on the dynamics of coastal zone, Lithuania.Oceanologia 62 (4), 489–500. https://doi.org/10.1016/j.oceano.2020.08.002

Xu, K., Zhuang, Y.C., Bin, L.L., Wang, C.Y., Tian, F.C., 2023. Impact assessment of climate change on compound flooding in a coastal city. J. Hydrol. 617 (C), 129166. https://doi.org/10.1016/j.jhydrol.2023.129166xx

full, complete article - PDF


Digital Information System for the Polish Marine Areas — Modelling of Structures and Dynamics of Physical Processes in the Southern Baltic
Oceanologia, 67 (1)/2025, 67104, 17 pp.
https://doi.org/10.5697/CUKW4719

Lidia Dzierzbicka-Głowacka*, Dawid Dybowski, Maciej Janecki, Artur Nowicki
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: dzierzb@iopan.pl (L. Dzierzbicka-Głowacka)
*corresponding author

Keywords: Numerical modelling; Baltic Sea; Polish Marine Areas; Ocean hydrodynamic

Received: 19 July 2024; revised: 14 October 2024; accepted: 25 November 2024.

Highlights

Abstract

Researching the dynamic environment of the Baltic Sea requires an interdisciplinary approach, with numerical models and computer simulations becoming essential tools. The 3D CEMBS-PolSEA ecosystem model, developed at the Institute of Oceanology of the Polish Academy of Sciences, aims to determine the basic hydrodynamic parameters of the southern Baltic Sea. The CSI-POM service (Digital Information System on the Environment of Polish Marine Areas) consists of new tools for studying the structures, dynamics, and variability of physical processes in the southern Baltic. The service includes tools for determining the thermocline, halocline, and pycnocline, conducting spatio-temporal analysis of water column structure, automatic detection of vortices, testing water mass inertia under forecasted wind forces, and automatic detection of upwelling currents. The novelty of this work lies in the development of tools for studying the dynamics of the structure and variability of physical processes in the southern Baltic Sea. These innovative techniques support scientists, the maritime community, and regulatory bodies by providing detailed insights into local phenomena such as vortex formation, water mixing. The tools are implemented on the project server and the Tryton+ supercomputer, enabling high temporal and spatial resolution results. The CSI-POM system’s operational mode ensures access to the latest model results, with real-time and forecasted data. This enhances understanding and forecasting capabilities, informing about the current state of the environment and potential threats in the open sea.

  References   ref


Andrejev, O., Soomere, T., Sokolov, A., Myrberg, K., 2011. The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia 53(1), 309–334. https://doi.org/10.5697/oc.53-1-TI.309

Bossier, S., Palacz, A.P., Nielsen, J.R., Christensen, A., Hoff, A., Maar, M., Gislason, H., Bastardie, F., Gorton, R., Fulton, E.A., 2018. The Baltic sea Atlantis: An integrated end-to-end modelling framework evaluating ecosystem-wide effects of human-induced pressures. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0199168

Dybowski, D., Jakacki, J., Janecki, M., Nowicki, A., Rak, D., Dzierzbicka-Glowacka, L., 2019. High-Resolution Ecosystem Model of the Puck Bay (Southern Baltic Sea) – Hydrodynamic Component Evaluation. Water 11(10), 2057. https://doi.org/10.3390/w11102057

Dybowski, D., Janecki, M., Dzierzbicka-Głowacka, L., 2024a. Various aspects of marine circulation in the Southern Baltic in a submesoscale perspective. Weather Forecast., under review.

Dybowski, D., Janecki, M., Nowicki, A., Dzierzbicka-Glowacka, L.A., 2020. Assessing the Impact of Chemical Loads from Agriculture Holdings on the Puck Bay Environment with the High-Resolution Ecosystem Model of the Puck Bay, Southern Baltic Sea. Water 12(7), 2068. https://doi.org/10.3390/w12072068

Dybowski, D., Janecki, M., Nowicki, A., Jakacki, J., Dzierzbicka-Głowacka, L., 2024b. Development and validation of a high-resolution hydrodynamic model for Polish Marine Areas. Oceanologia 67(1), 11 pp. https://doi.org/10.5697/EWGU8323

Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2013a. Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part. Oceanologia 55(3), 519–541. https://doi.org/10.5697/oc.55-3.519

Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J., 2013b. Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia 55(3), 543–572. https://doi.org/10.5697/oc.55-3.543

Graftieaux, L., Michard, M., Grosjean, N., 2001. Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422. https://doi.org/10.1088/0957-0233/12/9/307

Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., Meier, H.E.M., 2019. Summer hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean–sea ice–atmosphere model. Clim. Dynam. 53, 5945–5966. https://doi.org/10.1007/s00382-019-04908-9

Gustafsson, E., Wällstedt, T., Humborg, C., Mörth, C.-M., Gustafsson, B.G., 2014. External total alkalinity loads versus internal generation: The influence of nonriverine alkalinity sources in the Baltic Sea. Global Biogeochem. Cy. 28, 1358–1370. https://doi.org/10.1002/2014GB004888

Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., Haapala, J., 2019. Nemo-Nordic 1.0: A NEMO-based ocean model for the Baltic and North seas - Research and operational applications. Geosci. Model. Dev. 12, 363–386. https://doi.org/10.5194/gmd-12-363-2019

Janecki, M., Dybowski, D., Jakacki, J., Nowicki, A., Dzierzbicka-Glowacka, L., 2021. The Use of Satellite Data to Determine the Changes of Hydrodynamic Parameters in the Gulf of Gdańsk via EcoFish Model. Remote. Sens.Basel 13, 3572. https://doi.org/10.3390/rs13183572

Janecki, M., Dybowski, D., Rak, D., Dzierzbicka-Glowacka, L., 2022. A New Method for Thermocline and Halocline Depth Determination at Shallow Seas. J. Phys. Oceanogr. 52(9), 2205–2218 https://doi.org/10.1175/JPO-D-22-0008.1

Jedrasik, J., Cieślikiewicz, W., Kowalewski, M., Bradtke, K., Jankowski, A., 2008. 44 Years Hindcast of the sea level and circulation in the Baltic Sea. Coast. Eng. 55, 849–860. https://doi.org/10.1016/j.coastaleng.2008.02.026

Leppäranta, M., Myrberg, K. (Eds.), 2009. Topography and hydrography of the Baltic Sea, in: Physical Oceanog- raphy of the Baltic Sea. Springer, Berlin, Heidelberg, 41–88. https://doi.org/10.1007/978-3-540-79703-6_3

Lips, U., Zhurbas, V., Skudra, M., Väli, G., 2016. A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents. Cont. Shelf. Res. 112, 1–13. https://doi.org/10.1016/j.csr.2015.11.008

Marmefelt, E., Omstedt, A., 1993. Deep water properties in the Gulf of Bothnia. Cont. Shelf. Res. 13, 169–187. https://doi.org/10.1016/0278-4343(93)90104-6

Neumann, T., Fennel, W., Kremp, C., 2002. Experimental sim- ulations with an ecosystem model of the Baltic Sea: A nu- trient load reduction experiment. Global Biogeochem. Cy. 16(3), 7–1–7–19. https://doi.org/10.1029/2001gb001450

Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., Kałas, M., 2015. Assimilation of the satellite SST data in the 3D CEMBS model. Oceanologia 57(1), 17–24. https://doi.org/10.1016/j.oceano.2014.07.001

Öberg, J., 2017. Cyanobacteria blooms in the Baltic Sea. HELCOM Baltic Sea Environment Fact Sheets.

Stigebrandt, A., 1983. A Model for the Exchange of Water and Salt Between the Baltic and the Skagerrak. J. Phys. Oceanogr. 13 (3), 411–427.

full, complete article - PDF


Development and validation of a high-resolution hydrodynamic model for the Polish Marine Area
Oceanologia, 67 (1)/2025, 67105, 10 pp.
https://doi.org/10.5697/EWGU8323

Dawid Dybowski*, Maciej Janecki, Artur Nowicki, Jaromir Jakacki, Lidia Dzierzbicka-Głowacka
Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81–712 Sopot, Poland;
e-mail: ddybowski@iopan.pl (D. Dybowski)
*corresponding author

Keywords: Numerical modelling; High-resolution model; Hydrodynamics; Southern Baltic

Received: 4 July 2024; revised: 7 October 2024; accepted: 25 November 2024.

Highlights

Abstract

This study presents the development and validation of a high-resolution 3D hydrodynamic model, CEMBS-PolSea, designed to resolve submesoscale features in Polish Marine Areas. The model, derived from the Community Earth System Model (CESM), employs a horizontal resolution of 575 m and 66 vertical layers. It incorporates advanced parameterizations for horizontal and vertical mixing processes, and integrates meteorological and river inflow data. A novel satellite data assimilation module was implemented to enhance model accuracy. The model was calibrated and validated using in situ measurements from the International Council for the Exploration of the Sea (ICES) database and satellite observations over the period 2019–2023. Results demonstrate strong agreement between model outputs and observational data, particularly for surface temperature (Pearson’s r = 0.95) and salinity (r = 0.89). The model successfully captures temporal and spatial variations in temperature and salinity profiles, with some discrepancies noted in deeper layers. The integration of satellite data assimilation significantly improved model performance, particularly in surface temperature predictions. This high-resolution model represents a significant advancement in simulating complex coastal dynamics and submesoscale features in the Polish Marine Areas, offering a valuable tool for marine ecosystem management and climate change impact studies in the region.

  References   ref

Daewel, U., Schrum, C., 2013. Simulating long-term dynamics of the coupled North Sea and Baltic Sea ecosystem with ECOSMO II: Model description and validation. J. Marine Syst, 119–120, 30–49. https://doi.org/10.1016/j.jmarsys.2013.03.008

Dybowski, D., Dzierzbicka-Głowacka, L., 2023. Analysis of the impact of nutrients deposited from the land side on the waters of Puck Lagoon (Gdańsk Basin, Southern Baltic): A model study. Oceanologia 65(2), 386–397. https://doi.org/10.1016/j.oceano.2022.11.005

Dybowski, D., Jakacki, J., Janecki, M., Nowicki, A., Rak, D., Dzierzbicka-Glowacka, L., 2019. High-Resolution Ecosystem Model of the Puck Bay (Southern Baltic Sea) – Hydrodynamic Component Evaluation. Water 11, 2057. https://doi.org/10.3390/w11102057

Dybowski, D., Janecki, M., Nowicki, A., Dzierzbicka-Glowacka, L.A., 2020. Assessing the Impact of Chemical Loads from Agriculture Holdings on the Puck Bay Environment with the High-Resolution Ecoystem Model of the Puck Bay, Southern Baltic Sea. Water 12, 2068. https://doi.org/10.3390/w12072068

Dzierzbicka-Glowacka, L., Dybowski, D., Janecki, M., Wojciechowska, E., Szymczycha, B., Potrykus, D., Now- icki, A., Szymkiewicz, A., Zima, P., Jaworska-Szulc, B., Pietrzak, S., Pazikowska-Sapota, G., Kalinowska, D., Nawrot, N., Wielgat, P., Dembska, G., Matej-Łukowicz, K., Szczepańska, K., Puszkarczuk, T., 2022. Modelling the impact of the agricultural holdings and land-use structure on the quality of inland and coastal waters with an innovative and interdisciplinary toolkit. Agr. Water Manage. 263, 107438. https://doi.org/10.1016/j.agwat.2021.107438

Dzierzbicka-Głowacka, L., Jakacki, J., Janecki, M., Nowicki, A., 2013a. Activation of the operational ecohydrodynamic model (3D CEMBS) – the hydrodynamic part. Oceanologia 55(3), 519–541. http://dx.doi.org/10.5697/oc.55-3.519

Dzierzbicka-Głowacka, L., Janecki, M., Nowicki, A., Jakacki, J., 2013b. Activation of the operational ecohydrodynamic model (3D CEMBS) – the ecosystem module. Oceanologia 55(3), 543–572. http://dx.doi.org/10.5697/oc.55-3.543

Eilola, K., Meier, H.E.M., Almroth, E., 2009. On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; A model study. J. Marine Syst. 75, 163–184. https://doi.org/10.1016/j.jmarsys.2008.08.009

Fennel, K., Wilkin, J., Levin, J., Moisan, J., O’Reilly, J., Haidvogel, D., 2006. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem. Cy. 20. https://doi.org/10.1029/2005GB002456

Gräwe, U., Holtermann, P., Klingbeil, K., Burchard, H., 2015. Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 92, 56–68. https://doi.org/10.1016/j.ocemod.2015.05.008

Holt, J., Proctor, R., 2008. The seasonal circulation and volume transport on the northwest European continental shelf: A fine-resolution model study. J. Geophys. Res.- Oceans 113. https://doi.org/10.1029/2006JC004034

Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., Haapala, J., 2019. Nemo-Nordic 1.0: A NEMO-based ocean model for the Baltic and North seas – Research and operational applications. Geosci. Model Dev. 12, 363–386. https://doi.org/10.5194/gmd-12-363-2019

Lehmann, A., Getzlaff, K., Harlaß, J., 2011. Detailed assessment of climate variability of the Baltic Sea area for the period 1958–2009. Climate Res. 46, 185–196. https://doi.org/10.3354/cr00876

Markus Meier, H.E., 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci. 74(1), 610–627. https://doi.org/10.1016/j.ecss.2007.05.019

Meier, H.E.M., Andersson, H.C., Arheimer, B., Donnelly, C., Eilola, K., Gustafsson, B.G., Kotwicki, L., Neset, T.-S., Niiranen, S., Piwowarczyk, J., Savchuk, O.P., Schenk, F., Węsławski, J.M., Zorita, E., 2014. Ensemble Modeling of the Baltic Sea Ecosystem to Provide Scenarios for Management. AMBIO 43, 37–48. https://doi.org/10.1007/s13280-013-0475-6

Murawski, J., She, J., Mohn, C., Frishfelds, V., Nielsen, J.W., 2021. Ocean Circulation Model Applications for the Estuary-Coastal-Open Sea Continuum. Front. Mar. Sci. 8. https://doi.org/10.3389/fmars.2021.657720

Nowicki, A., Dzierzbicka-Głowacka, L., Janecki, M., Kałas, M., 2015. Assimilation of the satellite SST data in the 3D CEMBS model. Oceanologia 57(1), 17–24. https://doi.org/10.1016/j.oceano.2014.07.001

Schrum, C., Hübner, U., Jacob, D., Podzun, R., 2003. A coupled atmosphere/ice/ocean model for the North Sea and the Baltic Sea. Climate Dynam. 21, 131–151. https://doi.org/10.1007/s00382-003-0322-8

Timmermann, R., Beckmann, A., Hellmer, H., 2002. Simulation of ice-ocean dynamics in the Weddell Sea. Part I: Model configuration and validation. J. Geophys. Res. C3 107. https://doi.org/10.1029/2000JC000741

full, complete article - PDF


Note on estimating air-sea flux of CO2 using mean wind
Oceanologia, 67 (1)/2025, 67106, 5 pp.
https://doi.org/10.5697/BRBY1100

Dag Myrhaug
Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Otto Nielsens vei 10, NO–7491 Trondheim, Norway;
e-mail: dag.myrhaug@ntnu.no (D. Myrhaug)

Keywords: Air-sea flux of CO2; Transfer velocity of CO2; Air-sea exchange; Mean wind speed statistics; Stochastic method

Received: 10 October 2023; revised: 21 November 2024; accepted: 26 November 2024.

Highlights

Abstract

Statistical properties of the air-sea flux of CO2 are estimated based on mean wind speed statistics. This is achieved by applying the same eight wind speed-dependent transfer velocity parameterizations of CO2 as used by Woolf et al. (2019) together with mean wind speed statistics from one location in the North Sea and one in the North Atlantic. These results demonstrate solely the contribution of the statistical uncertainties in terms of large standard deviations of the wind speed-dependent gas transfer velocity of the CO2 flux at both locations.

