Oceanologia No. 55 (3) / 13
Contents
Invited paper
Papers
-
Activation of the operational ecohydrodynamic model (3D CEMBS) - the hydrodynamic part: Lidia Dzierzbicka-Głowacka, Maciej Janecki, Artur Nowicki, Jaromir Jakacki
-
Activation of the operational ecohydrodynamic model (3D CEMBS) - the ecosystem module:Lidia Dzierzbicka-Głowacka, Maciej Janecki, Artur Nowicki, Jaromir Jakacki
-
Observations of the aerosol particle number concentration in the marine boundary layer over the south-eastern Baltic Sea:
Steigvile Byčenkienė, Vidmantas Ulevicius, Nina Prokopčiuk, Dalia Jasinevičienė
-
UV absorption reveals mycosporine-like amino acids (MAAs) in Tatra mountain lake phytoplankton: Dariusz Ficek, Jerzy Dera, Bogdan Woźniak
-
Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact: Hamid Goharnejad, Abolfazl Shamsai, Seyed Abbas Hosseini
-
Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin): Roman Cieśliński
-
Comparison of the impacts of climate change and anthropogenic disturbances on the El Arish coast and seaweed vegetation after ten years in 2010, North Sinai, Egypt: Gihan Ahmed El Shoubaky
-
Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis: Evgenia Gurova, Andreas Lehmann, Andrei Ivanov
-
Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey): Muhammet Turkoglu
-
Protozoa in a stressed area of the Egyptian Mediterranean coast of Damietta, Egypt: Mohamed Moussa Dorgham, Wael Salah El-Tohamy, Nagwa Elsayed Abdel Aziz, Ahmed El-Ghobashi, Jian G. Qin
-
Biocontamination of the western Vistula Lagoon (south-eastern Baltic Sea, Poland): Izabela Jabłońska-Barna, Agata Rychter, Marek Kruk
Invited paper
Anthropogenic radionuclides 137Cs and 90Sr in the southern Baltic Sea ecosystem
Oceanologia 2013, 55(3), 485-517
http://dx.doi.org/10.5697/oc.55-3.485
Tamara Zalewska1,*, Maria Suplińska2
1Institute of Meteorology and Water Management - National Research Institute, Maritime Branch,
Waszyngtona 42, 81-342 Gdynia, Poland;
e-mail: tamara.zalewska@imgw.pl
*corresponding author
2Central Laboratory for Radiological Protection,
Konwaliowa 7, 03-194 Warsaw, Poland
keywords:
137Cs, 90Sr, southern Baltic
Received 4 January 2013, revised 28 May 2013, accepted 4 June 2013.
Abstract
The radioisotopes of caesium (137Cs) and strontium (90Sr) make the greatest
contribution to the radioactivity level due to artificial radionuclides in the Baltic
Sea, where the level of 137Cs contamination is higher than in any other
part of the world ocean. The main sources of man-made radionuclides are the Chernobyl
accident in 1986 and the nuclear weapons tests carried out in the 1950s and 1960s.
This study discusses the distribution patterns and trends in activity concentrations
of 137Cs and 90Sr recorded in various compartments of the marine
environment of the southern Baltic Sea. It is based on an investigation of radioactive
substances as part of the Polish National Environmental Monitoring Programme.
In 2010 the average concentration of 137Cs in the southern Baltic was
35 Bq m-3, while the level of 90Sr in these waters has remained at much the same level
in recent years (ca 8 Bq m-3). The distribution of isotopes in the bottom
sediments reflect historical events that can be identified in sediment
profiles. The activity concentrations of the caesium isotope are the highest
in sediments from the Gulf of Gdansk, whereas the least polluted sediments
are found in the Bornholm Basin, in the western part of the southern Baltic.
The highest concentrations of 137Cs in benthic plants were measured in the red alga
Polysiphonia fucoides: 22.3 Bq kg-1 d.w. in June and 40.4 Bq kg-1
in September. These levels were much higher than those found in the bivalve Mytilus trossulus
(7.3 Bq kg-1 d.w.). 137Cs concentrations in fish have decreased in time, reflecting the trends recorded
in seawater. In 2010 the respective 137Cs activities in Clupea harengus, Platichthys flesus
and Gadus morhua were 4.7, 4.9 and 6.6 Bq kg-1 w.w.
References
Anon, 2008, Directive 2008/56/EC of the European Parliament and of the Council
of 17 June 2008 establishing a framework for community action in the field
of marine environmental policy (Marine Strategy Framework Directive), Off.
J. Europ. Union, L 164/19, 19-44.
Atwood D.A. (ed.), 2010, Radionuclides in the environment, Wiley, 522 pp.
Boisson F., Hutchins D.A., Fowler S.W., Fisher N. S., Teyessie J.-L., 1997,
Influence of temperature on the accumulation and retention of 11 radionuclides
by marine alga Fucus vesiculosus, Mar. Pollut. Bull., 35 (7-12), 313-327,
http://dx.doi.org/10.1016/S0025-326X(97)00092-1.
Burger J., Gochfeld M., Kosson D. S., Powers C. W., Jewett S., Friedlander B.,
Chenelot H., Volz C.D., Jeitner C., 2006, Radionuclides from Amchitka and
Kiska Islands in the Aleutians: establishing a baseline for future biomonitoring,
J. Environ. Radioact., 91 (1-2), 27-40,
http://dx.doi.org/10.1016/j.jenvrad.2006.08.003.
Feistel R., Nausch G., Matthäus W., Hagen E., 2003, Temporal and spatial
evolution of the Baltic deep water renewal in spring 2003, Oceanologia, 45 (4),
623-642.
Grzybowska D., 1989, Concentration of
137Cs and
90Sr in marine fish from the
southern Baltic Sea, Acta Hydrobiol., 31, 139-147.
HELCOM, 1995, Radioactivity in the Baltic Sea 1984-1991, Baltic Sea Environ.
Proc. No. 61, 182 pp.
HELCOM, 1997, Manual for marine monitoring in the COMBINE programme
of HELCOM, Baltic Mar. Environ. Prot. Commiss., Helsinki,
http://www.helcom.fi/groups/monas/CombineManual/en_GB/main/.
HELCOM, 2003, Radioactivity in the Baltic Sea 1992-2006, Baltic Sea Environ.
Proc. No. 85, 102 pp.
HELCOM, 2009, Radioactivity in the Baltic Sea 1999-2006, Baltic Sea Environ.
Proc. No. 117, 64 pp.
IAEA, 2005, Worldwide marine radioactivity studies (WOMARS): radionuclide
levels in oceans and sea, IAEA-TECDOC-1429, IAEA, Vienna 187 pp.
IAEA, 2010, HELCOM-MORS proficiency test determination of radionuclides in
fish flesh sample, IAEA/AQ/13, 70 pp.
Ikaheimonen T.K., Outola I., Vartti V.P., Kotilainen P., 2009, Radioactivity
in the Baltic Sea: inventories and temporal trends of
137Cs and
90Sr in
water and sediments, J. Radioanal. Nucl. Chem., 282 (2), 419-425,
http://dx.doi.org/10.1007/s10967-009-0144-1.
Knapińska-Skiba D., Bojanowski R., Piękoś R., 2003, Activity concentration of
caesium-137 in seawater and plankton of the Pomeranian Bay (the southern
Baltic Sea) before and after flood in 1997, Mar. Pollut. Bull., 46 (2), 1558-1562,
http://dx.doi.org/10.1016/S0025-326X(03)00317-5.
Knapińska-Skiba D., Bojanowski R., Radecki Z., 1994, Sorption and release
of radiocaesium from particulate matter of the Baltic coastal zone, Neth.
J. Aquat. Ecol., 28 (3-4), 413-419,
http://dx.doi.org/10.1007/BF02334211.
Knapińska-Skiba D., Bojanowski R., Radecki Z., Łotocka M., 1995, The biological
and physico-chemical uptake of radiocaesium by particulate matter of natural
origin (Baltic Sea), Neth. J. Aquat. Ecol., 29 (3-4), 283-290,
http://dx.doi.org/10.1007/BF02084226.
Knapinska-Skiba D., Bojanowski R., Radecki Z., Millward G.E., 2001, Activity
concentrations and fluxes of radiocesium in the southern Baltic Sea, Estuar.
Coast. Shelf Sci., 53 (6), 779-786,
http://dx.doi.org/10.1006/ecss.2001.0812.
Knapińska-Skiba D., Bojanowski R., Piękoś R., 2002, Dissolved and suspended
forms of caesium-137 in marine and riverine environments of the southern
Baltic ecosystem, Nukleonika, 47 (2), 53-58.
Kryshev A. I., Ryabov I.N., 2000, A dynamic model of
137Cs accumulation by
fish of different age classes, J. Environ. Radioact., 50 (3), 221-233,
http://dx.doi.org/10.1016/S0265-931X(99)00118-6.
Littler M.M., Littler D. S., 1980, The evolution of thallus form and survival
strategies in benthic marine macroalgae: field and laboratory tests of
a functional form model, Amer. Nat., 116 (1), 25-44,
http://dx.doi.org/10.1086/283610.
Lobban C. S., Harrison P. J., 1997, Seaweed ecology and physiology, Cambridge
Univ. Press, New York, 366 pp.
Malek M.A., Nakahara M., Nakamura R., 2004, Uptake, retention and organ/tissue
distribution of
137Cs by Japanese catfish, J. Environ. Radioact., 77, 191-204,
http://dx.doi.org/10.1016/j.jenvrad.2004.03.006.
Nielsen S.P., Bengston P., Bojanowski R., Hagel P., Herrmann J., Ilus E.,
Jakobson E., Motiejunas S., Panteleev Y., Skujina A., Suplinska M., 1999,
The radiological exposure of man from radioactivity in the Baltic Sea, Sci.
Tot. Environ., 237-238, 133-141,
http://dx.doi.org/10.1016/S0048-9697(99)00130-8.
Piechura J., Beszczyńska-Möller A., 2004, Inflow waters in the deep regions of
the southern Baltic Sea - transport and transformations, Oceanologia, 46 (1), 113-141.
Pinder J.E., Hinton T.G., Whicker F.W., 2006, Foliar uptake of cesium from the
water column by aquatic macrophytes, J. Environ. Radioact., 85 (1), 23-47,
http://dx.doi.org/10.1016/j.jenvrad.2005.05.005.
Sawidis T., Heinrich G., Brown M.T., 2003, Cesium-137 concentrations in marine
macroalgae from different biotopes in the Aegean Sea (Greece), Ecotox.
Environ. Safe., 54 (3), 249-254,
http://dx.doi.org/10.1016/S0147-6513(02)00021-0.
Smith J.T., Kudelsky A. V., Ryabov I.N., Daire S.E., Boyer L., Blust R. J.,
Fernandez J.A., Hadderingh R.H., Voitsekhovitch O.V., 2002, Uptake and
elimination of radiocaesium in fish and the ‘size effect’, J. Environ. Radioact.,
62 (2), 145-164,
http://dx.doi.org/10.1016/S0265-931X(01)00157-6.
Skwarzec B., 2011, Inflow of radionuclides to the Baltic Sea, [in:] Geochemistry
of Baltic Sea surface sediments,S. Uścinowicz (ed.), Pol. Geol. Inst. - Nat.
Res. Inst., Warsaw, 355 pp.
Suplińska M., 2002, Vertical distribution of
137Cs,
210Pb,
226Ra and
239,
240Pu
in bottom sediments from the Southern Baltic Sea in the years 1998-2000,
Nukleonika, 47 (2), 45-52.
Suplińska M., Grzybowska D., 2000, Monitoring skażeń promieniotwórczych
w wybranych składnikach ekosystemu Bałtyku Południowego, Postępy Techniki
Jądrowej, 43 (3), 35-44.
Suplińska M., Pietrzak-Flis Z., 2008, Sedimentation rates and dating in bottom
sediments in the Southern Baltic Sea region, Nukleonika, 53 (Suppl. 2), 105-111.
Szefer P., 2002a, Metals, metalloids and radionuclides in the Baltic Sea ecosystem,
Tr. Met. Environ., Vol. 5, 1-752.
Szefer P., 2002b, Metal pollutants and radionuclides in the Baltic Sea - an overview,
Oceanologia, 44 (2), 129-178.
Tomczak J., 1988, Radionuclides, [in:] Environmental conditions of the Polish zone
of the Baltic Sea in 1987, Inst. Meteorol. Water Manag., Gdynia, 238-245, (in Polish).
Tomczak J., 1999, Artificial radionuclides, [in:] Environmental conditions of the
Polish zone of the Baltic Sea in 1998, Inst. Meteorol. Water Manag., Gdynia, 170-176, (in Polish).
UNSCEAR, 1977, Sources and effects of ionizing radiation, UN, New York.
UNSCEAR, 1988, Sources and effects of ionizing radiation, UN, New York.
UNSCEAR, 2000, Sources and effects of ionizing radiation, UN, New York.
Volchok H. L., Kulp J. L., Eckelmann W.R., Gaetjen I. E., 1957, Determination of
90Sr and 140Ba in bone, dairy products, vegetation and soil, Ann. N. Y. Acad.
Sci., 71, 293-304,
http://dx.doi.org/10.1111/j.1749-6632.1957.tb54602.x.
Zalewska T., 2012a, Seasonal changes of
137Cs in benthic plants from the southern
Baltic Sea, J. Radioanal. Nucl. Chem., 292 (1), 211-218,
http://dx.doi.org/10.1007/s10967-011-1546-4.
Zalewska T., 2012b, Distribution of
137Cs in benthic plants along depth profiles in
the outer Puck Bay (Baltic Sea), J. Radioanal. Nucl. Chem., 293 (2), 679-688,
http://dx.doi.org/10.1007/s10967-012-1723-0.
Zalewska T., Lipska J., 2006, Contamination of the southern Baltic Sea with
137Cs
and
90Sr over the period 2000-2004, J. Environ. Radioact., 91 (1-2), 1-14,
http://dx.doi.org/10.1016/j.jenvrad.2006.08.001.
Zalewska T., Saniewski M., 2011a, Bioaccumulation of
137Cs by benthic plants and
macroinvertebrates, Ocean. Hydrobiol. Stud., 40 (3), 1-8,
http://dx.doi.org/10.2478/s13545-011-0023-6.
Zalewska T., Saniewski M., 2011b, Bioaccumulation of gamma emitting
radionuclides in red algae from the Baltic Sea under laboratory conditions,
Oceanologia, 53 (2), 631-650,
http://dx.doi.org/10.5697/oc.53-2.631.
Zalewska T., Saniewski M., 2012, Radionuclides of anthropogenic origin -
137Cs
and
90Sr, [in:] Environmental conditions of the Polish zone of the Baltic Sea
in 2010, Inst. Meteor. Water Manag., Gdynia, (in Polish).
Zalewska T., Suplińska M., 2012, Reference organisms for assessing the impact
of ionizing radiation on the environment of the southern Baltic Sea, Ocean.
Hydrobiol. Stud., 41 (4), 1-7,
http://dx.doi.org/10.2478/s13545-012-0033-z.
Zalewska T., Suplińska M., 2013, Fish pollution with anthropogenic
137Cs in
the southern Baltic Sea, Chemosphere, 90 (6),
http://dx.doi.org/10.1016/j.chemosphere.2012.07.012.
Papers
Activation of the operational ecohydrodynamic model (3D CEMBS) - the hydrodynamic part
Oceanologia 2013, 55(3), 519-541
http://dx.doi.org/10.5697/oc.55-3.519
Lidia Dzierzbicka-Głowacka*, Maciej Janecki, Artur Nowicki, Jaromir Jakacki
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author
keywords:
Baltic Sea, 3D model, hydrodynamic model
Received 16 January 2013, revised 16 April 2013, accepted 5 May 2013.
The study was supported by the Polish State Committee of Scientific Research (grants: N N305 111636, N N306 353239). Partial support was also provided by
the Satellite Monitoring of the Baltic Sea Environment - the SatBałtyk project funded by the European Union through the European Regional Development Fund contract No. POIG 01.01.02-22-011/09.
Abstract
The paper describes the hydrodynamic part of the coupled ice-ocean model that also includes the ecosystem predictive model. The Baltic Sea model is based on
the Community Earth System Model (CESM from NCAR – National Centre for Atmospheric Research). CESM was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice CodE (CICE, model version 4.0) and the Parallel Ocean Program (POP, version 2.1). The models are linked
through a coupler (CPL7), which is based on the Model Coupling Toolkit (MCT) library. The current horizontal resolution is about 2 km (1/48 degrees). The ocean model has 21 vertical levels and is forced by atmospheric fields from the European Centre for Medium Weather Forecast (ECMWF). A preliminary validation of the hydrodynamic module with in situ measurements and reanalysis from My Ocean (http://www.myocean.eu) has also been done. In the operational mode, 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre
for Mathematical and Computational Modelling of Warsaw University (ICM) are used. The variables presented on the website in real time for a 48-hour forecast are temperature, salinity, currents, sea surface height, ice thickness and ice coverage (http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php). The embedded model of the marine ecosystem, like ice, is not taken into account in this paper.
References
Arakawa A., Lamb V.R., 1977, Computational design of the basic dynamic
processes of the UCLA general circulation model, Methods Comput. Phys.,
17, 173-265,
http://dx.doi.org/10.1016/B978-0-12-460817-7.50009-4.
BALTEX, 1977, BALTEX Phase I 1993-2002. State of the art report. BALTEX
Secr. Publ., 31, 181 pp.
BALTEX, 2006a, BALTEX Phase II 2003-2012. Science framework and
implementation strategy, BALTEX Secr. Publ., 34, 90 pp.
BALTEX, 2006b, Assessment of climate change for the Baltic Sea basin - the
BACC project, BALTEX Secr. Publ., 35, 26 pp.
Brachet S., Le Traon P.Y., Le Provost C., 2004, Mesoscale variability from
a high-resolution model and from altimeter data in the North Atlantic Ocean,
J. Geophys. Res., 109, C12025,
http://dx.doi.org/10.1029/2004JC002360.
Bryan K.A., 1969, Numerical method for the study of the circulation of the
world ocean, J. Comput. Phys., 4 (3), 347-376,
http://dx.doi.org/10.1016/0021-9991(69)90004-7.
Bryan F.O., Danabasoglu G., Gent P.R., Lindsay K., 2006, Changes in ocean
ventilation during the 21st Century in the CCSM3, Ocean Model., 15 (3-4), 141-156,
http://dx.doi.org/10.1016/j.ocemod.2006.01.002.
Dzierzbicka-Głowacka L., 2000, Mathematical modelling of the biological processes
in the upper layer of the sea, Diss. and Monogr., 13, Inst. Oceanol. PAS, Sopot, 124 pp.
Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine
plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model,
Oceanologia, 47 (4), 591-619.
Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine
plankotn in the southern Baltic Sea. Part 2. Numerical simulations,
Oceanologia, 48 (1), 41-71.
Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of
Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic
Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3 (4), 635-650,
http://dx.doi.org/10.5194/bg-3-635-2006.
Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011b, Variability in
the distribution of phytoplankton as affected by changes to the main physical
parameters in the Baltic Sea, Oceanologia, 53 (1-TI), 449-470,
http://dx.doi.org/10.5697/oc.53-1-TI.449.
Dzierzbicka-Głowacka L., Kulinski K., Maciejewska A., Jakacki J., Pempkowiak J.,
2011a, Numerical modelling of POC dynamics in the southern Baltic under
possible future conditions determined by nutrients, light and temperature,
Oceanologia, 53 (4), 971-992,
http://dx.doi.org/10.5697/oc.53-4.971.
Dzierzbicka-Głowacka, L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A.,
2010, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7 (6), 2247.2259,
http://dx.doi.org/10.5194/bg-7-2247-2010.
Hunke E.C., Dukowicz J. K., 1997, An elastic-viscous-plastic model for sea ice
dynamics, J. Phys. Oceanogr., 27 (9), 1849.1867,
http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2.
Janecki M., Jakacki J., Nowicki A., Dzierzbicka-G.owacka L., 2011, Marine
ecosysten model for the Baltic Sea, 8th Baltic Sea Science Congress, St.
Petersburg, Russia, 22.26.08.2011, Book of Abstracts, 293 pp.
Jansen F., Schrum C., Backhaus J. O., 1999, A climatological data set of
temperature and salinity for the Baltic Sea and the North Sea, Dt. Hydrogr. Z., 9 (Suppl.), 245 pp.