  References   ref

Bitner-Gregersen, E.M., 2015. Joint met-ocean description for design and operations of marine structures. Appl. Ocean Res. 51, 279–292. http://dx.doi.org/10.1016/j.apor.2015.01.007

Bury, K.V., 1975. Statistical Models in Applied Science. John Wiley & Sons, New York, 646 pp.

Fay, A.R, Gregor, L., Landschützer, P., McKinley, G.A., Gruber, N., Gehlen, M., Iida, Y., Laruelle, G.G., Rödenbeck, C., Roobaert, A., Zeng, J., 2021. Sea-Flux: harmonization of air-sea CO2 fluxes from surface pCO2 data products using a standardized approach. Earth Syst. Sci. Data 13, 4693–4710. https://doi.org/10.5194/essd-13-4693-2021

Ho, D.T., Law, C.S., Smith, M.J., Schlosser, P., Harvey, M., Hill, P., 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys. Res. Lett. 33, L16611. https://doi.org/10.1029/2006GL026817

Ho, D.T., Law, C.S., Smith, M.J., Schlosser, P., Harvey, M., Hill, P., 2007. Reply to comments by X. Zhang on ‘Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations’. Geophys. Res. Letters 34, L23604. https://doi.org/10.1029/2007GL030943

Johannessen, K., Meling, T.S., Haver, S., 2001. Joint distribu- tion of wind and waves in the Northern North Sea. [In:] Chung, J.S., Prevosto, M., Mizutani, N. (eds). Proceedings of the 11th Int. Offshore and Polar Engineering Conf., Stavanger, Norway, Vol. 3, Int. Soc. Offshore Polar Eng. (ISOPE), Cupertino, CA, USA, 19–28.

Mao, W., Rychlik, I., 2017. Estimation of Weibull distribution for wind speeds along ship routes. Proc. Inst. Mech. Eng. Pt. M, J. Eng. Mar. Environ. 231 (2), 464–480. https://doi.org/10.1177/1475090216653495

McGillis, W.R., Edson, J.B., Ware, J.D., Dacey, J.W.H., Hare, J.E., Fairall, C.W., Wanninkhof, R., 2001. Carbon dioxide flux techniques performed during GasEx 98. Mar. Chem. 75 (4), 267–280. https://doi.org/10.1016/S0304-4203(01)00042-1

Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biochem. Cy. 14 (1), 373–387. https://doi.org/10.1029/1999GB900091

Roobaert, A., Laruelle, G.G., Landschutzer, P., Regnier, P., 2018. Uncertainty in the global oceanic CO2 uptake induced by wind forcing: quantification and special analysis. Biogeosciences 15 (6), 1701–1720. https://doi.org/10.5194/bg-15-1701-2018

Smith, M.J., Ho, D.T., Law, C.S., McGregor, J., Popinet, S., Schlosser, P., 2011. Uncertainties in gas exchange parameterization during the SAGE dual-tracer experiment. Deep Sea Res. Pt. II 58 (6), 869–881. https://doi.org/10.1016/j.dsr2.2010.10.025

Villas Bôas, A.B., Arduin, F., Ayet, A., Bourassa, M.A., Brandt, P., Chapron, B., Cornuelle, B.D., Farrar, J.T., Fewings, M.R., Fox-Kemper, B., Gille, S.T., Gommenginger, C., Heimbach, P., Hell, M.C., Li, Q., Mazloff, M.R., Merrifield, S.T., Mouche, A., Rio, M.H., Rodriguez, E., Shutler, J.D., Subramanian, A.C., Terrill, T.J., Tsamados, M., Ubelmann, C., van Sebille, E., 2019. Integrated observations of global surface winds, currents, and waves: requirements and challenges for the next decade. Front. Mar. Sci. 6, 425. https://doi.org/10.3389/fmars.2019.00425

Wanninkhof, R., 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr.-Meth. 12 (6), 351–362. https://doi.org/10.4319/lom.2014.12.351

Wanninkhof, R., Asher, W.E., Ho, D.T., Sweeney, C., McGillis, W.R., 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1 (1), 213–244. https://doi.org/10.1146/annurev.marine.010908.163742

Woolf, D.K., Shutler, J.D., Goddijn-Murphy, L., Watson, A.J., Chapron, B., Nightingale, P.D., Donlon, C.J., Piskozub, J., Yelland, M.J., Ashton I., Holding, T., Schuster, U., Girard- Ardhuin, F., Grouazel, A., Piolle, J.-F., Warren, M., Wrobel- Niedzwiecka, I., Land, P.E., Torres, R., Prytherch, J., Moat, B., Hanafin, J., Ardhuin, F., Paul, F., 2019. Key uncertainties in the recent air-sea flux of CO2. Global Biogeochem. Cy. 33, 1548–1563. https://doi.org/10.1029/2018GB006041

full, complete article - PDF


Myoxocephalus scorpius – liver nematodes and diet (pilot studies from Polish waters)
Oceanologia, 67 (1)/2025, 67107, 8 pp.
https://doi.org/10.5697/OZMV7779

Katarzyna Nadolna-Ałtyn1,*, Joanna Pawlak1, Marcin Kuciński2
1National Marine Fisheries Research Institute, Kołłątaja 1, 81–332, Gdynia, Poland;
e-mail: knadolna@mir.gdynia.pl (K. Nadolna-Ałtyn)
2University of Gdańsk, Marszałka Piłsudskiego 46 Av., 81–378 Gdynia, Poland
*corresponding author

Keywords: Myoxocephalus scorpius; Shorthorn sculpin; Dietary composition; Nematodes; Baltic Seachemistry; Carbon cycle; Climate and environmental research; Atmosphere-ocean-land surface modeling

Received: 13 March 2024; revised: 23 September 2024; accepted: 26 November 2024.

Highlights

Abstract

Research on the parasitology of the shorthorn sculpin (Myoxocephalus scorpius) from the Baltic Sea is presently limited. As a predatory fish, the species primarily acquire nematode parasites through the ingestion of infected prey. The main objectives of the current study were to (1) evaluate the presence of nematodes in the livers of shorthorn sculpin from the southern Baltic Sea and (2) investigate the dietary composition of this species. Accordingly, 32 fish from the north-western Polish waters of the Baltic Sea (ICES rectangle 39G6) were caught in November 2020 and subjected to standard ichthyological analyses. Moreover, liver samples were dissected from each fish and frozen for further parasitological investigation. The presence of the parasites was detected in 5 of the 32 analyzed livers, with a prevalence of 15.6%, intensity of infection from 2 to 99 parasites per fish and abundance of 3.9. Co-occurrence of Contracaecum sp. and Hysterothylacium sp. nematodes was observed in all infected fish. Stomach content analysis revealed that Crangon crangon, Bylgides sarsi and Gammarus spp. were the most abundant components of the shorthorn sculpin’s diet.

  References   ref

Andersen, K., 2001. A note on the variation in sealworm (Pseudoterranova decipiens) infection in shorthorn sculpin (Myoxocephalus scorpius) with host age and size at two locations in Norwegian inshore waters. NAMMCO Sci. Publ. 3, 39–46. https://doi.org/10.7557/3.2957

Aspholm, P.E., Ugland, K.I., Jødestøl, K.A., Berland, B., 1995. Sealworm (Pseudoterranova decipiens) infection in harbour seals (Phoca vitulina) and potential intermediate fish hosts from the outer Oslofjord, Int. J. Parasit. 25, 367–373. https://doi.org/10.1016/0020-7519(94)00133-9

Blaxter, M.L., De Ley P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T., Thomas, W.K., 1998. A molecular evolutionary framework for the phylum Nematoda, Nature 392, 71–75. https://doi.org/10.1038/32160

Bush, A.O., Lafferty, K.D., Lotz, J.M., Shostak, A.W., 1997. Parasitology Meets Ecology on Its Own Terms: Margolis et al. Revisited, J. Parasitol. 83 (4), 575–583. https://doi.org/10.2307/3284227

Cardinale, M., 2000. Ontogenetic diet shifts of bull-rout, Myoxocephalus scorpius (L.) in the south-western Baltic Sea. J. Appl. Ichthyol. 16, 231–239. https://doi.org/10.1046/j.1439-0426.2000.00231.x

Dang, M., Nørregaard, R., Bach, L., Sonne, Ch., Søndergaard, J., Gustavson, K., Aastrup, P., Nowak, B., 2017. Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland. Environ. Res. 153, 171–180. https://doi.org/10.1016/j.envres.2016.12.007

Dick, T., Chambers, C., Gallagher, C.P., 2009. Parasites, diet and stable isotopes of shortern sculpin (Myoxocephalus Scorpius) from Frobisher Bay, Canada. Parasite 16, 297–304. http://dx.doi.org/10.1051/parasite/2009164297

Ebeling, E., Alshuth, S., 1989. Food preferences and diseases of Myoxocephalus Scorpius in the German Bight. ICES CM paper 1989/G:48 Demersal fish committee.

Fiorenza, E.A., Wendt, C.A., Dobkowski, K.A., King, T.L., Pappaionou, M., Rabinowitz, P., Samhouri, J.F., Wood, C.L., 2020. It’s a wormy world: Meta-analysis reveals several decades of change in the global abundance of the para- sitic nematodes anisakis spp. and Pseudoterranova spp. in marine fishes and invertebrates. Glob. Change Biol. 26, 2854–2866. https://doi.org/10.1111/gcb.15048

Floyd, R.M., Rogers, A.D., Lambshead, P.J.D., Smith, C.R., 2005. Nematode-specific PCR primers for the 18S small subunit rRNA gene. Mol. Ecol. Notes 5(3), 611–612. https://doi.org/10.1111/j.1471-8286.2005.01009.x

Gabel, M., Theisen, S., Palm, H.W., Dähne, M., Unger, P., 2021. Nematode parasites in Baltic Sea mammals, grey seal (Halichoerus grypus (Fabricius, 1791)) and harbour porpoise (Phocoena Phocoena(L.)), from German coast. Acta Parasitol. 66, 26–33. https://doi.org/10.1007/s11686-020-00246-7

Herreras, M.V., Montero, F.E., Marcogliese, D.J., Raga, J.A., Balbuena , J.A., 2007. Phenotypic trade offs between egg number and egg size in three parasitic anisakid nematodes. Oikos 116, 1737–1747. https://doi.org/10.1111/j.2007.0030-1299.16016.x

ICES, 2021. ICES Working Group on Baltic International Fish Survey (WGBIFS; outputs from 2020 meeting). ICES Sci. Rep. 3:02, 539 pp. http://doi.org/10.17895/ices.pub.7679

Jackson, C.J., Marcogliese, D.J., Burt, M.D.B., 1997. Role of hyperbenthic crustaceans in the transmission of marine helminth parasites. Can. J. Fish. Aquat. Sci., 54, 815–820. https://doi.org/10.1139/f96-329

Khan, R.A., 2011. Chronic Exposure and Decontamination of a Marine Sculpin (Myoxocephalus scorpius) to Polychlorinated Biphenyls Using Selected Body Indices, Blood Values, Histopathology, and Parasites as Bioindicators. Arch. Environ. Contam. Toxicol. 60, 479–485. http://doi.org/10.1007/s00244-010-9547-9

Køie, M., 1993. Aspects of the life-cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Can. J. Zool. 71, 1289–1296. https://doi.org/10.1139/z93-178

Køie, M., Fagerholm, H.P. 1995. The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infection. Parasitol. Res. 81, 481–489. https://doi.org/10.1007/BF00931790

Kulikowski, M., Rolbiecki, L., Skóra, K, Rokicki, J., 2012. Nematodes found in the European anchovy (Engraulis encrasicolus), a rare visitor to the Baltic Sea. Oceanol. Hydrobiol. Stud. 41, 99–102. https://doi.org/10.2478/s13545-012-0032-0

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547. https://doi.org/10.1093/molbev/msy096

Kühl, H., 1961. Nahrungsuntersuchungen an einigen Fischen im Elbe-Mündungsgebiet [Nutrition studies on some fish in the Elbe estuary]. Der Dt. Wiss. Komm. Meeresforsch. XVI 2, 90–104 (in German).

Lähdekorpi, E., 2011. Sealworms (Pseudoterranova decipiens) in shorthorn sculpin (Myoxocephalus scorpius) from the outer Oslofjord. M.Sc. thesis. University of Oslo.

Landry, J.J., Fisk, A.T., Yurkowski, D.J., Hussey, N.E., Dick, T., Crawford, R.E., Kessel1, S.T., 2018. Feeding ecology of a common benthic fish, shorthorn sculpin (Myoxocephalus scorpius) in the high arctic. Polar Biol. 41, 2091–2102. https://doi.org/10.1007/s00300-018-2348-8

Luksenburg, J.A., Pedersen, T., Falk-Petersen, I.B., 2004. Reproduction of the shorthorn sculpin (Myoxocephalus scorpius) in northern Norway. J. Sea Res. 51, 157–166. https://doi.org/10.1016/j.seares.2003.09.001

Lunneryd, S.G., Bostrom, M.K., Aspholm, P.E., 2015. Sealworm (Pseudoterranova decipiens) infection in grey seals (Halichoerus grypus), cod (Gadus morhua) and shorthorn sculpin (Myoxocephalus scorpius) in the Baltic Sea. Parasitol. Res. 114, 257–264. https://doi.org/10.1007/s00436-014-4187-z

Midtgaard, T., Andersen, K., Halvorsen, O., 2003. Population dynamics of sealworm, Pseudoterranova decipiens sensu lato, in sculpins, Myoxocephalus scorpius from two areas in Norway between 1990 and 1996. Parasitol. Res. 89(5), 387–392. https://doi.org/10.1007/s00436-002-0667-7

Nadolna, K., Podolska, M., 2014. Anisakid larvae in the liver of cod (Gadus morhua) L. from the southern Baltic Sea. J. Helminthol. 88, 237–246. https://doi.org/10.1017/S0022149X13000096

Nadolna-Ałtyn, K., Pawlak, J., Pachur M., 2023a. First record of Pseudoterranova decipiens in sprat (Sprattus sprattus) from the Baltic Sea. J. Fish. Dis. 47(1), e13866. https://doi.org/10.1111/jfd.13866

Nadolna-Ałtyn, K., Pawlak, J., Podolska, M., Lejk, A., 2023b. Contracaecum osculatum and Pseudoterranova sp. in the liver of salmon (Salmo salar) from Polish marine waters. Fish. Aquatic Life, 31, 44–53. https://doi.org/10.2478/aopf-2023-0005

Nadolna-Ałtyn, K., Podolska, M., Pawlak, J., 2024. First report of the presence of Pseudoterranova sp. in the body cavity of salmon (Salmo salar) from the Baltic Sea. Fish. Aquatic. Life. 32, 117–121. https://doi.org/10.2478/aopf-2024-0010

Nadolna-Ałtyn, K., Podolska, M., Szostakowska, B., 2017. Great sandeel (Hyperoplus lanceolatus) as a putative transmitter of parasite Contracaecum osculatum (Nematoda: Anisakidae). Parasitol. Res. 116(7), 1931–1936. https://doi.org/10.1007/s00436-017-5471-5

Nadolna-Ałtyn, K., Szostakowska, B., Podolska, M., 2018. Sprat (Sprattus sprattus) as a possible source of invasion of marine predators with Contracaecum osculatum in the Southern Baltic Sea. Russ. J. Mar. Biol. 44, 471–476. https://doi.org/10.1134/S1063074018060093

Navone, G.T., Sardella, N.H., Timi, J.T., 1998. Larvae and adults of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda: Anisakidae) in fishes and crustaceans in the South West Atlantic. Parasite 5, 127–136. https://doi.org/10.1051/parasite/1998052127

Norderhaug, K.M., Christie, H., Fossa, J.H., Fredriksen S., 2005. Fish macrofauna interactions in a kelp (Laminaria hyperborean) forest. J. Mar. Biol. Assoc. U.K. 185, 1279–1286. https://doi.org/10.1017/S0025315405012439

Pawlak, J., 2021. In situ evidence of the role of Crangon crangon in infection of cod Gadus morhua with nematode parasite Hysterothylacium aduncum in the Baltic Sea. Parasitol. 148, 1691–1696. https://doi.org/10.1017/S0031182021001414

Pawlak, J., Nadolna-Ałtyn, K., Szostakowska, B., Pachur, M., Bańkowska, A., Podolska, M., 2019. First evidence of the presence of Anisakis simplex in Crangon crangon and Contracaecum osculatum in Gammarus sp. by in situ examination of the stomach contents of cod (Gadus morhua) from the southern Baltic Sea. Parasitol. 146 (13), 1699–1706. https://doi.org/10.1017/S0031182019001124

Raciborski, K., 1984. Migrations, reproduction, growth and feeding of Myoxocephalus scorpius (L.) in Gdansk Bay (South Baltic). Pol. Arch. Hydrobiol. 31, 109–118.