Jones P.W., Worley P.H., Yoshida Y., White J. B., Levesque J., 2003, Practical
performance portability in the Parallel Ocean Program (POP), Concurr. Comp. Pract. E., 1, 1-15.
Killworth P.D., Stainforth D., Webb D. J., Paterson S.M., 1991, The
development of a free-surface Bryan-Cox-Semtner ocean model, J. Phys.
Oceanogr., 21 (9), 1333.1348,
http://dx.doi.org/10.1175/1520-0485(1991)021<1333:TDOAFS>2.0.CO;2.
Large W.G., McWilliams J. C., Doney S. C., Oceanic vertical mixing: a review
and a model with a nonlocal boundary layer parameterization, Rev. Geophys.,
32 (4), 363-403,
http://dx.doi.org/10.1029/94RG01872.
Lass H. U., Mohrholz V., On dynamics and mixing of inflowing saltwater in the
Arkona Sea, J. Geophys. Res., 108 (C2), 3042,
http://dx.doi.org/10.1029/2002JC001465.
Lass H.U., Mohrholz V., Seifert T., 2001, On the dynamics of the Pomeranian
Bight, Cont. Shelf Res., 21 (11-12), 1237-1261,
http://dx.doi.org/10.1016/S0278-4343(01)00003-6.
Lee M.M., Coward A., 2003, Eddy mass transport for the Southern Ocean in
an eddy-permitting global ocean model, Ocean Model., 5 (3), 249-266,
http://dx.doi.org/10.1016/S1463-5003(02)00044-6.
Lehmann A., Lorenz P., Jacob D., 2004, Modelling the exceptional Baltic Sea
inflow events in 2002.2003, Geophys. Res. Lett., 31, L21308,
http://dx.doi.org/10.1029/2004GL020830.
Li X., Yi C., McWilliams J. C., Fu L.-L., 2001, A comparison of two
vertical-mixing schemes in a Pacific Ocean general circulation model,
J. Climate, 14 (7), 1377-1398,
http://dx.doi.org/10.1175/1520-0442(2001)014<1377:ACOTVM>2.0.CO;2.
Lipscomb W.H., Hunke E.C., 2004, Modeling sea ice transport using incremental
remapping, Mon. Wea. Rev., 132 (6), 1341-1354,
http://dx.doi.org/10.1175/1520-0493(2004)132<1341:MSITUI>2.0.CO;2.
Maltrud M.E., McClean J. L., 2005, An eddy resolving global 1/10. ocean simulation,
Ocean Model., 8 (1.2), 31-54,
http://dx.doi.org/10.1016/j.ocemod.2003.12.001.
Masłowski W., Marble D., Walczowski W., Schauer U., Clement J. L., Semtner
A. J., 2004, On climatological mass, heat, and salt transports through the
Barents Sea and Fram Strait from a pan-Arctic coupled ice-ocean model
simulation, J. Geophys. Res., 109, C03032,
http://dx.doi.org/10.1029/2001JC001039.
McDougall T. J., Jackett D.R., Wright D. G., Feistel R., 2003,
Accurate and
computationally efficient algorithms for potential temperature and density of
seawater, J. Atmos. Ocean. Tech., 20 (5), 730-741,
http://dx.doi.org/10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.
Meier H.E.M., 2002, Regional ocean climate simulations with a 3D ice-ocean
model for Baltic Sea. Part 1: model experiments and results for temperature
and salinity, Clim. Dynam., 19 (3-4), 237-253,
http://dx.doi.org/10.1007/s00382-001-0224-6.
Meier H.E.M., 2005, Modeling the age of Baltic Seawater masses: quantification
and steady state sensitivity experiments, J. Geophys. Res., 110, C02006,
http://dx.doi.org/10.1029/2004JC002607.
Nadiga B.T., Taylor M., Lorenzc J., 2006, Ocean modelling for climate studies:
eliminating short time scales in long-term, high-resolution studies of ocean
circulation, Math. Comput. Model., 44 (9-10), 870-886,
http://dx.doi.org/10.1016/j.mcm.2006.02.021.
Omstedt A., Chen Y., Wesslander K., 2005, A comparison between the ERA40 and
the SMHI gridded meteorological databases as applied to Baltic Sea modeling,
Nord. Hydrol., 36 (4), 369-380.
Osiński R., 2007, Symulacja procesów dynamicznych w Morzu Bałtyckim
zintegrowanym modelem ocean-lód, Ph. D. thesis, Inst. Oceanol. PAS, Sopot,112 pp.
Peters H., Gregg M.C., Toole J.M., 1988, On the paramterization of equatorial
turbulence, J. Geophys. Res., 93, 1199-1211,
http://dx.doi.org/10.1029/JC093iC02p01199.
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 2001, Numerical
recipes in Fortran 77: The art of scientific computing, Cambrige Univ. Press, 921 pp.
Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric
forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333-360.
Semtner A. J., 1974, A general circulation model for the World Ocean, UCLADept.
Meteor. Tech. Rep., 8, 99 pp.
SMHI & FIMR, 1982, Climatological Ice Atlas for the Baltic Sea, Kattegat,
Skagerrak and Lake Vjänern (1963-1979), Sjöfartsverket, Njörrkoping, 220 pp.
Smith R., Gent P., 2004, Reference manual for the Parallel Ocean Program (POP),
Los Alamos Nat. Lab., New Mexico, 75 pp.
Uppala S. M., Kållberg P.W., Simmons A. J., Andrae U., da Costa Bechtold V.,
Fiorino M., Gibson J.K., Haseler J., Hernandez A., Kelly G. A., Li X., Onogi
K., Saarinen S., Sokka N., Allan R.P., Andersson E., Arpe K., Balmaseda M. A.,BeljaarsA. C. M., vande Berg L., BidlotJ.,BormannN.,CairesS.,
ChevallierF.,DethofA., DragosavacM., FisherM., FuentesM., Hagemann S., Hólm E., Hoskins
B. J., Isaksen L., JanssenP. A. E. M., JenneR., McNally A. P.,MahfoufJ.-F., Morcrette
J.-J., RaynerN. A.,SaundersR. W.,Simon P., Sterl A., Trenberth K. E., Untch A., Vasiljevic
D., ViterboP.,Woollen J., 2006, TheERA-40 re-analysis,Quart. J. Roy. Meteor.Soc., 131 (612),2961-3012,
http://dx.doi.org/10.1256/qj.04.176.
WoźniakB., Bradtke K., DareckiM., DeraJ.,Dudzińska-Nowak J., Dzierzbicka- GłowackaL.,
2011a,SatBałtyk-ABalticenvironmentalsatelliteremote sensingsystem- an ongoing
projectinPoland.Part1:Assumptions,scope and operating range, Oceanologia, 53 (4), 897-924,
http://dx.doi.org/10.5697/oc.53-4.897.
WoźniakB., Bradtke K., DareckiM., DeraJ.,Dudzińska-Nowak J., Dzierzbicka- GłowackaL.,
2011b,SatBałtyk-ABalticenvironmentalsatelliteremote sensing system- an ongoing
projectin Poland.Part2: Practicalapplicability andpreliminary results,Oceanologia,53 (4),925-958,
http://dx.doi.org/10.5697/oc.53-4.925.
Activation of the operational ecohydrodynamic model (3D CEMBS)- the ecosystem module
Oceanologia 2013, 55(3), 543-572
http://dx.doi.org/10.5697/oc.55-3.543
Lidia Dzierzbicka-Głowacka*, Maciej Janecki, Artur Nowicki, Jaromir Jakacki
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55,81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author
keywords:
Baltic Sea, 3D CEMBS model, ecosystem model, chlorophyll a, phytoplankton, nutrients, zooplankton, oxygen
Received 16 January 2013, revised 16 April 2013, accepted 5 May 2013.
The study was supported by the Polish State Committee of Scientific Research (grants: N N305 111636, N N306 353239). Partial support was also provided by
the Satellite Monitoring of the Baltic Sea Environment - the SatBałtyk project funded by the European Union through the European Regional Development Fund contract No. POIG 01.01.02-22-011/09.
Abstract
The paper describes the ecohydrodynamic predictive model - the ecosystem module - for assessing the state of the Baltic marine environment and the Baltic
ecosystem.
The Baltic Sea model 3D CEMBS (the Coupled Ecosystem Model of the Baltic Sea) is based on the Community Earth System Model, which was adopted for
the Baltic Sea as a coupled sea-ice-ecosystem model. The 3D CEMBS model uses: (i) hydrodynamic equations describing water movement, (ii) thermodynamic
equations, (iii) equations describing the concentration distribution of chemical variables in the sea, and (iv) equations describing the exchange of matter
between individual groups of organisms and their environment that make allowance for the kinetics of biochemical processes.
The ecosystem model consists of 11 main components: three classes of phytoplankton (small phytoplankton, large phytoplankton represented mainly
by diatoms and summer species, mostly cyanobacteria) expressed in units of carbon and chlorophyll a as separate variables, zooplankton, pelagic
detritus, dissolved oxygen and nutrients (nitrate, ammonium, phosphate and silicate). In operational mode, 48-hour atmospheric forecasts provided by the
UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM) are used. All model forecasts are
available on the website http://deep.iopan.gda.pl/CEMBaltic/new_lay/index.php.
The results presented in this paper show that the 3D CEMBS model is operating correctly.
References
Andrulewicz E., Szymelfenig M., Urbański J., Węsławski J. M., Węsławski S.,
2008, Morze Bałtyckie - o tym warto wiedzieć, Polski Klub Ekologiczny, Okręg
Wschodnio-Pomorski, 115 pp.
Dzierzbicka-Głowacka L., 2000, Mathematical modelling of the biological processes
in the upper layer of the sea, Diss. Monogr. vol. 13, Inst. Oceanol. PAS, Sopot,
124 pp., (in Polish).
Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine
plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model,
Oceanologia, 47 (4), 591-619.
Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine
plankotn in the southern Baltic Sea. Part 2. Numerical simulations,
Oceanologia, 48 (1), 41-71.
Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of
Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic
Sea (Gdańsk Deep) - numerical simulations, Biogeosciences, 3 (4), 635-650,
http://dx.doi.org/10.5194/bg-3-635-2006.
Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011c, Modelling
of Baltic Sea ecosystem using POP model, Proc. 4th Chaotic Modeling and
Simulation International Conference 2011, 105-113.
Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2011b, Variability in
the distribution of phytoplankton as affected by changes to the main physical
parameters in the Baltic Sea, Oceanologia, 53 (1-TI), 449-470,
http://dx.doi.org/10.5697/oc.53-1-TI.449.
Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2012a, The Baltic
Sea coupled ice-ocean model, Chaot. Model. Simul. (CMSIM), 4, 679-686.
Dzierzbicka-Głowacka L., Jakacki J., Janecki M., Nowicki A., 2013, Activation of
the operational ecohydrodynamic model (3D CEMBS) - the hydrodynamic part,
Oceanologia, (this issue).
Dzierzbicka-Głowacka L., Janecki M., Nowicki A., Jakacki J., 2012d, A new marine
ecosystem 3D CEMBS model (version 2) for the Baltic Sea. IEEE Conf. Publ.,
Complex Systems (ICCS), Article number 6458601.
Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J.,
2011a, Numerical modelling of POC dynamics in the southern Baltic under
possible future conditions determined by nutrients, light and temperature,
Oceanologia, 53 (4), 971-992,
http://dx.doi.org/10.5697/oc.53-4.971.
Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak
J., 2010b, Particulate organic carbon in the southern Baltic Sea: numerical
simulations and experimental data, Oceanologia, 52 (4), 621-648,
http://dx.doi.org/10.5697/oc.52-4.621.
Dzierzbicka-Głowacka L., Piskozub J., Jakacki J., Janecki M., Nowicki A., 2012b,
Influence of climate parameters on long-term variations of the distribution of
phytoplankton biomass and nutrient concentration in the Baltic Sea simulated
by a 3D model, Pol. J. Ecol., 60 (4), 651-666.
Dzierzbicka-Głowacka L., Piskozub J., Jakacki J., Mudrak S., Żmijewska M.,
2012c, Spatiotemporal distribution of copepod populations in the Gulf of Gdańsk
(southern Baltic Sea), J. Oceanogr., 68 (6), 887-904,
http://dx.doi.org/10.1007/s10872-012-0142-8.
Dzierzbicka-Głowacka L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A.,
2010a, Population modelling of Acartia spp. in a water column ecosystem
model for the South-Eastern Baltic Sea, Biogeosciences, 7 (4), 2247-2259,
http://dx.doi.org/10.5194/bg-7-2247-2010.
Geider R. J., MacIntyre H. L., Kana T.M., 1998, A dynamic regulatory model
of phytoplankton acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43 (4), 679-694,
http://dx.doi.org/10.4319/lo.1998.43.4.0679.
Moore J.K., Doney S.C., Kleypas J.A., Glover D.M., Fung I.Y., 2002, An
intermediate complexity marine ecosystem model for the global domain, Deep-
Sea Res. Pt. II, 49 (1-3), 403-462,
http://dx.doi.org/10.1016/S0967-0645(01)00108-4.
Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-
Głowacka L., 2011a, SatBałtyk - A Baltic environmental satellite remote
sensing system - an ongoing project in Poland. Part 1: Assumptions, scope
and operating range, Oceanologia, 53 (4), 897-924,
http://dx.doi.org/10.5697/oc.53-4.897.
Woźniak B., Bradtke K., Darecki M., Dera J., Dudzińska-Nowak J., Dzierzbicka-
Głowacka L., 2011b, SatBałtyk - A Baltic environmental satellite remote
sensing system - an ongoing project in Poland. Part 2: Practical applicability
and preliminary results, Oceanologia, 53 (4), 925-958,
http://dx.doi.org/10.5697/oc.53-4.925
Observations of the aerosol particle number concentration in the marine boundary layer over the south-eastern Baltic Sea
Oceanologia 2013, 55(3), 573-598
http://dx.doi.org/10.5697/oc.55-3.573
Steigvile Byčenkiene, Vidmantas Ulevicius*, Nina Prokopčiuk, Dalia Jasinevičiene
Centre for Physical Sciences and Technology,
Savanoriu pr. 231, LT-02300 Vilnius, Lithuania;
e-mail: ulevicv@ktl.mii.lt
*corresponding author
keywords:
aerosol number concentration, principal component analysisc, wavelet transform, coastal site, source apportionment
Received 28 January 2013, revised 29 March 2013, accepted 23 April 2013.
This work was partially supported by the Lithuanian-Swiss cooperation
programme ‘Researchand development project AEROLIT’ (No. CH-3-SMM-01/08).
Abstract
Continuous measurements of the aerosol particle number concentration (PNC)
in the size range from 4.5 nm to 2 µm were performed at the Preila marine background site during 2008–2009.
The concentration maxima in summer was twice the average (2650±50 cm-3).
A trajectory-based approach was applied for source identification.Potential Source Contribution Function (PSCF)
analysis was performed to estimate the possible contribution of long-range and
local PNC transport to PNC concentrations recorded at the marine background
site. The PSCF results showed that the marine boundary layer was not seriously
affected by long-range transport, but that local transport of air pollution
was recognized as an important factor. North Atlantic and Sea-Marine type
clusters respectively represented 32.1% and 17.9% of the total PNC spectra
and were characterized by the lowest PNCs (1080±1340 and 1210±1040 cm-3 respectively) among all clusters.
Wavelet transformation analysis of 1-h aerosol PNC indicated that while
the 16-h scale was a constant feature of aerosol PNC evolution in spring, the longer (∼60-h) scales
appeared mainly over the whole year (except June). Principal component
analysis (PCA) revealed a strong correlation between PNC and NaCl,
highlighting the influence of sea-salt aerosols. In addition, PCA also showed
that PNC depended on optical and meteorological parameters such as UVR and
temperature.
References
Andriejauskienė J., Ulevicius V., Bizjak M., Špirkauskaitė N., Byčenkienė S., 2008, Black
carbon aerosol at the backgroundsiteinthe coastal zoneof the Baltic Sea, Lith. J. Phys.,
48(2), 183-194,
http://dx.doi.org/10.3952/lithjphys.48210.
AsmiA., Wiedensohler A., La jP., FjaeraaA.-M., SellegriK., Birmili W.,
WeingartnerE., BaltenspergerU., ZdimalV., ZikovaN., PutaudJ.-P., Marinoni A.,
TunvedP., Hansson H.-C., Fiebig M., Kivekas N., LihavainenH., Asmi E., Ulevicius V., Aalto P.
P., Swietlicki E., KristenssonA., Mihalopoulos N., Kalivitis N., Kalapov I., Kiss G., de Leeuw
G., Henzing B., Harrison R. M., Beddows D., O’Dowd C., Jennings S. G., FlentjeH., WeinholdK.,
Meinhardt F., Ries L., KulmalaM., 2011, Number size distributionsand seasonality of submicron
particles in Europe 2008-2009, Atmos. Chem. Phys.,11 (11), 5505-5538,
http://dx.doi.org/10.5194/acp-11-5505-2011.
BeddowsD. C. S., Dall’OstoM.,HarrisonR. M.,2009, Clusteranalysisof rural, urbanand
curbsideatmospheric particlesizedata,Environ.Sci.Technol.,
43 (13), 4694-4700,
http://dx.doi.org/10.1021/es803121t.
Birmili W., WiedensohlerA., Plass-Dulmer C., BerresheimH., 2000, Evolutionof newly formed
aerosol particles in the continental boundary layer: a case study includingOH and H2SO4
measurements, Geophys.Res. Lett., 27, 2205-2208,
http://dx.doi.org/10.1029/1999GL011334.
Boy M., KulmalaM., 2002, Nucleationeventson the continental boundarylayer:
influenceof physicaland meteorologicalparameters,Atmos.Chem.Phys.,2,
1-16,
http://dx.doi.org/10.5194/acp-2-1-2002.
Bukowiecki N., Dommen J.,PrevotA. S. H., Richter R., WeingartnerE.,
Baltensperger U., 2002, A mobile pollutant measurement laboratory-measuring gas phase and aerosol
ambientconcentrations with high spatial and temporal resolution,Atmos. Environ.,36,
5569-5579,
http://dx.doi.org/10.1016/S1352-2310(02)00694-5.
ByčenkieneS.,UleviciusV.,KecoriusS.,2011,Characteristicsofblack carbon aerosol
mass concentration over the East Baltic region from two-year measurements, J.Environ. Monitor.,
13,1027-1038,
http://dx.doi.org/10.1039/c0em00480d.
ClarkeA. D., OwensS. R., ZhouJ. C., 2006,An ultrafine sea-saltfluxfrom breaking
waves: Implicationsforcloudcondensationnucleiintheremote marine atmosphere, J.
Geophys.Res.,111,D06202,
http://dx.doi.org/10.1029/2005JD006565.
Dall’Osto M., Monahan C., Greaney R., Beddows D. C. S., Harrison R. M., Ceburnis
D., O’Dowd C. D., 2011, A statisticalanalysis of North East Atlantic (submicron)aerosol size distributions,Atmos.Chem.Phys., 11 (24),12567-12578,
http://dx.doi.org/10.5194/acp-11-12567-2011.
Delfino R. J., Staimer N.,Tjoa T., Gillen D. L., Polidori A., Arhami M.,Kleinman M. T., Vaziri
N. D., Longhurst J., Sioutas C., 2009, Airpollution exposures and circulating biomarkers of effect
in a susceptible population: clues to potential causal component mixtures and mechanisms,Environ.
Health Persp.,117 (8), 1232-1238,
http://dx.doi.org/10.1289/journla.ehp.0800194.
Dongarrá G., Manno E., VarricaD., Lombardo M., VultaggioM., 2010, Study on ambient
concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical
speciation of atmospheric particulates, Atmos. Environ.,44 (39),5244-5257,
http://dx.doi.org/10.1016/j.atmosenv.2010.08.041.
EinaxJ. W., Zwanziger H. W.,GeissS.,1997, Chemometrics inenvironmental analysis,VCH
Verlagsgesellschaft mbH,Weinheim,384 pp.
EnglertN., 2004, Fineparticlesandhumanhealth areviewofepidemiological studies,
Toxicol. Lett., 149 (1-3), 235-242,
http://dx.doi.org/10.1016/j.toxlet.2003.12.035.