Rokicki, J., Rolbiecki, L., Skóra, A., 2009. Helminth parasites of twaite shad, Alosa fallax (Actinopterygii: Clu- peiformes: Clupeidae), from the southern Baltic Sea. Acta Ichthyol. Piscat. 39, 7–10. https://doi.org/10.3750/AIP2009.39.1.02

Rolbiecki, L., Izdebska, J.N., Dzido, J., 2020. The helminthofauna of the garfish Belone belone (Linnaeus, 1760) from the southern Baltic Sea, including new data. Ann. Parasitol. 66, 237–241. https://doi.org/10.17420/ap6602.260

Rolbiecki, L., Rokicki, J., Skóra, K, 2008. Parasites of a saithe, Pollachius virens (L.) captured in the Baltic Sea. Acta Ichthyol. Piscat. 38, 143–147. https://doi.org/10.3750/AIP2008.38.2.10

Shamsi, S., 2019. Parasite loss or parasite gain? Story of Contracaecum nematodes in antipodean waters. Parasite Epidem. Cont. 3, e00087. https://doi.org/10.1016/j.parepi.2019.e00087

Skrzypczak, M., Rokicki, J., Pawliczka, I., Najda, K., Dzido, J., 2014. Anisakids of seals found on the southern coast of Baltic Sea. Acta Parasitol. 59, 165–172. https://doi.org/10.2478/s11686-014-0226-2

Sonne, Ch., Lakemeyer, J., Desforges, J.-P., Eulaers, I., Persson, S., Stokholm, I., Galatius, A., Gross, S., Gonnsen, K., Lehnert, K., Andersen-Ranberg, E.U., Olsen, M.T., Dietz, R., Siebert, U., 2020. A review of pathogens in selected Baltic Sea indicator species. Environ. Int. 137, 105565. https://doi.org/10.1016/j.envint.2020.105565

Sulgostowska, T., Jerzewska, B., Wicikowski, J., 1990. Parasite fauna of Myoxocephalus scorpius (L.) and Zoarces viviparus (L.) from environs of Hel (south-east Baltic) and seasonal occurrence of parasites. Acta Parasitol. Pol. 35(2), 143–147.

Valtonen, E.T., Fagerholm, H.P., Helle, E., 1988. Contracaecum osculatum (Nematoda: Anisakidae) in fish and seals in Bothnian Bay (northeastern Baltic Sea). Int. J. Parasitol. 18(3), 365–370. https://doi.org/10.1016/0020-7519(88)90146-4

Yoshinaga, T., Ogawa, K., Wakabayashi, H., 1987. Experimental life cycle of Hysterothylacium aduncum (Nematoda: Anisakidae) in fresh water. Fish Pathol. 22, 243–251. https://doi.org/10.3147/JSFP.22.243

Zuo, S., Kania, P.W., Mehrdana, F., Marana, M.H., Buchmann, K., 2018. Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic Sea: molecular and ecological links. J. Helminthol. 92(1), 81–89. https://doi.org/10.1017/S0022149X17000025

full, complete article - PDF


Integrative biomarker approach to decode seasonal variation in biomarker responses of Scylla serrata and Penaeus monodon from Sundarbans estuarine system
Oceanologia, 67 (1)/2025, 67108, 11 pp.
https://doi.org/10.5697/IVQW7412

Sritama Baag, Sumit Mandal*
Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata – 700073, India;
e-mail: sumit.dbs@presiuniv.ac.in (S. Mandal)
*corresponding author

Keywords: Seasonal variation; Biomarkers; Antioxidant enzymes; Estuary; Integrated biomarker approach

Received: 23 February 2023; revised: 22 November 2024; accepted: 6 December 2024.

Highlights

Abstract

Sundarbans Estuarine System is a highly productive estuary and is considered the most important spawning and nursery ground for various commercial fish and shellfish species. Estuarine organisms are frequently exposed to a wide variety of pollutants due to their vicinity to human habitation. Marine organisms residing in this area are also exposed to extensive fluctuations of environmental factors which vary with season. In the present study, effects of seasonal variation on oxidative stress biomarkers such as superoxide dismutase, catalase, glutathione-S-transferase, and lipid peroxidation in the hepatopancreas of mud crab Scylla serrata and shrimp Penaeus monodon, were studied during monsoon, winter, spring and summer seasons. The integrated biomarker response (IBR) was assessed with the biomarker scores for all four seasons in both species. Our results suggested seasonal discrepancies as the governing factor behind biomarkers’ variability. The breeding period of the animals also seems to play a significant role in their oxidative stress physiology. The IBR results indicated that moderately high temperatures and low salinity in the monsoon season are the most stressful for crabs. This stress might also be ascribed to the breeding period of these crabs which exacerbates the stress level during this season. However, in the case of shrimps, the highest IBR value was observed in the winter season due to impaired ROS elimination at low temperatures. This study also offers baseline values in various seasons that would be beneficial to be considered in environmental monitoring programs to avoid the misinterpretation of environmental factors, which change seasonally.

  References   ref

Aebi, H., 1984. Catalase in vitro. Methods Enzymol. 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

Alves, A.S., Caetano, A., Costa, J.L., Costa, M.J., Marques, J.C., 2015. Estuarine intertidal meiofauna and nematode communities as indicators of ecosystem’s recovery following mitigation measures. Ecol. Indic. 54, 184–196. https://doi.org/10.1016/j.ecolind.2015.02.013

Amaral, A.M.B., de Moura, L.K., de Pellegrin, D., Guerra, L.J., Cerezer, F.O., Saibt, N., Prestes, O.D., Zanella, R., Loro, V.L., Clasen, B., 2020. Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach. Environ. Pollut. 266, 115168. https://doi.org/10.1016/j.envpol.2020.115168

Anderson, D., Yu, T.W., Phillips, B.J., Schmezer, P., 1994. The effect of various antioxidants and other modifying agents on oxygen radicals generated DNA damage in human lymphocytes in the Comet assay. Mutat. Res. Fund Mol. Mech. Mutagen 307, 261–271. https://doi.org/10.1016/0027-5107(94)90300-X

Attri, S.D., Tyagi, A., 2010. Climate Profile of India, Met. Monograph., Environment Meteorology – 01/2010. India Meteorol. Depart., Ministry of Earth Sciences, Government of India, 129 pp.

Baag, S., Mahapatra, S., Mandal, S., 2021. An Integrated and Multibiomarker approach to delineate oxidative stress status of Bellamya bengalensis under the interactions of elevated temperature and chlorpyrifos contamination. Chemosphere, 264, 128512. https://doi.org/10.1016/j.chemosphere.2020.128512

Baag, S., Mandal, S., 2023a. Do global environmental drivers’ ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of Scylla serrata? Environ. Sci. Pollut. Res. 30, 23213–23224. https://doi.org/10.1007/s11356-022-23849-1

Baag, S., Mandal, S., 2023b. The influence of ocean acidifica- tion and warming on responses of Scylla serrata to oil pollution: an integrated biomarker approach. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 266, 110847. https://doi.org/10.1016/j.cbpb.2023.110847

Beliaeff, B., Burgeot, T., 2002. Integrated biomarker response: a useful tool for ecological risk assessment. Environ. Toxicol. Chem. 21, 1316–1322. https://doi.org/10.1002/etc.5620210629

Bhagat, J., Sarkar A., Ingole, B.S., 2016. DNA Damage and Oxidative Stress in Marine Gastropod Morula granulata Exposed to Phenanthrene. Water Air Soil Pollut. 227, 114. https://doi.org/10.1007/s11270-016-2815-1

Bhowmik, M., Mandal, S., 2021. Do seasonal dynamics influence traits and composition of macrobenthic assemblages of Sundarbans Estuarine System, India? Oceanologia 63(1), 80–98. https://doi.org/10.1016/j.oceano.2020.10.002

Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1006/abio.1976.9999

Brooks, S., Harman, C., Zaldibar, B., Izagirre, U., Glette, T., Marigomez, I., 2011. Integrated biomarker assessment of the effects exerted by treated produced water from an onshore natural gas processing plant in the North Sea on the mussel Mytilus edulis. Mar. Pollut. Bull. 62, 327–339.

Brooks, S., Lyons, B., Goodsir, F., Bignell, J., Thain, J., 2009. Biomarker responses in mussels, an integrated approach to biological effects measurements. J. Toxicol. Environ. Health Pt. A 72, 196–208.

Cailleaud, K., Maillet, G., Budzinski, H., Souissi, S., ForgetLeray, J., 2007. Effects of salinity and temperature on the expression of enzymatic biomarkers in Eurytemora affinis (Calanoida, Copepoda). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 841–849.

Catarina, V., Madeira, D., Mendonça, V., Madeira, C., Diniz, M.S., 2021. Warming in shallow waters: Seasonal response of stress biomarkers in a tide pool fish. Estuar. Coast. Shelf Sci. 251, 107187. https://doi.org/10.1016/j.ecss.2021.107187

Chen, J.C., Chia, P.G., 1997. Osmotic and ionic concentrations of Scylla serrata (Forskal) subjected to different salinity levels. Compar. Biochem. Physiol. A 227, 239–244. https://doi.org/10.1016/S0300-9629(96)00237-X

Clarke, K.R., Gorley, R.N., 2006. PRIMER V6: User Manual/Tutorial. PRIMER-E, Plymouth.

Clarke, K.R., Somerfield, P.J., Chapman, M.G., 2008. Testing of null hypotheses in explanatory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar Biol. 366, 56–69.

CMFRI, 2020. Annual Report 2019. Central Marine Fish- eries Research Institute, Kochi. 284 pp.

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260. https://doi.org/10.1038/387253a0

Dagnino, A., Allen, J.I., Moore, M.N., Broeg, K., Canesi, L., Viarengo, A., 2007. Development of an expert system for the integration of biomarker responses in mussels into an animal health index. Biomarkers, 12, 155–172. https://doi.org/10.1080/13547500601037171

Devin, S., Burgeot, T., Giamberini, L., Minguez, L., PainDevin, S., 2014. The integrated biomarker response revisited: optimization to avoid misuse. Environ. Sci. Pollut. Res. 21, 2448–2454. https://doi.org/10.1007/s11356-013-2169-9

dos Santos, C.C.M., da Costa, J.F.M., Dos Santos, C.R.M., Amado, L.L., 2019. Influence of seasonality on the natural modulation of oxidative stress biomarkers in mangrove crab Ucides cordatus (Brachyura, Ucididae). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 227, 146–153. https://doi.org/10.1016/j.cbpa.2018.10.001

Ern, R., Huong, D.T.T., Nguyen, V.C., Wang, T., Bayley, M., 2012. Effects of salinity on standard metabolic rate and critical oxygen tension in the giant freshwater prawn (Macrobrachium rosenbergii). Aquacul. Res. 44, 1–7. https://doi.org/10.1111/j.1365-2109.2012.03129.x

Feidantsis, K., Michaelidis, B., Raitsos, D.E., Vafidis, D., 2021. Seasonal metabolic and oxidative stress responses of commercially important invertebrate species—correlation with their habitat. Mar. Ecol. Prog. Ser. 658, 27–46. https://doi.org/10.3354/meps13565

Ghosh, M., Mandal, S., Chatterjee, M., 2018. Impact of unusual monsoonal rainfall in structuring meiobenthic assemblages at Sundarban estuarine system, India. Ecol. Indic. 94, 139–150. https://doi.org/10.1016/j.ecolind.2018.06.067

Ghosh, M., Mandal, S., 2019. Does vertical distribution of meiobenthic community structure differ among various mangrove habitats of Sundarban Estuarine System? Reg. Stud. Mar. Sci. 31, 1—11. https://doi.org/10.1016/j.rsma.2019.100778

Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. Methods of seawater analysis. Verlag Chemie, Weinheim Germany, 634 pp.

Grilo, T.F., Cardoso, P.G., Dolbeth, M., Bordalo, M.D., Pardal, M.A., 2011. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar. Pollut. Bull. 62, 303–311. https://doi.org/10.1016/j.marpolbul.2010.10.010

Gutteridge, J.M.C., Halliwell, B., 2018. Mini-review: oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun. 502, 183–186. https://doi.org/10.1016/j.bbrc.2018.05.045

Habig, W.H., Pabst, M.J., Jakoby, W.B., 1974. Glutathione S transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130–7139.

Halliwell, B., Gutteridge, J.M.C., 2007. Free Radicals in Biology and Medicine. Oxford Univ. Press, Oxford.