Eskridge R., KuJ. Y., RaoS. T.,PorterP. S., Zurbenko I. G., 1997, Separating differenttime
scalesofmotionintimeseries ofmeteorologicalvariables, B.Am. Meteorol.
Soc.,78 (7),1473-1483,
http://dx.doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2.
Eskridge R., KuJ. Y., RaoS. T.,PorterP. S., Zurbenko I. G., 1997, Separating differenttime
scalesofmotionintimeseries ofmeteorologicalvariables, B.Am. Meteorol.
Soc.,78 (7),1473-1483,
http://dx.doi.org/10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2.
Fahrmeir L., Hamerle A., TutzG., 1996, MultivariatestatistischeVerfahren,2nd edn., de
Gruyter, Berlin, 902 pp.,(in Berlin).
Farge M., 2000, Wavelet transform and their application to turbulence,Ann.Rev.
Fluid.Mech., 24,395-457,
http://dx.doi.org/10.1146/annurev.fl.24.010192.002143.
Foufoula-Georgiou E., Kumar P., 1995, Wavelets in geophysics, Elsevier, New York,
373 pp.
Gong K. W.,Zhao W., Li N.,Bara jas B.,Kleinman M. T., Sioutas C., Horvath S., Lusis A. J.,
Nel A. E., Araujo J. A., 2007, Air-pollutantchemicals and oxidized lipidsexhibitgenome-wide
synergisticeffectsonendothelialcells, Genome Biol., 8 (7),R149,
http://dx.doi.org/10.1186/gb-2007-8-7-r149.
Hies T., Treffeisen R., Sebald L., Reimer E., 2000, Spectral analysis of air pollutants.
Part1: elemental carbon timeseries,Atmos.Environ.,34 (21),3495-3502,
http://dx.doi.org/10.1016/S1352-2310(00)00146-1.
Hinds W. C., 1999, Aerosoltechnology:properties,behavior and measurements of airborne
particles,2nd edn., New York, Wiley Interscience, 509 pp.
HoK. F.,LeeS. C.,Cao J. J., LiY. S.,ChowJ. C., WatsonJ. G., Fung K.,
2006,Variabilityoforganicandelementalcarbon, watersolubleorganic carbon, andisotopesinHongKong,Atmos.Chem.Phys., 6,4569-4576,
http://dx.doi.org/10.5194/acp-6-4569-2006.
JaenickeR.,1993, Troposphericaerosols, [in:] Aerosol-clouds-climate interaction, P.V.
Hobbs (ed.),Academic Press,San Diego, 1-31.
JayaratneE. R., Verna T. S., 2001,The impact of biomass burningon the
environmental aerosol concentration in Gaborone, Botswana, Atmos. Environ.,
35 (10), 1821-1828,
http://dx.doi.org/10.1016/S1352-2310(00)00561-6.
Juozaitis A., Trakumas S.,
GirgždienĖR., Girgždys A., ŠopauskienĖD., Ulevicius
V., 1996,Investigations ofgas-to-particleconversion in theatmosphere,
Atmos.Res.,41, 183-201,
http://dx.doi.org/10.1016/0169-8095(96)00008-7.
Kaplinsky A. E.,Khutorova O. G.,2010, Thewavelet analysis of aerosol
characteristicsat the LakeBaikalcoast, Polzunovskijvestnik,1, 160-164 (in Russian).
KaracaF., AlaghaO., Erturk F., 2005, Statistical characterization of atmospheric PM10and
PM2.5 concentrationsat a nonimpacted suburban site of Istanbul, Turkey,
Chemosphere, 59, 1183-1190,
http://dx.doi.org/10.1016/j. chemosphere.2004.11.062.
KnutsonT. R., Weickman K. M., 1987,30-60dayatmosphericoscil-
lations: compositesofConvection andcirculationanomalies,Mon. Weather
Rev.,115,1407-1436,
http://dx.doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.
Kulmala M., Rannik U., Pirjola L., DalMasoM., Karimaki J., AsmiA., Jappinen
A., KarhuV., KorhonenH., Malvikko S. P.,Puustinen A., Raittila J., Romakkaniemi S., Suni T.,
Yli-Koivisto S., 2000, Characterization of atmospheric trace gas and aerosol concentrations at
forest sites in southern and northern Finlandusing back trajectories, Boreal Environ.Res., 5
(4), 315-336.
KulmalaM., VehkamakiH., Peta ja T.,Dal Maso M., LauriA., KerminenV. M., BirmiliW.,
McMurryP. H.,2004, Formation andgrowth ratesofultrafine atmospheric particles:a review
of observations, J. Air WasteManage.,35 (2), 143-176.
LaaksoL.,HusseinT., AarnioP., Komppula M.,Hiltunen V.,ViisanenY., Kulmala
M., 2003,Diurnal andannualcharacteristics of particle mass andnumber
concentrations in urban, ruraland Arctic environments in Finland, Atmos.Environ.,
37 (19), 2629-2641,
http://dx.doi.org/10.1016/S1352-2310(03)00206-1.
LohmannU.,FeichterJ.,2005, Globalindirectaerosolaffects.Areview, Atmos.
Chem. Phys.,5 (3), 715-737,
http://dx.doi.org/10.5194/acp-5-715-2005.
Marr L. C., Harley R. A., 2002, Spectral analysis of weekday-weekend differencesin ambient ozone,
nitrogen oxide, and non-methane hydrocarbon time series in California,Atmos.Environ.,36 (14),
2327-2335,
http://dx.doi.org/10.1016/ S1352-2310(02)00188-7.
MoloiK.,Chimidza S.,SelinLindgrenE.,ViksnaA.,StandzenieksP.,2002,
Blackcarbon massand elemental measurementsofairborne particlesinthe villageofSerowe,
Botswana,Atmos.Environ., 36 (14), 2447-2457,
http://dx.doi.org/10.1016/S1352-2310(02)00085-7.
MordasG.,Kulmala M.,Petäjä T., AaltoP. P., Matulevicius V.,Grigoraitis,
V., Ulevicius V., Grauslys V., Ukkonen A., Hämeri K., 2005, Design and performance characteristics
of a condensation particle counter UF-02proto, Boreal Environ.Res., 10 (6), 543-552.
Percival D. P., Walden A. T., 1998,Spectralanalysisforphysicalapplications,
CambridgeUniv. Press,Cambridge, 612 pp.
Plaučkaitė K., Ulevicius V., Špirkauskaitė N., Byčenkiene S., Zieliński T., Petelski T.,
PonczkowskaA., 2010, Observationsof new particle formationevents in the south-eastern Baltic
Sea, Oceanologia, 52 (1), 53-75,
http://dx.doi.org/10.5697/oc.52-1.053.
Putaud J.-P., Raes F.,Van DingenenR.,Baltensperger J. P. U., Brüggemann E., FacchiniM. C.,
DecesariS., FuzziS.,GehrigR.,HanssonH. C.,HüglinC., La j P.,LorbeerG.,
MaenhautW.,MihalopoulosN.,MüllerK.,QuerolX., RodriguezS., SchneiderJ., Spindler
G.,ten BrinkH.,Torseth K.,Wehner B., Wiedensohler A., 2004, European aerosol phenomenology
- 2:chemical characteristics of particulate matter at kerbside, urban, rural and background sites
inEurope,Atmos.Environ.,38 (16),2579-2595,
http://dx.doi.org/10.1016/j.atmosenv.2004.01.041.
RodriguezS.,VanDingenenR.,Putaud J. P.,Martins-DosSantosS.,Roselli D.,2005,
Nucleationandgrowth ofnewparticlesintheruralatmosphere of NorthernItaly-
relationshipto airquality monitoring,Atmos.Environ.,
39 (36), 6734-6746,
http://dx.doi.org/10.1016/j.atmosenv.2005.07.036.
SalibaN. A.,ElJam F., ElTayar G.,ObeidW., RoumieM.,2010,Origin and
variability of particulate matter (PM10and PM2.5) mass concentrations overanEastern
Mediterraneancity,Atmos.Res.,97 (1-2),106-114,
http://dx.doi.org/10.1016/j.atmosres.2010.03.011.
SardarS. B., Fine P. M., Yoon H., Sioutas C., 2004, Associations between particle numberand
gaseousco-pollutantconcentrations intheLos Angelesbasin, J. Air WasteManage.,54
(8), 992-1005,
http://dx.doi.org/10.1080/10473289.2004.10470970.
Torrence C., Compo G. P., 1998,A practical guidetowaveletanalysis, B. Am. Meteorol. Soc., 79 (1), 61-78,
http://dx.doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
Ulevicius V., Byčenkienė S., Remeikis V., Garbaras A., Kecorius S., Andriejauskiene J., Jasinevičienė D., MocnikG., 2010,
Characterization ofpollutioneventsintheEastBaltic regionaffectedbyregionalbiomass fire
emissions,Atmos. Res., 98(2-4), 190-200,
http://dx.doi.org/10.1016/j.atmosres.2010.03.021.
Ulevicius V., ByčenkienėS., ŠpirkauskaitėN., Kecorius S., 2010, Biomassburning impact on
black carbonaerosolmassconcentrationatacoastalsite: case studies, Lith.J.Phys.,50 (3),335-344,
http://dx.doi.org/10.3952/lithjphys.50304.
Ulevicius V., Zeromskiene K., Mordas G., 2001, On the productionof new particles in the
Lithuanian coastal boundary layer, J. Aerosol Sci., 32 (1), 605-606.
Verma V., Ning Z., Cho A. K., Schauer J. J., Shafer M. M., Sioutas C., 2009, Redox activityof
urban quasi-ultrafineparticles from primaryand secondarysources, Atmos. Environ.,43, 6360-6368,
http://dx.doi.org/10.1016/j.atmosenv.2009.09.019.
Vukovich F. M., 1997, Time scales of surface ozone variationsin the regional, non- urban
environment, Atmos.Environ.,31 (10),1513-1530,
http://dx.doi.org/10.1016/S1352-2310(96)00279-8.
Wilson J. G., Zawar-Reza P., 2006, Intraurban-scaledispersion modeling of
particulate matter concentrations:applications forexposure estimates in cohort
studies, Atmos.Environ., 40 (6), 1053-1063,
http://dx.doi.org/10.1016/j.atmosenv.2005.11.026.
XiaT.,KovochichM. J.,Brant J.,HotzeM.,SempfJ., OberleyT.,YehJ., SioutasC.,
WiesnerM. R.,Nel A. E.,2006, Comparisons oftheabilitiesof ambientand commercial
nanoparticlesto inducecellular toxicityaccording to an oxidativestress paradigm, Nano
Lett., 6 (8), 1794-1807,
http://dx.doi.org/10.1021/nl061025k.
UV absorption reveals mycosporine-like amino acids (MAAs) in Tatra mountain lake phytoplankton
Oceanologia 2013, 55(3), 599-609
http://dx.doi.org/10.5697/oc.55-3.599
Dariusz Ficek1,*, Jerzy Dera2, Bogdan Woźniak1,2
1Institute of Physics, Pomeranian University in Słupsk,
Arciszewskiego 22B, Słupsk 76-200, Poland;
e-mail: ficek@apsl.edu.pl
*corresponding author
2Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, 81-712 Sopot, Poland
keywords:
phytoplankton absorption spectra, UV absorption, mycosporine-like amino acids, Tatra mountain lakes
Received 12 March 2013, revised 20 May2013, accepted 24 May 2013.
This paper was carried out within the framework of the SatBałtyk project funded by the European Union through European Regional Development Fund,
(contract No. POIG.01.01.02-22-011/09 entitled ‘The Satellite Monitoring of the Baltic Sea Environment’). Partial support for this study was
also provided by the MNiSW (Ministry of Science and Higher Education) asresearch project N N306 066434
in2008-2011 and also as part of the statutory Research of the Pomeranian University and IO PAN.
Abstract
Enhanced absorption of UV radiation, an effect characteristic of
mycosporine-like amino acids (MAAs), is reported in samples of phytoplankton
from six lakes in the Tatra Mountains National Park (Poland). It was
demonstrated that the mass-specific UV absorption coefficients for
the phytoplankton in these lakes increased with altitude above sea level.
Based on a comparison with the phytoplankton of Alpine lakes,
investigated earlier by other authors (cited in this paper), it may
be inferred that the phytoplankton of Tatra mountain lakes produce MAAs,
which protect plant cells from UV light, the intensity of which
increases with altitude.
References
Banaszak A. T., 2003, Photoprotective physiological and biochemical responses of aquatic organisms, [in:] UV effects in aquatic organisms and ecosystems,
E. W. Helbling & H. Zagarese (eds.), R. Soc. Chem., 329-356.
Blumthaler M., Ambach W., Ellinger R., 1997, Increase in solar UV radiation with altitude, J. Photoch. Photobio. B, 39, 130-134.
http://dx.doi.org/10.1016/S1011-1344(96)00018-8.
Cabrera S., Lopez M., Tartarotti B., 1997, Phytoplankton and zooplankton response to ultraviolet radiation in a high altitude Andean lake: Short- versus long-term effects, J. Plankton Res., 19, 1565-1582.
http://dx.doi.org/10.1093/plankt/19.11.1565.
Choiński A., 2006, Catalogue of Polish lakes, Wyd. UAM, Poznań, 600 pp., (in Polish).
Ficek D., 2013, The bio-optical properties of waters in Pomeranian lakes (Poland) and their comparison with the properties of waters in other lakes and the Baltic Sea, Diss. Monogr. No. 23, 351 pp., (in Polish).
Ficek D., Meler J., Zapadka T., Woźniak B., Dera J., 2012, Inherent optical properties and remote sensing reflectance of Pomeranian lakes (Poland), Oceanologia, 54 (4), 611-630; http://dx.doi.org/10.5697/oc.54-4.611.
Häder D. P., Kumar H. D., Smith R. C., Worrest R. C., 1998, Effects on aquatic ecosystems, J. Photoch. Photobio. B, 46, 53-68.
http://dx.doi.org/10.1016/S1011-1344(98)00185-7.
Halac S., Felip M., Camarero L., Sommaruga-Wögrath S., Psenner R., Catalan J., Sommaruga R., 1997, An in situ enclosure experiment to test the solar UV-B impact on plankton in a high-altitude mountain lake, I. Lack of effect on phytoplankton species composition and growth, J. Plankton Res., 19, 1671-1686.
http://dx.doi.org/10.1093/plankt/19.11.1671.
Jeffrey S., Humphrey G., 1975, New spectrophotometric equation for determining chlorophyll a, b, c1 and c2, Biochem. Physiol. Pflanz., 167, 194-204.
Karentz D., 2001, Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin, [in:] Marine chemical ecology, J. B. McClintock & B. J. Baker (eds.), CRC Press, Boca Raton, FL, 481-519.
Laurion I., Lami A., Sommaruga R., 2002, Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages, Aquat. Microb. Ecol. Vol. 26, 283-294.
http://dx.doi.org/10.3354/ame026283.
Laurion I., Ventura M., Catalan J., Psenner R., Sommaruga R., 2000, Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability, Limnol. Oceanogr., 45 (6), 1274-1288.
http://dx.doi.org/10.4319/lo.2000.45.6.1274.
Moisan T. A., Goes J., Neale P. J., 2009, Mycosporine-like amino acids in phytoplankton: biochemistry, physiology and optics, [in:] Marine phytoplankton, W. T. Kersey & S. P. Munger, Hauppauge, N. Y.: Nova Sci. Publ., 119-143.
Moisan T. A., Mitchell B. G., 2001, UV absorption by mycosporine-like amino acids in Phaeocystis antarctica Karsten induced by photosynthetically available radiation, Mar. Biol., 138, 217-227.
http://dx.doi.org/10.1007/s002270000424.
Sinha R. P., Häder D. P., 2002, Life under solar UV radiation in aquatic organisms, Adv. Space Res., 30 (6), 1547-1556.
http://dx.doi.org/10.1016/S0273-1177(02)00370-8.
Sinha R. P., Klisch M., Helbling E. W., Häder D.-P., 2001, Induction of mycosporine-like amino acids (MAAs) in cyanobacteria by solar ultraviolet- B radiation, J. Photoch. Photobio. B, 60 (2-3), 129-135.
http://dx.doi.org/10.1016/S1011-1344(01)00137-3.
Sommaruga R., 2001, The role of solar UV radiation in the ecology of alpine lakes, J. Photoch. Bio. B, 62, 35-42.
http://dx.doi.org/10.1016/S1011-1344(01)00154-3.
Sommaruga R., Garcia-Pichel F. G., 1999, UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake, Arch. Hydrobiol., 144 (3), 255-269.
Tartarotti B., Baffico G., Temporetti P., Zagarese H. E., 2004, Mycosporine- like amino acids in planktonic organisms living under different UV exposure conditions in Patagonian lakes, J. Plankton Res., 26 (7), 753-762.
http://dx.doi.org/10.1093/plankt/fbh073.
Tartarotti B., Sommaruga R., 2006, Seasonal and ontogenetic changes of mycosporine-like amino acids in planktonic organisms from an alpine lake, Limnol. Oceanogr., 51, 1530-1541.
http://dx.doi.org/10.4319/lo.2006.51.3.1530.
Vinebrooke R. D., Leavitt P. R., 1999, Phytobenthos and phytoplankton as potential indicators of climate change in mountain lakes and ponds: a HPLC-based pigment approach, J. N. Am. Benthol. Soc., 18, 14-33.
http://dx.doi.org/10.2307/1468006.
Whitehead K., Vernet M., 2000, Influence of mycosporine-like amino acids (MAAs) on UV absorption by particulate and dissolved organic matter in La Jolla Bay, Limnol. Oceanogr., 45 (8), 2000, 1788-1796.
Woźniak B., Dera J., 2007, Light absorption in sea water, Springer, New York, 452 pp.
Woźniak S. B., Meler J., Lednicka B., Zdun A., Stoń-Egiert J., 2011, Inherent optical properties of suspended particulate matter in the southern Baltic Sea, Oceanologia, 53 (3), 691-729, http://dx.doi.org/10.5697/oc.53-3.691.
http://dx.doi.org/10.5697/oc.53-3.691.
Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact
Oceanologia 2013, 55(3), 611-637
http://dx.doi.org/10.5697/oc.55-3.611
Hamid Goharnejad*, Abolfazl Shamsai, Seyed Abbas Hosseini
Department of Civil Engineering, Science and Research Branch,
Islamic Azad University, Tehran, Iran;
e-mail: Hgn1982@gmail.com
e-mail: shamsai@sharif.edu
*corresponding author
keywords:
climate change impacts,sea-level rise, DWNN, DWANFIS
Received 29 January 2013, revised 20 May 2013, accepted 10 June 2013.
Abstract
Recent investigations have demonstrated global sea level rise as being
due to climate change impact. Probable changes in sea level rise need
to be evaluated so that appropriate adaptive strategies can be implemented.
This study evaluates the impact of climate change on sea level rise along
the Iranian south coast. Climatic data simulated by a GCM (General
Circulation Model) named CGCM3 under two-climate change scenarios
A1b and A2 are used to investigate the impact of climate change. Among
the different variables simulated by this model, those of maximum correlation
with sea level changes in the study region and least redundancy among
themselves are selected for predicting sea level rise by using stepwise
regression. Two Discrete Wavelet artificial Neural Network (DWNN)
models and a Discrete Wavelet Adaptive Neuro-Fuzzy Inference system
(DWANFIS) are developed to explore the relationship between selected
climatic variables and sea level changes. In these models, wavelets
are used to disaggregate the time series of input and output data into
different components.ANFIS/ANN are then used to relate the disaggregated
components of predictors and predictand (sea level) to each other. The
results show a significant rise in sea level in the study region under
climate change impact, which should be incorporated into coastal area
management.
References
Adamowski J., 2008a, Development of a short-term river flood forecasting method
for snowmelt driven floods based on wavelet and cross-wavelet analysis,
J. Hydrol., 353 (3-4), 247-266,
http://dx.doi.org/10.1016/j.jhydrol.2008.02.013.
Adamowski J., 2008b, River flow forecasting using wavelet and cross-wavelet
transform models, Hydrol. Proc., 22 (25), 4877-4891,
http://dx.doi.org/10.1002/hyp.7107.