Hu, M., Li, L., Sui, Y., Li, J., Wang, Y., Lu, W., Dupont, S., 2015. Effect of pH and temperature on antioxidant responses of the thick shell mussel Mytilus coruscus. Fish Shellfish Immunol. 46(2), 573–583. https://doi.org/10.1016/j.fsi.2015.07.025

Jackson, C.J., Burford, M.A., 2003. The effects of temperature and salinity on growth and survival of larval shrimp Penaeus Semisulcatus (Decapoda: Penaeoidea). J. Crustacean Biol. 23 (4), 819–826. https://doi.org/10.1651/C-2379

Kannan, D., Jagadeesan, K., Shettu, N., Thirunavukkarasu, P., 2014. Maturation and Spawning of Commercially Important Penaeid Shrimp Penaeus monodon Fabricus at Pazhayar Tamil Nadu (South East Coast of India). J. Fish. Aquat. Sci. 9, 170–175. https://doi.org/10.3923/jfas.2014.170.175

Kennish, M.J., 2002. Environmental threats and environmental future of estuaries. Environ. Conserv. 29, 78–107. https://doi.org/10.3923/jfas.2014.170.175

Kong, X., Wang, G., Li, S., 2008. Seasonal variations of AT- Pase activity and antioxidant defenses in gills of the mud crab Scylla serrata (Crustacea, Decapoda). Mar. Biol. 154, 269–276. https://doi.org/10.1007/s00227-008-0920-4

Lushchak, V.I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 101, 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

Luvizotto-Santos, R., Lee, J.T., Branco, Z.P., Bianchini, A., Nery, L.E.M., 2003. Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata Dana, 1851 (crustacea-grapsidae). J. Exp. Zool. Part A. 295, 200–205. https://doi.org/10.1002/jez.a.10219

Madeira, C., Leal, M.C., Diniz, M.S., Cabral, H.N., Vinagre, C., 2018. Thermal stress and energy metabolism in two circumtropical decapod crustaceans: Responses to acute temperature events. Mar. Environ. Res. 141, 148–158. https://doi.org/10.1016/j.marenvres.2018.08.015

Madeira, D., Mendonça, V., Dias, M., Roma, J., Costa, P.M., Larguinho, M., Vinagre, C., Diniz, M.S., 2015. Physiological, cellular and biochemical thermal stress response of intertidal shrimps with different vertical distributions: Palaemon elegans and Palaemon serratus. Comp. Biochem. Physiol. A 183, 107–115. https://doi.org/10.1016/j.cbpa.2014.12.039

Madeira, D., Mendonça, V., Vinagre, C., Diniz, M.S., 2016. Is the stress response affected by season? Clues from an in situ study with a key intertidal shrimp. Mar. Biol. 163, art. no. 41. https://doi.org/10.1007/s00227-015-2803-9

Malanga, G., Estevez, M.S., Calvo, J., Abele, D., Puntarulo, S., 2007. The effect of seasonality on oxidative metabolism in Nacella (Patinigera) magellanica. Comp. Biochem. Physiol. A 146, 551–558. https://doi.org/10.1016/j.cbpa.2006.01.029

Marques, J.A., Abrantes, D.P., Marangoni, L.F., Bianchini, A., 2020. Ecotoxicological responses of a reef calcifier exposed to copper, acidification and warming: A multiple biomarker approach. Environ. Pollut. 257, 113572. https://doi.org/10.1016/j.envpol.2019.113572

Martin, Jr., J.P., Dailey, M., Sugarman, E., 1987. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch. Biochem. Biophys. 255, 329–336. https://doi.org/10.1016/0003-9861(87)90400-0

Na, J., Song, J., Achar, C., Jung, J., 2021. Synergistic effect of microplastic fragments and benzophenone-3 additives on lethal and sublethal Daphnia magna toxicity. J. Hazard. Mater. 402, 123845. https://doi.org/10.1016/j.jhazmat.2020.123845

Nandy, T., Baag, S., Mandal, S., 2021. Impact of elevated temperature on physiological energetics of Penaeus monodon post larvae: A mesocosm study. J. Therm. Biol. 97, 102829. https://doi.org/10.1016/j.jtherbio.2020.102829

Nandy, T., Mandal, S., 2020. Unravelling the spatio-temporal variation of zooplankton community from the river Matla in the Sundarbans Estuarine System, India. Oceanologia 62 (3), 326–346. https://doi.org/10.1016/j.oceano.2020.03.005

Nandy, T., Mandal, S., Chatterjee, M., 2018. Intra-monsoonal variation of zooplankton population in the Sundarbans Estuarine System, India. Environ. Monit. Assess. 190, 1–20. https://doi.org/10.1007/s10661-018-6969-8

Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358. https://doi.org/10.1016/0003-2697(79)90738-3

Paital, B., Chainy, G.B., 2013. Seasonal variability of antioxidant biomarkers in mud crabs (Scylla serrata). Ecotoxicol. Environ. Saf. 87, 33–41. https://doi.org/10.1016/j.ecoenv.2012.10.006

Paital, B., Chainy, G.B.N., 2010. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Compar. Biochem. Physiol. C 151, 142–151. https://doi.org/10.1016/j.cbpc.2009.09.007

Paschke, K., Cumillaf, J.P., Loyola, S., Gebauer, P., Urbina, M., Chinal, M.E., Pascual, C., 2010. Effect of dissolved oxygen level on respiratory metabolism, nutritional physiology, and immune condition of southern king crab Lithodes santolla (Molina, 1782) (Decapoda, Lithodidae). Mar. Biol. 157, 7–18. https://doi.org/10.1007/s00227-009-1291-1

Prandle, D., 2009. Estuaries: Dynamics, Mixing, Sedimentation and Morphology. Cambridge University Press, UK.

Qiu, J., Wang, W.N., Wang, L.J., Liu, Y.F., Wang, A.L., 2011. Oxidative stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperature stress. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 154, 36–41. https://doi.org/10.1016/j.cbpc.2011.02.007

Ragunathan, M.G., 2017. Vicissitudes of oxidative stress biomarkers in the estuarine crab Scylla serrata with reference to dry and wet weather conditions in Ennore estuary, Tamil Nadu, India. Mar. Pollut. Bull. 116, 113–120. https://doi.org/10.1016/j.marpolbul.2016.12.069

Rahi, M.L., Azad, K.N., Tabassum, M., Irin, H.H., Hossain, K.S., Aziz, D., Moshtaghi, A., Hurwood, D.A., 2021. Effects of Salinity on Physiological, Biochemical and Gene Expression Parameters of Black Tiger Shrimp (Penaeus monodon): Potential for Farming in Low-Salinity Environments. Biology (Basel). 10, 1220. https://doi.org/10.3390/biology10121220

Regoli, F., Giuliani, M.E., 2014. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar. Environ. Res. 93, 106–117. https://doi.org/10.1016/j.marenvres.2013.07.006

Romero, M.C., Tapella, F., Sotelano, M.P., Ansaldo, M., Lovrich, G.A., 2011. Oxidative stress in the subantarctic false king crab Paralomis granulosa during air exposure and subsequent re-submersion. Aquaculture 319, 205–210. https://doi.org/10.1016/j.aquaculture.2011.06.041

Samanta, P., Im, H., Na, J., Jung, J., 2018. Ecological risk assessment of a contaminated stream using multi-level integrated biomarker response in Carassius auratus. Environ. Pollut. 233, 429–438. https://doi.org/10.1016/j.envpol.2017.10.061

Sardi, A.E., Sandrini-Neto, L., da Cunha Lana, P., Camus, L., 2020. Seasonal variation of oxidative biomarkers in gills and digestive glands of the clam Anomalocardia flexuosa and the mangrove oyster Crassostrea rhizophorae. Mar. Pollut. Bull. 156, 111193. https://doi.org/10.1016/j.marpolbul.2020.111193

Schvezov, N., Lovrich, G.A., Florentı́n, O., Romero, M.C., 2015. Baseline defense system of commercial male king crab Lithodes santolla from the Beagle Channel. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 181, 18–26. https://doi.org/10.1016/j.cbpa.2014.11.016

Semprucci, F., Balsamo, M., Frontalini, F., 2014. The nematode assemblage of a coastal lagoon (Lake Varano, Southern Italy): ecology and biodiversity patterns. Sci. Mar. 78, 579–588. https://doi.org/10.3989/scimar.04018.02A

Stoliar, O.B., Lushchak, V.I., 2012. Environmental pollution and oxidative stress in fish. [in:] Lushchak, V.I. (Ed.), Oxidative Stress: Environmental Induction and Dietary Antioxidants. InTech Open, Rijeka, Croatia, 131–166. https://doi.org/10.5772/38094

Van Der Oost, R., Beyer, J., Vermeulen, N.P.E., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

Wang, W.N., Wang, A.L., Liu, Y., Xiu, J., Liu, Z.B., Sun, R.Y., 2006. Effects of temperature on growth, adenosine phosphates, ATPase and cellular defense response of juvenile shrimp Macrobrachium nipponense. Aquaculture, 256, 624–630. https://doi.org/10.1016/j.aquaculture.2006.02.009

Zheng, J., Cao, J., Yong, M., Su, Y., Wang, J., 2019. Effects of thermal stress on oxidative stress and antioxidant response, heat shock proteins expression profiles and histological changes in Marsupenaeus japonicus. Ecol. Indicat. 101, 780–791. https://doi.org/10.1016/j.ecolind.2018.11.044


full, complete article - PDF


Carbonaceous aerosol particle sources in Manila North Port and the urban environment
Oceanologia, 67 (1)/2025, 67109, 20 pp.
https://doi.org/10.5697/TQCH9343

Touqeer Gill1, Simonas Kecorius1,2,*, Kamilė Kandrotaitė1, Vadimas Dudoitis1, Leizel Madueño3, Alfred Wiedensohler3, Laurent Poulain3 Edgar A. Vallar4, Maria Cecilia D. Galvez4, Steigvilė Byčenkienė1, Kristina Plauškaitė1
1Center for Physical Sciences and Technology (FTMC), Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
e-mail: simonas.kecorius@ftmc.lt (S. Kecorius)
2Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
3Leibniz-Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
4ARCHERS, CENSER, De La Salle University, 2401 Taft Ave., Malate, Philippines
*corresponding author

Keywords: Equivalent black carbon; Source apportionment; Absorption Ångström exponent; Urban environment; Air pollution

Received: 29 July 2024; revised: 23 October 2024; accepted: 16 December 2024.

Highlights

Abstract

This study addresses the pressing issue of black carbon (BC) pollution in urban areas, focusing on two locations in the Philippines: Quezon City’s East Avenue (QCG, roadside urban environment) and Manila’s North Port. We found that organic aerosol particles (OA) made a greater contribution (80%) to total submicron particulate matter compared to inorganic aerosol (IA) (20%). The mean hourly average equivalent black carbon (eBC) mass concentration at the QCG site (35.97 ± 16.20 𝜇g/m3) was noticeably higher compared to the Port (10.27 ± 5.99 𝜇g/m3), consistent with trends in other Asian cities. Source apportionment analysis identified eBC related to transport emissions (eBCTR) as the predominant contributor to eBC, accounting for 86% at the Port and 80% at QCG. Diurnal patterns showed the highest eBCTR mass concentrations (47.69 ± 9.34 𝜇g/m3) during morning rush hours, which can be linked to light-duty vehicles. Late-night (10 pm–12 am) high concentrations (30.63 ± 8.45 𝜇g/m3) can be associated with heavy diesel trucks at the QCG site. Whereas at the Port site, hourly average higher eBCTR concentration (12.24 ± 3.65 𝜇g/m3) during morning hours (6 am–8 am) can be attributed to the traffic of heavy-duty trucks, trollers, diesel-powered cranes and ships. Compared to the QCG site, a lower eBC concentration at the Port site was favoured by the more open environment and higher wind speed, facilitating better pollutant dispersion. The mean hourly average concentrations of PM2.5 and PM10, measured using an Aerodynamic Particle Sizer, consistently exceeded the air quality standards set by the World Health Organization and the Philippine Clean Air Act at both sites. This study highlights the persisting BC pollution in developing regions and calls for scientifically based strategies to mitigate the air quality crisis.

  References   ref

Alam, K., Blaschke, T., Madl, P., Mukhtar, A., Hussain, M., Trautmann, T., Rahman, S., 2011. Aerosol size distribution and mass concentration measurements in various cities of Pakistan. J. Environ. Monit. 13, 1944–1952. https://doi.org/10.1039/c1em10086f

Alas, H.D., Müller, T., Birmili, W., Kecorius, S., Cambaliza, M.O., Simpas, J.B.B., Cayetano, M., Weinhold, K., Vallar, E., Galvez, M.C., Wiedensohler, A., 2018. Spatial characterization of black carbon mass concentration in the atmosphere of a southeast Asian megacity: An air quality case study for metro Manila, Philippines. Aerosol Air Qual. Res. 18, 2301–2317. https://doi.org/10.4209/aaqr.2017.08.0281

Atabakhsh, S., Poulain, L., Chen, G., Canonaco, F., Prévôt, A.S.H., Pöhlker, M., Wiedensohler, A., Herrmann, H., 2023.A 1-year aerosol chemical speciation monitor (ACSM) source analysis of organic aerosol particle contributions from anthropogenic sources after long-range transport at the TROPOS research station Melpitz. Atmos. Chem. Phys. 23, 6963–6988. https://doi.org/10.5194/acp-23-6963-2023

Bartley, D.L., Martinez, A.B., Baron, P.A., Secker, D.R., Hirst, E., 2000. Droplet distortion in accelerating flow. J. Aerosol Sci. 31, 1447–1460. https://doi.org/10.1016/S0021-8502(00)00042-2

Bagtasa, G., Yuan, C.S., 2020. Influence of local meteorology on the chemical characteristics of fine particulates in Metropolitan Manila in the Philippines. Atmos. Pollut. Res. 11, 1359–1369. https://doi.org/10.1016/j.apr.2020.05.013

Bilal, M., Ali, M.A., Nichol, J.E., Bleiweiss, M.P., de Leeuw, G., Mhawish, A., Shi, Y., Mazhar, U., Mehmood, T., Kim, J., Qiu, Z., Qin, W., Nazeer, M. 2022. AEROsol generic classification using a novel Satellite remote sensing Approach (AEROSA). Front. Environ. Sci. 10:981522. https://doi.org/10.3389/fenvs.2022.981522

Bisht, D.S., Dumka, U.C., Kaskaoutis, D.G., Pipal, A.S., Srivastava, A.K., Soni, V.K., Attri, S.D., Sateesh, M., Tiwari, S. 2015. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Sci. Total Environ. 521–522, 431–445. https://doi.org/10.1016/j.scitotenv.2015.03.083

Bodhaine, B.A., 1995. Aerosol absorption measurements at Barrow, Mauna Loa and the south pole. J. Geophys. Res. 100, 8967–8975. https://doi.org/10.1029/95JD00513

Braun, R.A., Aghdam, M.A., Bañaga, P.A., Betito, G., Cambaliza, M.O., Cruz, M.T., Lorenzo, G.R., Macdonald, A.B., Simpas, J.B., 2020. Long-range aerosol transport and impacts on size-resolved aerosol composition in Metro Manila, Philippines. Atmos. Chem. Phys. 20, 2387–2405, https://doi.org/10.5194/acp-20-2387-2020

Byčenkienė, S., Gill, T., Khan, A., Kalinauskaitė, A., Ulevicius, V., Plauškaitė, K., 2023. Estimation of Carbonaceous Aerosol Sources under Extremely Cold Weather Conditions in an Urban Environment. Atmosphere 14. https://doi.org/10.3390/atmos14020310

Carslaw, D.C., 2005. Evidence of an increasing NO2/NOX emissions ratio from road traffic emissions. Atmos. Environ. 39, 4793–4802. https://doi.org/10.1016/j.atmosenv.2005.06.023

Cadondon, J., Caido, N.G., Galvez, M.C., Rempillo, O., Esmeria Jr., J., Vallar, E., 2024. Black carbon and PM0.49 characterization in Manila North Harbour Port, Metro Manila, Philippines. Environ. Adv. 16, 100526. https://doi.org/10.1016/j.envadv.2024.100526

Cappa, C.D., Onasch, T.B., Massoli, P., Worsnop, D.R., Bates, T.S., Cross, E.S., Davidovits, P., Hakala, J., Hayden, K.L., Jobson, B.T., Kolesar, K.R., Lack, D.A., Lerner, B.M., Li, S.M., Mellon, D., Nuaaman, I., Olfert, J.S., Petäjä, T., Quinn, P.K., Song, C., Subramanian, R., Williams, E.J., Zaveri, R.A., 2012. Response to Comment on “Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon”. Science 339(6118), 393-c. https://doi.org/10.1126/science.1230260

Cappa, C.D., Kolesar, K.R., Zhang, X., Atkinson, D.B., Pekour, M.S., Zaveri, R.A., Zelenyuk, A., Zhang, Q., 2016. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California. Atmos. Chem. Phys. 16, 6511–6535. https://doi.org/10.5194/acp-16-6511-2016

Cesari, D., Merico, E., Dinoi, A., Marinoni, A., Bonasoni, P., Contini, D., 2018. Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy. Atmos. Res. 200, 97–108. https://doi.org/10.1016/j.atmosres.2017.10.004

Chen, X., Zhang, Z., Engling, G., Zhang, R., Tao, J., Lin, M., Sang, X., Chan, C., Li, S., Li, Y., 2014. Characterization of fine particulate black carbon in Guangzhou, a megacity of south China. Atmos. Pollut. Res. 5, 361–370. https://doi.org/10.5094/APR.2014.042

Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope, C.A., Shin, H., Straif, K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C.J.L., Forouzanfar, M.H., 2017. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J.S., Jennings, S.G., Moerman, M., Petzold, A., Schmid, O., Baltensperger, U., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech. 3, 457–474. https://doi.org/10.5194/amt-3-457-2010

Cruz, M.T., Simpas, J.B., Sorooshian, A., Betito, G., Cambaliza, M.O.L., Collado, J.T., Eloranta, E.W., Holz, R., Topacio, X.G.V., Del Socorro, J., Bagtasa, G., 2023. Impacts of regional wind circulations on aerosol pollution and planetary boundary layer structure in Metro Manila, Philippines. Atmos. Environ. 293, 119455. https://doi.org/10.1016/j.atmosenv.2022.119455

Deng, J., Guo, H., Zhang, H., Zhu, J., Wang, X., Fu, P., 2020. Source apportionment of black carbon aerosols from light absorption observation and source-oriented modeling: An implication in a coastal city in China. Atmos. Chem. Phys. 20, 14419–14435. https://doi.org/10.5194/acp-20-14419-2020

De Sa, S.S., Rizzo, L.V., Palm, B.B., Campuzano-Jost, P., Day, D.A., Yee, L.D., Wernis, R., Isaacman-VanWertz, G., Brito, J., Carbone, S., Liu, Y.J., Sedlacek, A., Springston, S., Goldstein, A.H., Barbosa, H.M.J., Alexander, M.L., Artaxo, P., Jimenez, J.L., Martin, S.T., 2019. Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmos. Chem. Phys., 19, 7973–8001. https://doi.org/10.5194/acp-19-7973-2019

Donaldson, K., Gilmour, M.I., Macnee, W., 2000. Commentary Asthma and PM 10. Respir. Res. 1, 12–15. Draxler, R.R., Hess, G.D., 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 47, 295–308.