Anctil F., Tape G.D., 2004, An exploration of artificial neural network rainfall
runoff forecasting combined with wavelet decomposition, J. Environ. Eng. Sci.,
3 (S), 121-128,
http://dx.doi.org/10.1139/s03-071.
Barford L.A., Fazzio R. S., Smith D.R., 1992, An introduction to wavelets, Hewlett-
Packard Lab., HPL-92-124, 27 pp.
Bindoff N. L., Willebrand J., Artale, V., Cazenave A., Gregory J., Gulev S., Hanawa
K., Le Quere C., Levitus S., Nojiri Y., Shum C.K., Talley L.D., Unnikrishnan
A. S., 2007, Observations: oceanic climate change and sea level, [in:] Climate
change 2007: the physical science basis, Contribution of Working Group I
to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt
K. B., Tignor M. & Miller H. L. (eds.), Cambridge Univ. Press, Cambridge,
New York, 387-429.
Burn D.H., Cunderlik J. M., 2004, Hydrological trends and variability in the Laird
River basin, Hydrol. Sci. J., 49 (1), 53-67,
http://dx.doi.org/10.1623/hysj.49.1.53.53994.
Cannas B., Fanni A., See L., Sias G., 2006, Data preprocessing for river flow
forecasting using neural networks: wavelet transforms and data partitioning,
Phys. Chem. Earth, 31 (18), 1164-1171,
http://dx.doi.org/10.1016/j.pce.2006.03.020.
Chiu S. L., 1994, Fuzzy model identification based on cluster estimation, J. Int. Fuzzy Syst., 2, 267-278.
Coulibaly P., Burn D.H., 2005, Spatial and temporal variability of Canadian
seasonal streamflows, J. Climate, 18 (1), 191-210,
http://dx.doi.org/10.1175/JCLI-3258.1.
Drago A. F., Boxall S.R., 2002, Use of the wavelet transform on hydrometeorological
data, Phys. Chem. Earth, 27 (32-34), 1387-1399,
http://dx.doi.org/10.1016/S1474-7065(02)00076-1.
Gilbert R.O., 1987, Statistical methods for environmental pollution monitoring,
Van Nostrand Reinhold, New York, 320 pp.
Haykin S., 1998, Neural networks - a comprehensive foundation, 2nd edn., Prentice-
Hall, Upper Saddle River, NJ, 26-32.
Houghton J.T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Xiaosu
D., (eds.), 2001, Climate change 2001: The scientific basis, Contribution of
Working Group I to the Third Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York,
639-693.
Intergovernmental Panel on Climate Change (IPCC), 2007, Climate change 2007:
impact, adaptation and vulnerability. Contribution of Working Group II to the
Fourth Assessment Report of the IPCC, Cambridge Univ. Press, Cambridge,
976 pp.
Jang J. S.R., 1993, ANFIS: adaptive network-based fuzzy inference system, IEEE
T. Syst. Man Cyb., 23 (3), 665-685,
http://dx.doi.org/10.1109/21.256541.
Kendall M.G., 1975, Rank correlation methods, Charles Griffin, London, 202 pp.
Kim T.W., ValdÉs J. B., 2003, Nonlinear model for drought forecasting based on
a conjunction of wavelet transforms and neural networks, J. Hydrol. Engin.,
8 (6), 319-328,
http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319).
Kleinow T., 2002, Testing continuous time models in financial markets, Ph.D.
thesis, Buchhändler-Vereinigung, Berlin, 244 pp.
Küçük M., 2004, Modeling river flow series using wavelet transform, Ph.D. thesis,
Istanbul Tech. Univ., Istanbul, (in Turkish).
Labat D., 2005, Recent advances in wavelet analyses: Part 1. A review of concepts,
J. Hydrol., 314 (1-4), 275-288,
http://dx.doi.org/10.1016/j.jhydrol.2005.04.003.
Liang S.X., Li M.C., Sun Z.C., 2008, Prediction models for tidal level including
strong meteorologic effects using a neural network, Ocean Eng., 35 (7), 666-
675,
http://dx.doi.org/10.1016/j.oceaneng.2007.12.006.
Long C. J., Datta S., 1996, Wavelet based feature extraction for phoneme
recognition, Proc. 4th Int. Conf. Spoken Lang. Process., 1, 264-267.
Lu R.Y., 2002, Decomposition of interdecadal and interannual components for
North China rainfall in rainy season, Chinese J. Atmos., 26, 611-624, (in Chinese).
Maguire L.P., Roche B., McGinnity T.T., McDaid L. J., 1998, Predicting a chaotic
time series using a fuzzy neural network, Inform. Sci., 112 (1-4), 125-136,
http://dx.doi.org/10.1016/S0020-0255(98)10026-9.
Makarynskyy O., Makarynska D., Kuhn M., Featherstone W.E., 2004, Predicting
sea level variations with artificial neural networks at Hillarys Boat Harbour,
Western Australia, Estuar. Coast. Shelf Sci., 61 (2), 351-360,
http://dx.doi.org/10.1016/j.ecss.2004.06.004.
Mallat S., 1998, A wavelet tour of signal processing, Acad. Press, San Diego, 577 pp.
Masters T., 1993, Practical Neural Network Recipes in C++, Acad. Press, San
Diego, 493 pp.
Meyer Y., 1993, Wavelets: algorithms and applications, Soc. Ind. Appl. Math.,
Philadelphia.
Mittal A., Aadaleesan P., 2010, A new Hammerstein model for non-linear system
identification, Int. J. Comm. Netw. Secur. (IJCNS), 1 (3), 1-12.
Nourani V., Alami M.T., Aminfar M.H., 2009, A combined neural-wavelet model
for prediction of watershed precipitation, Lighvanchai, Iran, Eng. Appl. Artif.
Intelligence, 22 (3), 466-472.
Nourani V., Kisi O., KomasiM., 2011, Two hybrid Artificial Intelligence approaches
for modeling rainfall-runoff process, J. Hydrol., 402 (1-2), 41-59,
http://dx.doi.org/10.1016/j.jhydrol.2011.03.002.
Partal T., Cigizoglu H.K., 2008, Estimation and forecasting of daily suspended
sediment data using wavelet-neural networks, J. Hydrol., 358 (3-4), 317-331,
http://dx.doi.org/10.1016/j.jhydrol.2008.06.013.
Partal T., Kişi O., 2007, Wavelet and neuro-fuzzy conjunction model for
precipitation forecasting, J. Hydrol., 342 (1-2), 199-212,
http://dx.doi.org/10.1016/j.jhydrol.2007.05.026.
Partal T., Küçük M., 2006, Long-term trend analysis using discrete wavelet
components of annual precipitations measurements in Marmara region
(Turkey), Phys. Chem. Earth, 31 (18), 1189-1200,
http://dx.doi.org/10.1016/j.pce.2006.04.043.
Pfeffer W.T., Harper J.T., O’Neel S., 2008, Kinematic constraints on glacier
contributions to 21st-century sea-level rise, Science, 321 (5894), 1340-1343,
http://dx.doi.org/10.1126/science.1159099.
Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., Nourani V., 2009, Daily
suspended sediment concentration simulation using ANN and neuro-fuzzy
models, Sci. Total Environ., 407 (17), 4916-4927,
http://dx.doi.org/10.1016/j.scitotenv.2009.05.016.
Rumelhart D.E., Hinton G. E., Williams R. J., 1986, Learning representations
by back-propagating errors, Nature, 323, 533-536,
http://dx.doi.org/10.1038/323533a0.
SalahshoorK., Kordestani M., KhoshroS., 2010, Fault detectionand diagnosis of
an industrialsteam turbine using fusion of SVM(supportvector machine)and
ANFIS (adaptiveneuro-fuzzy inferencesystem) classifiers,Energy,35 (12),
5472-5482,
http://dx.doi.org/10.1016/j.energy.2010.06.001.
Wang D., Ding J., 2003, Waveletnetwork model and its application to the prediction of hydrology,
NatureSci., 1 (1), 67-71.
XingangD.,PingW.,JifanC.,2003,Multi-scalecharacteristicsoftherainy season
rainfall andinterdecadal decaying ofsummer monsoon in North China,Chinese
ScienceBulletin,48 (24),2730-2734.
Zwiers F. W., Storch H. V., 2003, Statisticalanalysis in climate research, Cambridge
Univ. Press,Cambridge, 495 pp.
Short-term changes in specific conductivity in Polish coastal lakes (Baltic Sea basin)
Oceanologia 2013, 55(3), 639-661
http://dx.doi.org/10.5697/oc.55-3.639
Roman Cieśliński
Department of Hydrology, Institute of Geography, University of Gdańsk,
Bażyńskiego 4, 80-952 Gdańsk, Poland;
e-mail: georc@univ.gda.pl
*corresponding author
keywords:
specific conductivity, short-term changes, increase, decrease, intrusion
Received 5 November 2012, revised 8 January 2013, accepted 29 April 2013.
Abstract
The paper discusses hourly changes in specific conductivity in two lakes and
compares them to changes over longer time intervals. The short time intervals
between measurements are designed to help assess the course of seawater intrusions.
Two lakes on the Polish coast were selected for research purposes - Lakes Gardno
and Łebsko. Specific conductivity was measured using an automatic YSI Sontek
6920V2 probe. It was shown that Lake /Lebsko has a permanently elevated
specific conductivity, whereas Lake Gardno experiences episodes of fluvial
influence.The specific conductivity was shown to change constantly in both
lakes, as evidenced by multi-day, daily and hourly data.
References
Balicki H., 1977, Wpływ Morza Bałtyckiego na stosunki hydrologiczne jeziora Gardno, Bibl. IMiGW, Słupsk, 223 pp.
BIPM, 2006, The International System of Units (SI), 8th edn., Bureau Int. Poids Mes.,
Organis. Intergouvern. Convent. Mètre, Sèvres,
http://www.bipm.fr/utils/common/pdf/si_brochure_8_en.pdf?.
Chlost I., Cieśliński R., 2005, Change of level of waters in Lake Łebsko, Limnol. Rev., 5, Univ. Silesia, Sosnowiec, 17-26.
Choiński A., 1981, Związek wód gruntowych mierzei jeziora Jamno z wodami morskimi i jeziornymi, Bad. Fizjogr. Pol. Zach., 34, Seria A-Geogr. Fiz., 47-67.