Dumka, U.C., Kaskaoutis, D.G., Tiwari, S., Safai, P.D., Attri, S.D., Soni, V.K., Singh, N., Mihalopoulos, N., 2018. Assessment of biomass burning and fossil fuel contribution to black carbon concentrations in Delhi during winter. Atmos.Environ. 194, 93–109. https://doi.org/10.1016/j.atmosenv.2018.09.033

Dumka, U.C., Kaskaoutis, D.G., Devara, P.C.S., Kumar, R., Kumar, S., Tiwari, S., Gerasopoulos, E., Mihalopoulos, N., 2019. Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmos. Res. 216, 11–25. https://doi.org/10.1016/j.atmosres.2018.09.016

Dumka, U.C., Tiwari, S., Kaskaoutis, D.G., Soni, V.K., Safai, P.D., Attri, S.D., 2019. Aerosol and pollutant characteristics in Delhi during a winter research campaign. Environ. Sci. Pollut. Res. 26, 3771–3794. https://doi.org/10.1007/s11356-018-3885-y

Fan, M., Zhang, W., Zhang, Y., Li, J., Fang, H., Al, F.A.N.E.T., 2023. Formation Mechanisms and Source Apportionments of Nitrate Aerosols in a Megacity of Eastern China Based On Multiple Isotope Observations. J. Geophys. Res.-Atmos. 1–14. https://doi.org/10.1029/2022JD038129

Gani, S., Bhandari, S., Seraj, S., Wang, D.S., Patel, K., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., Apte, J.S., 2019. Submicron aerosol composition in the world’s most polluted megacity: The Delhi Aerosol Supersite study. Atmos. Chem. Phys. 19, 6843–6859. https://doi.org/10.5194/acp-19-6843-2019

Geng, X., Li, J., Zhong, G., Zhao, S., Tian, C., Zhang, Y.-L., Zhang, G., 2024. Ship Emissions as the Largest Contributor to Coastal Atmospheric Black Carbon at a Receptor Island in Southern China. Environ. Sci. Technol. Lett. 11, 723−729. https://doi.org/10.1021/acs.estlett.4c00362

Grivas, G., Stavroulas, I., Liakakou, E., Kaskaoutis, D.G., Bougiatioti, A., Paraskevopoulou, D., Gerasopoulos, E., Mihalopoulos, N., 2019. Measuring the spatial variability of black carbon in Athens during wintertime. Air Quality, Atmos. Health 12, 1459–1470. https://doi.org/10.1007/s11869-019-00756-y

Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinilä, K., Backman, J., Aurela, M., Saarikoski, S., Rönkkö, T., Asmi, E., Timonen, H., 2018. Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmos. Environ. 190, 87–98. https://doi.org/10.1016/j.atmosenv.2018.07.022

Hinds, W.C. 1982. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. John Wiley & Sons, Hoboken.

Hinds, W.C., 1998. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. John Wiley & Sons, Hoboken.

Kaminska, J.A., Turek, T., Van Poppel, M., Peters, J., Hofman, J., Kazak, J.K., 2023. Whether cycling around the city is in fact healthy in the light of air quality – Results of black carbon. J. Environ. Manage. 337, 117694. https://doi.org/10.1016/j.jenvman.2023.117694

Kasthuriarachchi, N.Y., Rivellini, L.H., Adam, M.G., Lee, A.K.Y., 2020. Light absorbing properties of primary and secondary brown carbon in a tropical urban environment. Environ. Sci. Technol., 54, 10808–10819. https://doi.org/10.1021/acs.est.0c02414

Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Bougiatioti, A., Liakakou, E., Dumka, U.C., Gerasopoulos, E., Mihalopoulos, N., 2021. Apportionment of black and brown carbon spectral absorption sources in the urban environment of Athens, Greece, during winter. Sci. Total Environ. 801, 149739. https://doi.org/10.1016/j.scitotenv.2021.149739

Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Liakakou, E., Dumka, U.C., Gerasopoulos, E., Mihalopoulos, N., 2021. Effect of aerosol types from various sources at an urban location on spectral curvature of scattering and absorption coefficients. Atmospheric Research, 264, 105865. https://doi.org/10.1016/j.atmosres.2021.105865

Kecorius, S., Madueño, L., Löndahl, J., Vallar, E., Cecilia, M., Idolor, L.F., Gonzaga-Cayetano, M., Müller, T., Birmili, W., Wiedensohler, A., 2019. Science of the Total Environment Respiratory tract deposition of inhaled roadside ultra fine refractory particles in a polluted megacity of South-East Asia. Sci. Total Environ. 663, 265–274. https://doi.org/10.1016/j.scitotenv.2019.01.338

Kecorius, S., Madueño, L., Vallar, E., Alas, H., Betito, G., Birmili, W., Cambaliza, M.O., Catipay, G., Gonzaga-Cayetano, M., Galvez, M.C., Lorenzo, G., Müller, T., Simpas, J.B., Tamayo, E.G., Wiedensohler, A., 2017. Aerosol particle mixing state, refractory particle number size distributions and emission factors in a polluted urban environment: Case study of Metro Manila, Philippines. Atmos. Environ. 170, 169–183. https://doi.org/10.1016/j.atmosenv.2017.09.037

Kim, S.W., Cho, C., Rupakheti, M., 2021. Estimating contributions of black and brown carbon to solar absorption from aethalometer and AERONET measurements in the highly polluted Kathmandu Valley, Nepal. Atmos. Res., 247, 105164. https://doi.org/10.1016/j.atmosres.2020.105164

Kumar, R.R., Soni, V.K., Jain, M.K., 2020. Evaluation of spatial and temporal heterogeneity of black carbon aerosol mass concentration over India using three-year measurements from IMD BC observation network. Sci. Total Environ. 723, 138060. https://doi.org/10.1016/j.scitotenv.2020.138060

Lavanchy, V.M.H., Gäggeler, H.W., Schotterer, U., Schwikowski, M., Baltensperger, U., 1999. Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). J. Geophys. Res. Atmos. 104, 21227–21236. https://doi.org/10.1029/1999JD900408

Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371. https://doi.org/10.1038/nature15371

Liu, P.S.K., Deng, R., Smith, K.A., Williams, L.R., Jayne, J.T., Canagaratna, M.R., Moore, K., Onasch, T.B., Worsnop, D.R., Deshler, T., 2007. Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer. Aerosol Sci. Technol. 41, 721–733. https://doi.org/10.1080/02786820701422278

Liu, C., Chung, C.E., Yin, Y., Schnaiter, M., 2018. The absorption Ångström exponent of black carbon: From numerical aspects. Atmos. Chem. Phys. 18, 6259–6273. https://doi.org/10.5194/acp-18-6259-2018

Li, Z., Tan, H., Zheng, J., Liu, L., Qin, Y., Wang, N., Li, F., Li, Y., Cai, M., Ma, Y., Chan, C.K., 2019. Light absorption properties and potential sources of particulate brown carbon in the Pearl River Delta region of China. Atmos. Chem. Phys., 19, 11669–11685. https://doi.org/10.5194/acp-19-11669-2019

Liakakou, E., Kaskaoutis, D.G., Grivas, G., Stavroulas, I., Tsagkaraki, M., Paraskevopoulou, D., Bougiatioti, A., Dumka, U.C., Gerasopoulos, E., Mihalopoulos, N. 2020. Long-term brown carbon spectral characteristics in a Mediterranean city (Athens). Sci. Total Environ. 708, 135019. https://doi.org/10.1016/j.scitotenv.2019.135019

Madueño, L., Kecorius, S., Birmili, W., Müller, T., Simpas, J., Vallar, E., Galvez, M.C., Cayetano, M., Wiedensohler, A., 2019. Aerosol particle and black carbon emission factors of vehicular fleet in Manila, Philippines. Atmosphere (Basel). 10. https://doi.org/10.3390/atmos10100603

Madueño, L., Kecorius, S., Löndahl, J., Schnelle-Kreis, J., Wiedensohler, A., Pöhlker, M., 2022. A novel in-situ method to determine the respiratory tract deposition of carbonaceous particles reveals dangers of public commuting in highly polluted megacity. Part. Fibre Toxicol. 19. https://doi.org/10.1186/s12989-022-00501-x

Merico, E., Dinoi, A., Contini, D., 2019. Development of an integrated modelling-measurement system for nearreal-time estimates of harbour activity impact to atmospheric pollution in coastal cities. Transp. Res. Pt. D 73, 108–119. https://doi.org/10.1016/j.trd.2019.06.009

Middlebrook, A.M., Bahreini, R., Jimenez, J.L., Canagaratna, M.R., 2012. Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data. Aerosol Sci. Technol. 46, 258–271. https://doi.org/10.1080/02786826.2011.620041

Miller, R.M., Rauber, R.M., Di Girolamo, L., Rilloraza, M., Fu, D., Mcfarquhar, G.M., Nesbitt, S.W., Ziemba, L.D., Woods, S., Thornhill, K.L., 2023. Influence of natural and anthropogenic aerosols on cloud base droplet size distributions in clouds over the South China Sea and West Pacific. Atmos. Chem. Phys. 23, 8959–8977. https://doi.org/10.5194/acp-23-8959-2023

Minderytė, A., Pauraite, J., Dudoitis, V., Plauškaitė, K., Kilikevičius, A., Matijošius, J., Rimkus, A., Kilikevičienė, K., Vainorius, D., Byčenkienė, S., 2022. Carbonaceous aerosol source apportionment and assessment of transport-related pollution. Atmos. Environ. 279. https://doi.org/10.1016/j.atmosenv.2022.119043

Myllyvirta, L., Suarez, I., 2020. Air quality and health impacts of coal-fired power in the Philippines. Nie, D., Qiu, Z., Wang, X., Liu, Z., 2022. Characterizing the source apportionment of black carbon and ultrafine particles near urban roads in Xi’an, China. Environ. Res. 215, 114209. https://doi.org/10.1016/j.envres.2022.114209

Oanh, N.T., Upadhyay, N., Zhuang, Y.H., Hao, Z.P., Murthy, D.V.S., Lestari, P., Villarin, J.T., Chengchua, K., Co, H.X., Dung, N.T., Lindgren, E.S., 2006. Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources. Atmos. Environ. 40, 3367–3380. https://doi.org/10.1016/j.atmosenv.2006.01.050

Pabroa, P.C.B., Racho, J.M.D., Jagonoy, A.M., Valdez, J.D.G., Bautista VII, A.T., Yee, J.R., Pineda, R., Manlapaz, J., Atanacio, A.J., Coronel, I.C. V., Salvador, C.M.G., Cohen, D.D., 2022. Characterization, source apportionment and associated health risk assessment of respirable air particulates in Metro Manila, Philippines. Atmos. Pollut. Res. 13, 101379. https://doi.org/10.1016/j.apr.2022.101379

Park, S., Yu, G.H., 2019. Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea. Environ. Eng. Res. 24, 159–172. https://doi.org/10.4491/eer.2018.166

Pani, S.K., Lin, N.-H., Griffith, S.M., Chantara, S., Lee, C.-T., Thepnuan, D., Tsai, Y.I., 2021. Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia. Environ. Pollut. 276, 116735. https://doi.org/10.1016/j.envpol.2021.116735

Patel, K., Bhandari, S., Gani, S., Campmier, M.J., Kumar, P., Habib, G., Apte, J., Hildebrandt Ruiz, L., 2021. Sources and Dynamics of Submicron Aerosol during the Autumn Onset of the Air Pollution Season in Delhi, India. ACS Earth Sp. Chem. 5, 118–128. https://doi.org/10.1021/acsearthspacechem.0c00340

Park, K., Kittelson, D.B., McMurry, P.H., 2004. Structural properties of diesel exhaust particles measured by Transmission Electron Microscopy (TEM): Relationships to particle mass and mobility. Aerosol Sci. Technol. 38, 881–889. https://doi.org/10.1080/027868290505189

Park, S.S., Hansen, A.D.A., Cho, S.Y., 2010. Measurement of real-time black carbon for investigating spot loading effects of Aethalometer data. Atmos. Environ. 44, 1449–1455. https://doi.org/10.1016/j.atmosenv.2010.01.025

Pauraite, J., Mainelis, G., Kecorius, S., Minderytė, A., Dudoitis, V., Garbarienė, I., Plauškaitė, K., Ovadnevaite, J., Byčenkienė, S., 2021. Office indoor PM and BC level in Lithuania: The role of a long-range smoke transport event. Atmosphere (Basel) 12. https://doi.org/10.3390/atmos12081047

Peters, T.M., Ott, D., O’Shaughnessy, P.T., 2006. Comparison of the Grimm 1.108 and 1.109 portable aerosol spectrometer to the TSI 3321 aerodynamic particle sizer for dry particles. Ann. Occup. Hyg. 50, 843–850. https://doi.org/10.1093/annhyg/mel067

Pfeifer, S., Müller, T., Weinhold, K., Zikova, N., Dos Santos, S.M., Marinoni, A., Bischof, O.F., Kykal, C., Ries, L., Meinhardt, F., Aalto, P., Mihalopoulos, N., Wiedensohler, A., 2016. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): Uncertainties in particle sizing and number size distribution. Atmos. Meas. Tech. 9, 1545–1551. https://doi.org/10.5194/amt-9-1545-2016

Philippine Land Transportation Office Annual Report, 2023. Philippine Land Transportation Office Annual Rep., Philippine Gov. https://lto.gov.ph/wp-content/uploads/2023/11/Annual_Reports-2023.pdf, (Last access: 17 February 2024).

Philippine Population Density, 2015. Philippine Population Density, (based on the 2015 Census of Population), Philippine Gov. https://psa.gov.ph/system/files/phcd/202212/Citi es%2520and%2520Municipalities%2520Population %2520Projections_2015CBPP_Phils.pdf, (Last access: 17 February 2024).

Philippines, Environmental Management Bureau, 2018. National Air Quality Status Report 2016–2018. Dep. Environ. Nat. Res., Environ.l Manage. Bureau, Philippines. https://air.emb.gov.ph/wp-content/uploads/2021/01/National-Air-Quality-Status-Report-2008-2015_ With-message-from-D.pdf

Plauškaitė, K., Špirkauskaitė, N., Byčenkienė, S., Kecorius, S., Jasinevičienė, D., Petelski, T., Zielinski, T., Andriejauskienė, J., Barisevičiūtė, R., Garbaras, A., Makuch, P., Dudoitis, V., Ulevicius, V., 2017. Characterization of aerosol particles over the southern and South-Eastern Baltic Sea. Mar. Chem. 190, 13–27. https://doi.org/10.1016/j.marchem.2017.01.003

Qin, Y.M., Bo Tan, H., Li, Y.J., Jie Li, Z., Schurman, M.I., Liu, L., Wu, C., Chan, C.K., 2018. Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China. Atmos. Chem. Phys. 18, 16409–16418. https://doi.org/10.5194/acp-18-16409-2018

Quang, T.N., Hue, N.T., Dat, M. Van, Tran, L.K., Phi, T.H., Morawska, L., Thai, P.K., 2021. Motorcyclists have much higher exposure to black carbon compared to other commuters in traffic of Hanoi, Vietnam. Atmos. Environ. 245, 118029. https://doi.org/10.1016/j.atmosenv.2020.118029

Republic of the Philippines, 1999. Philippine Clean Air Act of 1999: An Act Providing for a Comprehensive Air Pollution Control Policy and for Other Purposes. 11th Congr. Philipp. Metro Manila. June 23, 1999, 1–29.

Salvador, C.M.G., Yee, J.R. dR., Coronel, I.C. V., Bautista VII, A.T., Sugcang, R.J., Lavapie, M.A.M., Capangpangan, R.Y., Pabroa, P.C.B., 2022. Variability and Source Characterization of Regional PM of Two Urban Areas Dominated by Biomass Burning and Anthropogenic Emission. Aerosol Air Qual. Res. 22, 220026. https://doi.org/10.4209/aaqr.220026

Salam, A., Hossain, T., Siddique, M.N.A., Shafiqul Alam, A.M., 2008. Characteristics of atmospheric trace gases, particulate matter, and heavy metal pollution in Dhaka, Bangladesh. Air Qual. Atmos. Heal. 1, 101–109. https://doi.org/10.1007/s11869-008-0017-8

Sandradewi, J., Prévôt, A.S.H., Weingartner, E., Schmidhauser, R., Gysel, M., Baltensperger, U., 2008. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos. Environ. 42, 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034

Salcedo, D., Onasch, T.B., Dzepina, K., Canagaratna, M.R., Zhang, Q., Huffmann, J.A., DeCarlo, P.F., Jayne, J.T., Mortimer, P., Worsnop, D.R., Kolb, C.E., Johnson, K.S., Zuberi, B., Marr, L.C., Volkamer, R., Molina, L.T., Molina, M.J., Cardenas, B., Bernabé, R.M., Márquez, C., Gaffney, J.S., Marley, N.A., Laskin, A., Shutthanandan, V., Xie, Y., Brune, W., Lesher, R., Shirley, T., Jimenez, J.L., 2006. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: Results from the CENICA Supersite. Atmos. Chem. Phys. 6, 925–946. https://doi.org/10.5194/acp-6-925-2006

Schober, P., Schwarte, L.A., 2018. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 126, 1763–1768. https://doi.org/10.1213/ANE.0000000000002864

Shakya, K.M., Peltier, R.E., Shrestha, H., Byanju, R.M., 2017. Measurements of TSP, PM10, PM2.5, BC, and PM chemical composition from an urban residential location in Nepal. Atmos. Pollut. Res. 8, 1123–1131. https://doi.org/10.1016/j.apr.2017.05.002

Stavroulas, I., Grivas, G., Liakakou, E., Kalkavouras, P., Bougiatioti, A., Kaskaoutis, D.G., Lianou, M., Papoutsidaki, K., Tsagkaraki, M., Zarmpas, P., Gerasopoulos, E., Mihalopoulos, N., 2021. Online Chemical Characterization and Sources of Submicron Aerosol in the Major Mediterranean Port City of Piraeus, Greece. Atmosphere 12, 1686. https://doi.org/10.3390/atmos12121686

Sun, Y.L., Zhang, Q., Schwab, J.J., Demerjian, K.L., Chen, W.N., Bae, M.S., Hung, H.M., Hogrefe, O., Frank, B., Rattigan, O. V., Lin, Y.C., 2011. Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass spectrometer. Atmos. Chem. Phys. 11, 1581–1602. https://doi.org/10.5194/acp-11-1581-2011

Talukdar, S., Tripathi, S.N., Lalchandani, V., Rupakheti, M., Bhowmik, H.S., Shukla, A.K., Murari, V., Sahu, R., Jain, V., Tripathi, N., Dave, J., Rastogi, N., Sahu, L., 2021. Air pollution in new delhi during late winter: An overview of a group of campaign studies focusing on composition and sources. Atmosphere (Basel). 12, 1–22. https://doi.org/10.3390/atmos12111432

Tõnisson, L., Kunz, Y., Kecorius, S., Madueño, L., Tamayo, E.G., Casanova, D.M., Zhao, Q., Schikowski, T., Hornidge, A.K., Wiedensohler, A., Macke, A., 2020. From transfer to knowledge co-production: A transdisciplinary research approach to reduce black carbon emissions in metro manila, Philippines. Sustain. 12, 1–19. https://doi.org/10.3390/su122310043

Ulevičius, V., Byčenkienė, S., Špirkauskaitė, N., Kecorius, S., 2010. Biomass burning impact on black carbon aerosol mass concentration at a coastal site: Case studies. Lithuanian J. Phys. 50, 335–344. https://doi.org/10.3952/lithjphys.50304

Tun, M.M., Juchelkova, D., Win, M.M., Thu, A.M., Puchor, T., 2019. Biomass energy: An overview of biomass sources, energy potential, and management in Southeast Asian countries. Resources 8. https://doi.org/10.3390/resources8020081

Ulevičius, V., Byčenkienė, S., Špirkauskaitė, N., Kecorius, S., 2010. Biomass burning impact on black carbon aerosol mass concentration at a coastal site: Case studies. Lithuanian J. Phys. 50, 335–344. https://doi.org/10.3952/lithjphys.50304

Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko, A., Hämeri, K., Koponen, I.K., 2007. A Simple Procedure for Correcting Loading Effects of Aethalometer Data. J. Air Waste Manag. Assoc. 57(10), 1214–1222. https://doi.org/10.3155/1047-3289.57.10.1214

Wang, J., Nie, W., Cheng, Y., Shen, Y., Chi, X., Wang, J., Huang, X., Xie, Y., Sun, P., Xu, Z., Qi, X., Su, H., Ding, A., 2018. Light absorption of brown carbon in eastern China based on 3-year multi-wavelength aerosol optical property observations and an improved absorption Ångström exponent segregation method. Atmos. Chem. Phys. 18, 9061–9074. https://doi.org/10.5194/acp-18-9061-2018

Wang, X., Heald, C.L., Sedlacek, A.J., de Sá, S.S., Martin, S.T., Alexander, M.L., Watson, T.B., Aiken, A.C., Springston, S.R., Artaxo, P. 2016. Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations. Atmos. Chem. Phys. 16, 12733–12752. https://doi.org/10.5194/acp-16-12733-2016

Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci. 34, 1445–1463. https://doi.org/10.1016/S0021-8502(03)00359-8

Werden, B.S., Giordano, M.R., Goetz, J.D., Islam, M.R., Bhave, P. V., Puppala, S.P., Rupakheti, M., Saikawa, E., Panday, A.K., Yokelson, R.J., Stone, E.A., DeCarlo, P.F., 2022. Premonsoon submicron aerosol composition and source contribution in the Kathmandu Valley, Nepal. Environ. Sci. Atmos. 2, 978–999. https://doi.org/10.1039/d2ea00008c

WHO, 2021. WHO global air quality guidelines. Coast. Estuar. Process. 2021, 1–360.

Williams, L., Aerodyne Team, 2021. AMS/ACSM Calibration Protocols. ARI AMS Users Meeting, Virtual, January 19, 2021.

Wmo/Igac, 2012. Impacts of Megacities on Air Pollution and Climate, Global Atmosphere Watch (GAW) Rep. Carbonaceous aerosol particle sources in Manila North Port and the urban environment 20/20 No. 205., WMO/IGAC.

Xie, C., Xu, W., Wang, J., Wang, Q., Liu, D., Tang, G., Chen, P., Du, W., Zhao, J., Zhang, Y., Zhou, W., Han, T., Bian, Q., Li, J., Fu, P., Wang, Z., Ge, X., Allan, J., Coe, H., Sun, Y., 2019. Vertical characterization of aerosol optical properties and brown carbon in winter in urban Beijing. Atmos. Chem. Phys. 19, 165–179. https://doi.org/10.5194/acp-19-165-2019

Yang, M., Howell, S.G., Zhuang, J., Huebert, B.J., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China. Atmos. Chem. Phys. 9, 2035–2050. https://doi.org/10.5194/acp-9-2035-2009

Yu, J., Zhu, A., Liu, M., Dong, J., Chen, R., Tian, T., Liu, T., Ma, L., Ruan, Y., 2023. Association between air pollution and cardiovascular disease hospitalizations in Lanzhou City, 2013–2020: A time series analysis. GeoHealth 8, e2022GH000780. https://doi.org/10.1029/2022GH000780

Zhou, S., Collier, S., Jaffe, D.A., Briggs, N.L., Hee, J., Iii, A.J.S., Kleinman, L., Onasch, T.B., Zhang, Q., 2017. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmos. Chem. Phys. 17, 2477–2493. https://doi.org/10.5194/acp-17-2477-2017

Zhang, Y., Albinet, A., Petit, J.E., Jacob, V., Chevrier, F., Gille, G., Pontet, S., Chretien, E., Dominik-Segue, M., Levigoureux, G., Mocnik, G., Gros, V., Jaffrezo, J.L., Favez, O., 2020. Substantial brown carbon emissions from wintertime residential wood burning over France. Sci. Total Environ. 743, 140752. https://doi.org/10.1016/j.scitotenv.2020.140752

Zhao, Z., Cao, J., Chow, J.C., Watson, J.G., Chen, L.-W., Wang, X., Wang, Q., Tian, J., Shen, Z., Zhu, C., Liu, S., Tao, J., Ye, Z., Zhang, T., Zhou, J., 2019. Multi-wavelength light absorption of black and brown carbon at a high-altitude site on the Southeastern margin of the Tibetan Plateau, China. Atmos. Environ. 212, 54–64. https://doi.org/10.1016/j.atmosenv.2019.05.035

Zuo, P., Huang, Y., Bi, J., Wang, W., Li, W., Lu, D., Zhang, Q., Liu, Q., Jiang, G., 2023. Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. Trend. Anal. Chem. 158, 116866. https://doi.org/10.1016/j.trac.2022.116866

Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Mocnik, G., Hüglin, C., Baltensperger, U., Szidat, S., Prévôt, A.S.H., 2017. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometerbased source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 17, 4229–4249. https://doi.org/10.5194/acp-17-4229-2017

full, complete article - PDF


Elucidating the variation of phytoplankton pigments in estuarine ecosystem
Oceanologia, 67 (1)/2025, 67110, 17 pp.
https://doi.org/10.5697/UXLD2477

Reshmitha Ramakrishnan1,2, Keisham Sarjit Singh1, Temjensangba Imchen1,*
1CSIR – National Institute of Oceanography, Dona Paula–403004, Goa, India;
e-mail: timchen@nio.org, temjen.imchen@gmail.com (T. Imchen)
2Department of Marine Science, Bharathidasan University, Tiruchirappalli–620024, Tamil Nadu, India *corresponding author

Keywords: Biomass proportion; Diagnostic pigments; HPLC analysis; Mandovi estuary; Phytoplankton size classes; Zuari estuary

Received: 22 July 2024; revised: 18 November 2024; accepted: 18 December 2024.

Highlights

Abstract

Phytoplankton pigments were used to study the community structure and phytoplankton size class in Goa’s estuaries. The study revealed that fucoxanthin and chlorophyll a were the most dominant pigments. The correlation of diagnostic pigments (DP) and chl a correlated positively in both estuaries (Mandovi: R2 = 0.703, P < 0.01; Zuari: R2 = 0.892, P < 0.01), suggesting that DP can serve as a proxy to measure phytoplankton biomass. Results showed that with DP and biomass proportion, phytoplankton size class (picoplankton, nanoplankton and microplankton) can be derived. Picoplankton biomass was highest during pre-monsoon season, while microplankton biomass was high during monsoon season. The high abundance of microplankton may support planktivorous fishery productivity.

  References   ref

Albin, K.J., Jyothibabu, R., Alok, K.T., Santhikrishnan, S., Sarath, S., Sudheesh, V., Sherin, C.K., Balachandran, K. K., Asha Devi, C.R., Gupta, G.V.M., 2022. Distinctive phytoplankton size responses to the nutrient enrichment of coastal upwelling and winter convection in the eastern Arabian Sea. Prog. Oceanogr. 203, 102779. https://doi.org/10.1016/j.pocean.2022.102779

Anand, S. S., Sardessai, S., Muthukumar, C., Mangalaa, K.R., Sundar, D., Parab, S.G., Kumar, M.D., 2014. Intra-and inter-seasonal variability of nutrients in a tropical monsoonal estuary (Zuari, India). Cont. Shelf. Res. 82, 9–30. https://doi.org/10.1016/j.csr.2014.04.005

Barlow, R., Sessions, H., Balarin, M., Weeks, S., Whittle, C., Hutchings, L., 2005. Seasonal variation in phytoplankton in the southern Benguela: pigment indices and ocean colour. Afr. J. Mar. Sci. 27(1), 275–287. https://doi.org/10.2989/18142320509504086

Barlow, R., Stuart, V., Lutz, V., Sessions, H., Sathyendranath, S., Platt, T., Kyewalyanga, M., Clementson, L., Fukasawa, M., Watanabe, S., Devred, E., 2007. Seasonal pigment patterns of surface phytoplankton in the subtropical southern hemisphere. Deep-Sea. Res I. Oceanogr. Res. Pap. 54(10), 1687–1703. https://doi.org/10.1016/j.dsr.2007.06.010

Bharathi, M.D., Venkataramana, V., Sarma, V.V.S.S., 2022. Phytoplankton community structure is governed by salinity gradient and nutrient composition in the tropical estuarine system. Cont. Shelf. Res. 234 (1), 104643. https://doi.org/10.1016/j.csr.2021.104643

Chowdhury, M., Biswas, H., 2023. A coherent status of summer monsoon phytoplankton communities (2017–2018) along the Western Indian continental shelf: Implications for fisheries. Sci. Total. Environ. 878, 162963. https://doi.org/10.1016/j.scitotenv.2023.162963

Chai, C., Jiang, T., Cen, J., Ge, W., Lu, S., 2016. Phytoplankton pigments and functional community structure in relation to environmental factors in the Pearl River Estuary. Oceanologia. 58 (3), 201–211. https://doi.org/10.1016/j.oceano.2016.03.001

Chase, A.P., Kramer, S.J., Haëntjens, N., Boss, E.S., Karp-Boss, L., Edmondson, M., Graff, J.R., 2020. Evaluation of diagnostic pigments to estimate phytoplankton size classes. Limnol. Oceanogr. Meth. 18 (10), 570–584. https://doi.org/10.1002/lom3.10385

Chandrasekhararao, A.V., Kurian, S., Vidya, P.J., Gauns, M., 2022. Seasonal and inter-annual variability of chemotaxonomic marker pigments in the north-eastern Arabian Sea. Deep-Sea. Res. Pt. I. 179 (1), 103679. https://doi.org/10.1016/j.dsr.2021.103679

Chilton, D., Hamilton, D.P., Nagelkerken, I., Cook, P., Hipsey, M.R., Reid, R., Brookes, J., 2021. Environmental flow requirements of estuaries: providing resilience to current and future climate and direct anthropogenic changes. Front. Environ. Sc. 9, 764218. https://doi.org/10.3389/fenvs.2021.764218

De Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., 2015. Eukaryotic plankton diversity in the sunlit ocean. Science. 348 (6237), 1–11. https://doi.org/10.1126/science.1261605

de Senerpont Domis, L.N., Elser, J.J., Gsell, A.S., Huszar, V.L., Ibelings, B.W., Jeppesen, E., Lürling, M., 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biol. 58(3), 463–482. https://doi.org/10.1111/fwb.12053.

Dutta, S., Chanda, A., Akhand, A., Hazra, S., 2016. Correlation of phytoplankton biomass (Chlorophyll-a) and nutrients with the catch per unit effort in the PFZ forecast areas of Northern Bay of Bengal during simultaneous validation of winter fishing season. Turk. J. Fish. Aquat. Sc. 16 (4), 767-777. https://doi.org/10.4194/1303-2712-v16_4_03.

Figueiras, F.G., Espinoza-González, O., Arbones, B., Garrido, J.L., Teixeira, I.G., Castro, C.G., 2014. Estimating phytoplankton size-fractionated primary production in the northwestern Iberian upwelling: Is mixotrophy relevant in pigmented nanoplankton. Prog. Oceanog. 128, 88–97. https://doi.org/10.1016/j.pocean.2014.08.011

Fietz, S., Kobanova, G., Izmest’eva, L., Nicklisch, A., 2005. Regional, vertical and seasonal distribution of phytoplankton and photosynthetic pigments in Lake Baikal. J. Plankton. Res. 27 (8), 793–810. https://doi.org/10.1093/plankt/fbi054.

Flander-Putrle, V., Francé, J., Mozetič, P., 2021. Phytoplankton pigments reveal size structure and interannual variability of the coastal phytoplankton community (Adriatic Sea). Water 14 (1), 23. https://doi.org/10.3390/w14010023

Gameiro, C., Cartaxana, P., Cabrita, M.T., Brotas, V., 2004. Variability in chlorophyll and phytoplankton composition in an estuarine system. Hydrobiologia 525, 113–124. https://doi.org/10.1023/B:HYDR.0000038858.29164.3

Gibb, S.W., Cummings, D.G. Irigoien, X., Barlow, R.G., Fauzi, R., Mantoura, C., 2001. Phytoplankton pigment chemotaxonomy of northeastern Atlantic. Deep-Sea. Res. Pt. II, 48 (4–5), 795–823. https://doi.org/10.1016/S0967-0645(00)00098-9

Gomez, F., Souissi, S., 2020. The role of salinity in phytoplankton growth dynamics and the implications for harmful algal blooms in coastal ecosystems. Mar. Environ. Res. 162, 105149.

Hilligsøe, K.M., Richardson, K., Bendtsen, J., Sørensen, L.L., Nielsen, T.G., Lyngsgaard, M.M., 2011. Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep-Sea. Res Pt. I 58 (8), 826–838. https://doi.org/10.1016/j.dsr.2011.06.004

Huete-Ortega, M., Marañon, E., Varela, M., Bode, A., 2010. General patterns in the size scaling of phytoplankton abundance in coastal waters during a 10-year time series. J.Plankton. Res. 32 (1), 1–14. https://doi.org/10.1093/plankt/fbp104.

Jeffrey, S.W., Wright, S.W., Zapata, M., 1999. Recent advances in HPLC pigment analysis of phytoplankton. Mar. Freshw. Res. 50 (8), 879–896. https://doi.org/10.1071/MF99109

Jyothibabu, R., Madhu, N.V., Jayalakshmi, K.V., Balachandran, K.K., Shiyas, C.A., Martin, G.D., 2006. Impact of fresh water influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters-India). Estuar. Coast. Mar. Sci. 69 (3–4), 505–518. https://doi.org/10.1016/j.ecss.2006.05.013

Kramer, S.J., Siegel, D.A., 2019. How can phytoplankton pigments be best used to characterize surface ocean phytoplankton groups for ocean color remote sensing algorithms?. J. Geophys. Res. Oceans, 124 (11), 7557–7574. https://doi.org/10.1029/2019JC015604

Kudela, R.M., Palacios, S.L., Austerberry, D.C., Accorsi, E.K., Guild, L.S., Torres-Perez, J., 2015. Application of hyperspectral remote sensing to cyanobacterial blooms in inland waters. Remote. Sens. Environ. 167, 196–205. https://doi.org/10.1016/j.rse.2015.01.025

Le Quéré, C., Harrison, S.P., Prentice, C.I., Buitenhuis, E.T., Aumont, O., Bopp, L., Claustre, H., 2005. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global. Change. Biol. 11 (11), 2016–2040. https://doi.org/10.1111/j.1365-2486.2005.1004.x

Madhu, N.V., Jyothibabu, R., Balachandran, K.K., 2010. Monsoon-induced changes in the size-fractionated phytoplankton biomass and production rate in the estuarine and coastal waters of southwest coast of India. Environ. Monit. Assess. 166 (1), 521–528. https://doi.org/10.1007/s10661-009-1020-8

Marañón, E., Cermeno, P., Latasa, M., Tadonléké, R.D., 2012. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 57 (5), 1266–1278. https://doi.org/10.4319/lo.2012.57.5.1266

Mouriño-Carballido, B., Hojas, E., Cermeño, P., Chouciño, P., Fernández-Castro, B., Latasa, M., Vidal, M., 2016. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19. https://doi.org/10.3354/meps11558

Mouw, C.B., Hardman-Mountford, N.J., Alvain, S., Bracher, A., Brewin, R.J., Bricaud, A., Uitz, J., 2017. A consumer’s guide to satellite remote sensing of multiple phytoplankton groups in the global ocean. Front. Mar. Sci. 4, 41. https://doi.org/10.3389/fmars.2017.00041

Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget, M.H., Devred, E., Bouman, H., 2008. Remote sensing of phytoplankton functional types. Remote. Sens. Environ. 112 (8), 3366–3375. https://doi.org/10.1016/j.rse.2008.01.021

Ning, M., Li, H., Xu, Z., Chen, L., He, Y., 2021. Picophytoplankton identification by flow cytometry and highthroughput sequencing in a clean reservoir. Ecotox. Environ. Safe. 216, 112216. https://doi.org/10.1016/j.ecoenv.2021.112216

Patil, J.S., Anil, A.C., 2011. Variations in phytoplankton community in a monsoon-influenced tropical estuary. Environ. Monit. Assess. 182, 291–300. https://doi.org/10.1007/s10661-011-1876-2

Patil, J.S., Anil, A.C., 2015. Effect of monsoonal perturbations on the occurrence of phytoplankton blooms in a tropical bay. Mar. Ecol. Prog. Ser. 530, 77–92. https://doi.org/10.3354/meps11289

Patil, J.S., Sathish, K., 2023. Responses of Phytoplankton Benthic Propagules to Macronutrient Enrichment and Varying Light Intensities: Elucidation from MonsoonInfluenced Mandovi and Zuari Riverine System: Responses of Phytoplankton Benthic Propagules to Macronutrient Enrichment and Varying Light Intensities: Elucidation from Monsoon-Influenced Mandovi and Zuari Riverine System. Microb. Ecol. 85 (4), 1367–1381. https://doi.org/10.1007/s00248-022-02021-9

Paerl, H.W., Valdes, L.M., Pinckney, J.L., Piehler, M.F., Dyble, J., Moisander, P.H., 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. Bio. Science. 53 (10), 953–964. https://doi.org/10.1641/0006-3568(2003)053[0953:PPAIOE]2.0.CO;2

Paerl, H.W., Justic, D., 2013. Estuarine phytoplankton. Estuarine. Ecol., 85–110. https://doi.org/10.1002/9781118412787

Paul, M., Velappan, M.N., Nanappan, U., Gopinath, V., Velloth, R.T., Rajendran, A., Peariya, A., 2021. Characterization of phytoplankton size-structure based productivity, pigment complexes (HPLC/CHEMTAX) and species composition in the Cochin estuary (southwest coast of India): special emphasis on diatoms. Oceanologia 63 (4), 463–481. https://doi.org/10.1016/j.oceano.2021.05.004

Pednekar, S.M., Kerkar, V., Matondkar, S.G.P., 2014. Spatiotemporal distribution in phytoplankton community with distinct salinity regimes along the Mandovi estuary, Goa, India. Turk. J. Bot. 38 (4), 800–818. https://doi.org/10.3906/bot-1309-29

Pulina, S., Satta, C.T., Padedda, B.M., Bazzoni, A.M., Sechi, N., Lugliè, A., 2017. Picophytoplankton seasonal dynamics and interactions with environmental variables in three Mediterranean coastal lagoons. Estuar. Coast. 40, 469–478. https://doi.org/10.1007/s12237-016-0154-5

Rajaneesh, K.M., Mitbavkar, S., Anil, A.C., 2018. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability. Estuar. Coast. Shelf. S. 207, 325 –337. https://doi.org/10.1016/j.ecss.2018.04.026

Ramakrishnan, R., Fernandes, V., 2022. Spatio-Temporal Dynamics of Phytoplankton in the Mandovi Estuary, on the Central West Coast of India During Post Monsoon. Thalassas. 38(2), 1025–1040. https://doi.org/10.1007/s41208-022-00449-x

Roy, R., Pratihary, A., Mangesh, G., Naqvi, S.W.A., 2006. Spatial variation of phytoplankton pigments along the southwest coast of India. Estuar. Coast. Shelf. S. 69 (1–2), 189–195. https://doi.org/10.1016/j.ecss.2006.04.006

Roy, R., Chitari, R., Kulkarni, V., Krishna, M.S., Sarma, V.V.S.S., Anil, A.C., 2015. CHEMTAX-derived phytoplankton community structure associated with temperature fronts in the northeastern Arabian Sea. J. Marine Syst. 144, 81–91. https://doi.org/10.1016/j.jmarsys.2014.11.009

Rekik, A., Denis, M., Maalej, S., Ayadi, H., 2015. Spatial and seasonal variability of pico-, nano-and microphytoplankton at the bottom seawater in the north coast of Sfax, Eastern Mediterranean Sea. Environ. Sci. Pollut. R. 22, 15961–15975. https://doi.org/10.1007/s11356-015-4811-1

Saifullah, A.S.M., Kamal, A.H.M., Idris, M.H., Rajaee, A.H., Bhuiyan, M.K.A., 2016. Phytoplankton in tropical mangrove estuaries: role and interdependency. Forest Sci. Technol. 12 (2), 104–113. https://doi.org/10.1080/21580103.2015.1077479

Santhanam, R., Ramanathan, N., Venkataramanuja, K.V., Jegatheesan, G., 1987. Phytoplankton of the Indian Seas: An Aspect of Marine Botany. Daya Publication House, 127 pp.

Shankar, D., Remya, R., Anil, A. C., Vijith, V., 2019. Role of physical processes in determining the nature of fisheries in the eastern Arabian Sea. Prog. Oceanogr. 172, 124–158. https://doi.org/10.1016/j.pocean.2018.11.006

Shetye, S.R., Gouveia, A.D., Singbal, S.Y., Naik, C.G., Sundar, D., Michael, G.S., Nampoothiri, G., 1995. Propagation of tides in the Mandovi-Zuari estuarine network. Proc. Indian. Natl. Sci. 104, 667–682. https://doi.org/10.1007/BF02839302

Shetye, S.R., Shankar, D., Neetu, S., Suprit, K., Michael, G.S., Chandramohan, P., 2007. The environment that conditions the Mandovi and Zuari estuaries. National Institute of Oceanography, India, 3–27. http://drs.nio.org/drs/handle/2264/624

Smetacek, V., 1998. Diatoms and the silicate factor. Nature. 391 (66694), 224–225. https://doi.org/10.1038/34528

Soares, M.C.S., Lobão, M.L., Vidal, L.O., Noyma, N.P., Barros, N.O., Cardoso, S.J., Roland F., 2011. Light Microscopy in Aquatic Ecology: Methods for Plankton Communities Studies. [In:] Chiarini-Garcia, H., Melo, R. (eds.), Light Microscopy. Methods in Molecular Biology, Vol. 689, Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-950-5_13

Strickland, J.D., Holm-Hansen, O., Eppley, R.W., Linn, R.J., 1969. The use of a deep tank in plankton ecology-Studies of the growth and composition of phytoplankton crops at low nutrient levels. Limnol. Oceanogr 14 (1), 23–34. https://doi.org/10.4319/lo.1969.14.1.0023

Tao, W., Niu, L., Liu, F., Cai, H., Ou, S., Zeng, D., Yang, Q., 2020. Influence of river-tide dynamics on phytoplankton variability and their ecological implications in two Chinese tropical estuaries. Ecol. Indic. 115, 106458. https://doi.org/10.1016/j.ecolind.2020.106458

Thrane, J.E., Kyle, M., Striebel, M., Haande, S., Grung, M., Rohrlack, T., Andersen, T., 2015. Spectrophotometric analysis of pigments: a critical assessment of a highthroughput method for analysis of algal pigment mixtures by spectral deconvolution. PloS One, 10 (9), e0137645. https://doi.org/10.1371/journal.pone.0137645

Tomas, C.R, 1997. Identifying Marine Phytoplankton. Acad. Press, Elsevier, Amsterdam, 858 pp. Turner, K.J., Mouw, C.B., Hyde, K.J., Morse, R., Ciochetto, A.B., 2021. Optimization and assessment of phytoplankton size class algorithms for ocean color data on the Northeast US continental shelf. Remote. Sens. Environ. 267, 112729. https://doi.org/10.1016/j.rse.2021.112729

Twardowski, M.S., Claustre, H., Freeman, S.A., Stramski, D., Huot, Y., 2007. Optical backscattering properties of the clearest natural waters. Biogeosciences 4 (6), 1041–1058. https://doi.org/10.5194/bg-4-1041-2007

Van Dijk, M.A., Gregori, G., Hoogveld, H.L., Rijkeboer, M., Denis, M., Malkassian, A., Gons, H.J., 2010. Optimizing the setup of a flow cytometric cell sorter for efficient quantitative sorting of long filamentous Cyanobacteria. Cytometry, 77 (10), 911–924. https://doi.org/10.1002/cyto.a.20946

Van Heukelem, L., Thomas, C.S., 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A, 910 (1), 31–49. https://doi.org/10.1016/S0378-4347(00)00603-4

Verlecar, X.N., Desai, S.R., Sarkar, A., Dalal, S.G., 2006. Biological indicators in relation to coastal pollution along Karnataka coast, India. Water. Res. 40 (17), 3304–3312. https://doi.org/10.1016/j.watres.2006.06.022

Vidussi, F., Clustre, H., Manca, B.B., Luchetta, A., Marty, J.C., 2001. Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J. Geophys. Res. 106 (C9), 19939–19956. https://doi.org/10.1029/1999JC000308

Vijith, V., Sundar, D., Shetye, S.R., 2009. Time-dependence of salinity in monsoonal estuaries. Estuary. Coast. Shelf. S. 85 (4), 601–608. https://doi.org/10.1016/j.ecss.2009.10.003

Wang, J., Jiang, H., Sun, X., 2019. Responses of phytoplankton growth and sinking rate to changes in salinity and temperature in the Changjiang River estuary. Estuar. Coast. Shelf. S. 222, 183–191. https://doi.org/10.2139/ssrn.4932301

Wollschläger, J., Wiltshire, K.H., Petersen, W., Metfies, K., 2015. Analysis of phytoplankton distribution and community structure in the German Bight with respect to the different size classes. J. Sea. Res. 99, 83–96. https://doi.org/10.1016/j.seares.2015.02.005

Zhao, L., Zhao, Y., Xu, J., Zhang, W., Huang, L., Jiang, Z., Xiao, T., 2016. Distribution and seasonal variation of picoplankton in Sanggou Bay, China. Aquacult. Env. Interac. 8, 261–271. https://doi.org/10.3354/aei00168

full, complete article - PDF


Climate change and its effects on marine food web with the concentration of pelagic fishes in the northern Arabian Sea
Oceanologia, 67 (1)/2025, 67110, 11 pp.
https://doi.org/10.5697/USFE4011

Imtiaz Kashani*, Sher Khan Panhwar, Kishwar Kumar Kachhi
Centre of Excellence in Marine Biology, University of Karachi, 75270, Sindh, Pakistan;
e-mail: imtiazkashani@gmail.com((I. Kashani)
*corresponding author

Keywords: Equivalent black carbon; Climate change; Ecosystem dynamics; Energy transformation; Food web dynamics; Pelagic fishery; Northern Arabian Sea

Received: 20 August 2024; revised: 12 December 2024; accepted: 7 January 2025.

Highlights

Abstract

The northern Arabian Sea, a vital ecosystem that sustains a significant population through its fisheries is increasingly threatened by climate change, overharvest, and coastal pollution. To evaluate the combined effects of these pressures on fishery health, microplankton, fish bycatch, and coastal environment data were examined between 2019 and 2023 from key hotspots. Using the time-cumulated indicator (TCI) and efficiency cumulated indicator (ECI) approaches, we aimed to determine broader spectrum of energy flow in the ecosystem. The findings revealed a delicate equilibrium in the ecosystem. Although average temperatures remained stable, variations in rainfall patterns suggested potential changes in salinity and dissolved oxygen levels, signaling subtle climate change influences. Biological indicators highlighted dynamic shifts: species diversity fluctuated, suggesting community restructuring, while increased evenness implied potential ecological stabilization. The production and biomass (P/B) ratio was higher in 2019, reflecting faster biomass production compared to the slower rate observed in 2023. This instability may be attributed to environmental changes, altered species composition, and a steady increase in fishing pressure. Notably, consistent fish catches amidst relatively stable species diversity suggest complex population dynamics. In terms of energy flow and transformation, a significant rise in TCI, suggests accelerated energy transfer, likely driven by a decline in predator population. Additionally, the instability in Residence Time (RT) underscores intricate food web interactions. Our findings highlight the delicate equilibrium of the northern Arabian Sea, as revealed by the overall data and assessment. Understanding these intricate dynamics is crucial for developing effective conservation strategies and promoting sustainable fishing practices.

  References   ref

Aberle, N., Bauer, B., Lewandowska, A., Gaedke, U., Sommer, U., 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Mar. Biol. 159, 2441–2453. https://doi.org/10.1007/s00227-012-1947-0

Asha Devi, C. R., Mondal, J., Vishnu, N.N.S., Sherin, C. K., Albin, K.J., Anandavelu, I., Gupta, G.V.M., 2024. Factors regulating proliferation and co-occurrence of loricate ciliates in the microzooplankton community from the eastern Arabian Sea. Aquat. Sci. 86(2), 31. https://doi.org/10.1007/s00027-024-01047-0

Benoit, E., Rochet, M.J., 2004. A continuous model of biomass size spectra governed by predation and the effects of fishing on them. J. Theor. Biol. 226(1), 9–21. https://doi.org/10.1016/S0022-5193(03)00290-X

Britten, G.L., Dowd, M., Worm, B., 2016. Changing recruitment capacity in global fish stocks. P. Natl. Acad. SciBiol. 113(1), 134–139. https://doi.org/10.1073/pnas.1504709112

Carpenter, K.E., Niem, V.H., 2001. FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific Vol. 5. Bony fish Pt. 3, (Menidae to Pomacentridae). FAO Library.

Chen, B., Landry, M. R., Huang, B., Liu, H., 2012. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57(2), 519–526. https://doi.org/10.4319/lo.2012.57.2.0519

Cheung, W.W., Lam, V.W., Sarmiento, J.L., Kearney, K., Watson, R.E.G., Zeller, D., Pauly, D., 2010. Large scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biol. 16(1), 24–35. https://doi.org/10.1111/j.1365-2486.2009.01995.x

Christensen, V., Coll, M., Piroddi, C., Steenbeek, J., Buszowski, J., Pauly, D., 2014. A century of fish biomass decline in the ocean. Mar. Ecol.Prog.Ser. 512, 155–66. https://doi.org/10.3354/meps10946

Cury, P.M., Shannon, L.J., Roux, J.P., Daskalov, G.M., Jarre, A., Moloney, C.L., Pauly, D., 2005. Trophodynamic indicators for an ecosystem approach to fisheries. ICES J. Mar. Sci. 62(3), 430–442. https://doi.org/10.1016/j.icesjms.2004.12.006

D’Alelio, D., Libralato, S., Wyatt, T., Ribera d’Alcalà, M., 2016. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. UK. 6(1), 21806. https://doi.org/10.1038/srep21806

Dafner, E.V., Wangersky, P.J., 2002. A brief overview of modern directions in marine DOC studies. Part II – Recent progress in marine DOC studies. J. Environ. Monit. 4(1), 55–69. https://doi.org/10.1039/B107279J

Eduardo, L.N., Mincarone, M.M., Sutton, T., Bertrand, A., 2024. Deep-Pelagic Fishes Are Anything But Similar: A Global Synthesis. Eco. Lett. 27(9), e14510. https://doi.org/10.1111/ele.14510

Fanelli, E., Da Ros, Z., Menicucci, S., Malavolti, S., Biagiotti, I., Canduci, G., Leonori, I., 2023. The pelagic food web of the Western Adriatic Sea: a focus on the role of small pelagics. Sci. Rep. UK. 13(1), 14554. https://doi.org/10.1038/s41598-023-40665-w

Farooq, N., Qamar, N. Panhwar, S.K., 2017. Characterization of feeding habits and prey diversity, diet overlap of two sympatric species the bronze sea catfish, Netuma bilineata and blacktip sea catfish, Plicofollis dussumieri from the northern Arabian Sea. J. Appl. Ichthyol. 33(4), 709–719. https://doi.org/10.1111/jai.13377

Fischer, W., Sousa, I., Silva, C., De Freitas, A., Poutiers, J.M., Schneider, W., Borges, T.C., Feral, J.P., Massinga, A., 1990. Fichas FAO de identificaçao de espécies para actividades de pesca. Guia de campo das espéciescomerciaismarinhas e de águassalobras de Moçambique. Publ. collabort. Inst. Investig. Pesq. Moçambique, Proj. PNUD/FAO MOZ/86/030 NORAD. Roma, FAO.

Froese, R., Pauly, D., 2024. FishBase. World Wide Web electronic publication. www.fishbase.org (accessed 01/2024).

Garrison, D.L., Gowing, M.M., Hughes, M.P., Campbell, L., Caron, D.A., Dennett, M.R., Smith, D.C., 2000. Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep-Sea Res. Pt. II 47(7–8), 1387–1422. https://doi.org/10.1016/S0967-0645(99)00148-4

Gascuel, D., Morissette, L., Palomares, M.L.D., Christensen, V., 2008. Trophic flow kinetics in marine ecosystems: toward a theoretical approach to ecosystem functioning. Ecol. Model. 217(1-2), 33–47. https://doi.org/10.1016/j.ecolmodel.2008.05.012

Gibbons M.J., Richardson A.J., 2009. Patterns of jellyfish abundance in the North Atlantic. Hydrobiologia. 616, 51–65. https://doi.org/10.1007/978-1-4020-9749-2_4

Gleiber, M.R., Hardy, N.A., Roote, Z., Krug-MacLeod, A.M., Morganson, C.J., Tandy, Z., Green, SJ., 2024. The Pelagic Species Trait Database, an open data resource to support trait-based ocean research. Sci. Data 11(1), 2. https://doi.org/10.1038/s41597-023-02689-9

He, Q., Silliman, B.R., 2019. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021–R1035. https://doi.org/10.1016/j.cub.2019.08.042

Hetherington, E.D., Close, H.G., Haddock, S.H., Damian Serrano, A., Dunn, C.W., Wallsgrove, N.J., Choy, C.A., 2024. Vertical trophic structure and niche partitioning of gelatinous predators in a pelagic food web: Insights from stable isotopes of siphonophores. Limnol. Oceanogr. 69(4), 902–919. https://doi.org/10.1002/lno.12536

Jan, M., Panhwar, S.K., Zafar, F.H.S., 2022. Ecosystem based approach to delineate coastal degradation of Hawks bay, Karachi, Pakistan. Chemosphere 301, p.134648. https://doi.org/10.1016/j.chemosphere.2022.134648

Jennings, S., Brander, K., 2010. Predicting the effects of climate change on marine communities and the consequences for fisheries. J. Marine Syst. 79(3–4), 418–426. https://doi.org/10.1016/j.jmarsys.2008.12.016

Jennings, S., Collingridge, K., 2015. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. Plos ONE, 10(7), e0133794. https://doi.org/10.1371/journal.pone.0133794

Jochum, M., Schneider, F.D., Crowe, T.P., Brose, U., O’Gorman, E.J., 2012. Climate-induced changes in bottomup and top-down processes independently alter a marine ecosystem. Philos. T. Roy. Soc. B. 367(1605), 2962–2970. https://doi.org/10.1098/rstb.2012.0237

Kachhi, K.K., Akhter, N., Panhwar, S.K., Kashani, I., 2024. Escalating Trends of Hydrogen Sulphide (H2S) and its Role in Structuring Pakistan Coastal Zones Barren. Pollution 10(1), 256–264. https://doi.org/10.22059/poll.2023.364144.2036

Kamiyama, T., 2015. Planktonic ciliates: diverse ecological function in seawater. Marine Protists: Diversity and Dynamics, 277–309. https://doi.org/10.1007/978-4-431-55130-0_11

Kashani, I., Panhwar, S.K., 2023. Intraspecific Population Variability in Goldstripe Ponyfish, Karalla daura Sampled along the Pakistan Coast Based on Geo-Morphometric Approach. Pak. J. Zool. 55, 1585–1591.

Law, R., Planhttps, M.J., James, A., Blanchard, J.L., 2009. Size-spectra dynamics from stochastic predation and growth of individuals. Ecology 90(3), 802–811. https://doi.org/10.1890/07-1900.1

Lefcheck, J.S., Hughes, B.B., Johnson, A. J., Pfirrmann, B.W., Rasher, D.B., Smyth, A.R., Orth, R.J., 2019. Are coastal habitats important nurseries? A meta analysis. Conserv. Lett. 12(4), e12645. https://doi.org/10.1111/conl.12645

Li, H., Wang, C., Zhao, L., Dong, Y., Zhao, Y., Zhang, W., 2023. Variability of tintinnid ciliate communities with water masses in the western Pacific Ocean. J. Plankton Res. 45(3), 509–522. https://doi.org/10.1093/plankt/fbad011

Lin, M., Turvey, S.T., Han, C., Huang, X., Mazaris, A.D., Liu,M., Li, S., 2022. Functional extinction of dugongs in China. Roy. Soc. Open. Sci. 9(8), 211994. https://doi.org/10.1098/rsos.211994

Maureaud, A., Gascuel, D., Colléter, M., Palomares, M.L., Du Pontavice, H., Pauly, D., Cheung, W.W., 2017. Global change in the trophic functioning of marine food webs. PlosONE 12(8), e0182826. https://doi.org/10.1371/journal.pone.0182826

McKenzie, D., Geffroy, B., Farrell, A.P., 2021. Effects of global warming on fishes and fisheries. J. Fish Biol. 98(6), 1489–1492. https://doi.org/10.1111/jfb.14762

Morris, B.E., Henneberger, R., Huber, H., Moissl-Eichinger, C., 2013. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37(3), 384–406. https://doi.org/10.1111/1574-6976.12019

Moustaka-Gouni, M., Kormas, K.A., Scotti, M., Vardaka, E., Sommer, U., 2016. Warming and acidification effects on planktonic heterotrophic pico-and nanoflagellates in a mesocosm experiment. Protist, 167(4), 389–410. https://doi.org/10.1016/j.protis.2016.06.004

Olsen, E.M., Heino, M., Lilly, G.R., Morgan, M.J., Brattey, J., Ernande, B., Dieckmann, U., 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428(6986), 932–935. https://doi.org/10.1038/nature02430

Panhwar, S.K., Mairaj, M., 2022. An assessment of phytoplankton diversity in relation to environmental variables in the Indus river estuary, Sindh, Pakistan. Pak. J. Bot. 54(4). http://dx.doi.org/10.30848/PJB2022-4(31)

Perry, R.I., Cury, P., Brander, K., Jennings, S., Möllmann, C., Planque, B., 2010. Sensitivity of marine systems to climate and fishing: concepts, issues and management responses. J. Marine Syst. 79(3–4), 427–435. https://doi.org/10.1016/j.jmarsys.2008.12.017

Peter, K.H., Sommer, U., 2012. Phytoplankton cell size: intraand interspecific effects of warming and grazing. PlosONE 7(11), e49632. https://doi.org/10.1371/journal.pone.0049632

Psomadakis P.N., 2015. Field identification guide to the living marine resources of Pakistan. Roma, FAO.

Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-Pestic, O., Petchey, O.L., 2012. Universal temperature and body-mass scaling of feeding rates. Philos. T. Roy. Soc. B. 367(1605), 2923–2934. https://doi.org/10.1098/rstb.2012.0242

Reiss, J., Bridle, J.R., Montoya, J.M., Woodward, G., 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Eco. Evol. 24(9), 505–514. https://doi.org/10.1016/j.tree.2009.03.018

Shao, Q., Sun, D., Fang, C., Feng, Y., Wang, C., 2023. Microbial food webs share similar biogeographic patterns and driving mechanisms with depths in oligotrophic tropical western Pacific Ocean. Front. Microbiol. 14, 1098264. https://doi.org/10.3389/fmicb.2023.1098264

Shi, Y., Wang, J., Zuo, T., Shan, X., Jin, X., Sun, J., Pakhomov, E.A., 2020. Seasonal changes in zooplankton community structure and distribution pattern in the Yellow Sea, China. Front. Mar. Sci. 7, 391. https://doi.org/10.3389/fmars.2020.00391

Sievers, M., Brown, C.J., Tulloch, V.J., Pearson, R.M., Haig, J. A., Turschwell, M.P., Connolly, R.M., 2019. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Eco. Evol. 34(9), 807–817. https://doi.org/10.1016/j.tree.2019.04.004

Simpson, S.D., Jennings, S., Johnson, M.P., Blanchard, J.L., Schön, P.J., Sims, D.W., Genner, M.J., 2011. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr. Biol. 21(18), 1565–1570. https://doi.org/10.1016/j.cub.2011.08.016

Stawiarski, B., Buitenhuis, E.T., Le Quéré, C., 2016. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 164. https://doi.org/10.3389/fmars.2016.00164

Tremblay-Boyer, L., Gascuel, D., Watson, R., Christensen, V., Pauly, D., 2021. Modelling the effects of fishing on the biomass of the world’s oceans from 1950 to 2006. Mar. Ecol. Prog. Ser. 442, 169–185. https://doi.org/10.3354/meps09375

Trombetta, T., Vidussi, F., Roques, C., Scotti, M., Mostajir, B., 2020. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade. Front. Microbiol. 11, 502336. https://doi.org/10.3389/fmicb.2020.502336

Vallivattathillam, P., Lachkar, Z., Lévy, M., 2023. Shrinking of the Arabian Sea oxygen minimum zone with climate change projected with a downscaled model. Front. Mar. Sci. 10, 1123739. https://doi.org/10.3389/fmars.2023.1123739

Vergés, A., Steinberg, P.D., Hay, M.E., Poore, A.G., Campbell, A.H., Ballesteros, E., Wilson, S.K., 2014. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. P. Roy. Soc. B-Biol.

full, complete article - PDF