Cieśliński R., 2009, Hydrological assessment of the Baltic Sea impact on the Polish coastline, Geologija, 51 (3-4), 146-152.
Cieśliński R., 2011, Geograficzne uwarunkowania zmienności hydrochemicznej
jezior wybrzeża południowego Bałtyku, Wyd. UG, Gdańsk, 225 pp.
Cieśliński R., Drwal J., 2005, Quasi-estuary processes and consequences for human
activity, South Baltic, Estuar. Coast. Shelf Sci., 62 (3), 477-485,
http://dx.doi.org/10.1016/j.ecss.2004.09.011.
Cyberski J., Jędrasik J., 1992, Wymiana i cyrkulacja wód w jeziorze Gardno, [in:]
Zlewnia przymorskiej rzeki Łupawy i jej jeziora, K. Korzeniewski (ed.), Wyd.
WSP, Słupsk, 199-220.
Drwal J., Cie.li.ski R., 2007, Coastal lakes and marine intrusions on the southern
Baltic coast, Oceanol. Hydrobiol. Stud., 36 (2), 61-75,
http://dx.doi.org/10.2478/v10009-007-0016-3.
Gamo T., Kato Y., Hasumoto H., Kakiuchi H., Momoshima N., Takahata N., Sano Y., 2007,
Geochemical implications for the mechanism of deep convection in
a semi-closed tropical marginal basin: Sulu Sea, Deep-Sea Res. Pt. II, 54 (1-2), 4-13.
Hall J., Andersen M., 2002, Handling uncertainty in extreme or unrepeatable
hydrological processes . the need for an alternative paradigm, Hydrol. Process.,
16 (9), John Wiley & Sons, 1867-1870.
Jankowski A., 2000, Wind-induced variability of hydrological parameters in the
coastal zone of the southern Baltic Sea - a numerical study, Oceanol. Stud., 29 (3), 5-34.
Jasińska E., 1990, Napływ wod morskich w rejon ujścia rzeki Łupawy, Inż. Morsk., 5, Gdańsk, 212-219.
Jasińska E., 1997, Hydrodynamics and dynamics of salt water in the Martwa
Vistula, Hydrotech. Trans., 61, PAS, Gdańsk, 31.41.
Kozerski B., 1981, Salt water intrusions into coastal aquifers of Gdańsk region, 7th
Salt Water Intrusion Meeting Proc., Bari, 83-87.
Kozerski B., Kwaterkiewicz A., 1984, Strefowość zasolenia wód podziemnych i ich
dynamika na obszarze delty Wisły, Arch. Hydrotech., 31, 231-255.
Lewis E. L., Perkin R.G., 1978, Salinity: its definition and calculation, J. Geophys. Res., 83 (C1), 466-478,
http://dx.doi.org/10.1029/JC083iC01p00466
Millero F. J., Feistel R., Wright D.G., McDougall T. J., 2008, The composition
of Standard Seawater and the definition of the Reference-Composition Salinity
Scale, Deep-Sea Res. Pt. I, 65 (1), 50-72,
http://dx.doi.org/10.1016/j.dsr.2007.10.001.
Piekarek-Jankowska H., 1996, Rodzaje drenażu wod podziemnych na wybrzeżu Zatoki Gdańskiej, Przeg. Geofiz., 16 (3), 177-191.
Pietrucień C., 1983, Regionalne zro.nicowanie warunkow dynamicznych i hydrochemicznych
wod podziemnych w strefie brzegowej południowego i wschodniego
Bałtyku, Wyd. UMK, Toru., 269 pp.
Pitkänen H., 2001, Internal nutrient fluxes counteract decreases in external load:
the case of the estuarial eastern Gulf of Finland, Baltic Sea, J. Human Environ., 30 (4), 195-201.
Pizarro H., Rodríguez P., Bonaventura S.M., OfFarrell I., Izaguirre I., 2007, The sudestadas: a hydro-meteorological phenomenon that affects river pollution
(River LujLan, South America), Hydrol. Sci. J., 52 (4), 702-712,
http://dx.doi.org/10.1623/hysj.52.4.702.
Szmidt K., 1967, Rola morza Bałtyckiego w kształtowaniu stosunkow hydrograficznych
jezior przybrzeżnych ze szczegolnym uwzgl.dnieniem jeziora
Jamno, Zeszyty Geograficzne WSP w Gdańsku, R IX, 47.76.
Szopowski Z., 1962, Wybrane zagadnienia związane z wymianą wód pomiędzy jeziorem Łebsko a morzem, Materiały do monografii polskiego brzegu
morskiego, 3, IBW PAN, PWN, Gdańsk, Poznań, 122 pp.
Tarkhov S.A., Treivish A. I., 2007, Geographical location and diffusion of basic innovations, GeoJournal, 26 (3), 341-348,
http://dx.doi.org/10.1007/BF02629813.
Thulin J., Andrushaitis A., 2003, The Baltic Sea: its past, present and future.
Religion, science and the environment, Proc. Relig. Sci. Environ. Symp. V Baltic Sea, ICES, CIEM, 11 pp.
Van den Brink H.W., K¨onnen G.P., Opsteegh J.D., Van Oldenborgh G.J., Burgers
G., 2005, Estimating return periods of extreme events from seasonal forecast
ensembles, Int. J. Climatol., 25 (10), 1345-1354,
http://dx.doi.org/10.1002/joc.1155.
Weber M., 1973, Próba obliczenia bilansu wodnego jeziora Łebsko, Wiad. Sł. Hydrol. Meteorol., 4 (96), 69-73.
Ziętkowiak Z., 1983, Zmienność stanów i chemizmu wód podziemnych Mierzei Łebskiej, Kosz. Stud. Mater., Koszalin, 3, 5-23.
Comparison of the impacts of climate change and anthropogenic disturbances on the El Arish coast and seaweed vegetation after ten years in 2010, North Sinai, Egypt
Oceanologia 2013, 55(3), 663-685
http://dx.doi.org/10.5697/oc.55-3.663
Gihan Ahmed El Shoubaky
Botany Department, Faculty of Science, Suez Canal University,
Ismailia, Egypt;
e-mail: dr_gehan_elshoubaky@yahoo.com
keywords:
anthropogenic disturbances, climate change, El Arish coast, El Arish Harbour, El Arish Power Plant, erosion, satellite remote sensing, seaweed vegetation
Received 16 January 2013, revised 3 April 2013, accepted 12 April 2013.
Abstract
Human activities on coasts and climate changes during the past ten years have given rise to considerable shoreline changes along the El Arish coast (the northern coast of the Sinai Peninsula). In the El Arish Power Plant, sediment accretion has reached the tip of the breakwater
of the cooling water intake basin, necessitating extensive dredging inside the basin. To the east of El Arish Harbour, the shoreline has been in
continuous retreat. The differences between the year 2000 and 2010 in the shoreline along the El Arish coast were
determined by analysing satellite images from NOAA-AVHRR images. The analyses revealed erosion and accretion
patterns along the coast. The physical parameters showed that the minimum water temperature of 18°C was
recorded at site I in winter and that the maximum was 40°C at site II in summer. The latter temperature can be attributed to the effluent discharge
of cooling water from the El Arish power plant. Spatial and temporal patterns in the distribution and abundance of macroalgae were measured at four sites
(I, II, III and IV) along the El Arish coast.The percentage cover of the successional macroalgae exhibited environmental fluctuations. After ten years,
the phytocommunity showed that red and green algae were dominant at the study sites. Significant differences between past and current flora were observed.
39 taxa recorded in 2000 were absent in 2010, while 9 taxa not previously reported were present in 2010. These changes are discussed in the context of
possible global warming effects.
PERMANOVA showed significant changes (p < 0.001) between sites, seasons, species abundance and macroalgal groupsalong the El Arish coast in 2000 and
2010. The similarity matrix showed a significant difference between the flora in 2010 and that recorded in 2000, indicating poor similarity and changes in
species composition among the seasons at the different sites. Most of the algae belonged to the filamentous, coarsely branched and sheet functional form
groups.
References
Abdel Rahman S. I., AhmedM. H., Essa M. M., 2001, Droughtmonitoring in the Southeastern
Mediteranean basin using satellite data, Proc. Int. Geogr. Remote Sens. Symp.,IGARSS 2001, July
19-23, Sydney, Australia.
Aitken S. N., Yeaman S., Holliday J. A., Wang T. L.,Curtis-McLane S.,
2008,Adaptation,migration orextirpation:climate changeoutcomes for tree
populations, Evol.Appl., 1 (1), 95-111,
http://dx.doi.org/10.1111/j.1752-4571.2007.00013.x.
AleemA.A.,1993,Themarinealgae ofAlexandria, Priv.Public., Alexandria, 135 pp.
AndersonM. J.,2001, Anew methodfor non-parametric multivariate analysisof variance,Austral Ecol., 26 (1), 32-46,
http://dx.doi.org/10.1111/j.1442-9993.2001.01070.pp.x.
BatesC. R.,DeWreedeR. E.,2007, Do changesinseaweed biodiversityinfluence associated
invertebrateepifauna?,J. Exp.Mar.Biol. Ecol., 344 (2),206-214,
http://dx.doi.org/10.1016/j.jembe.2007.01.002.
Boo S. M., Lee I. K.,1986, Studieson benthicalgal community inthe Eastcoast ofKorea.
1.Floristiccomposition andperiodicityofa Sokchorockyshore, KoreanJ. Phycol.,1, 107-116.
Choi C. G.,2007, Algal floraand EckloniastoloniferaOkamura(Laminariaceae) populationof
Youngdo in Busan,Korea,Algae, 22 (4), 313-318, (in Korean),
http://dx.doi.org/10.4490/ALGAE.2007.22.4.313.
Citadini-ZanetteV.,VeigaNetoA. J., VeigaS. G.,1979,Algasbentônicas de
Imbituba,Santa Catarina,Brasil,Iheringia,Sér. Botân., 25, 111-121.
Coles S. L., 2003, Coralspecies diversity in the Arabian Gulfand the Gulfof Oman:
a comparisonto the Indo-Pacific region, Smithsonian AtollRes.Bull.,507, 19 pp.
Connell S. D., 2007,Water qualityandloss ofcoralreefs andkelpforests:
alternativestatesandtheinfluence offishing,[in:] Marine ecology,S. D. Connell &
B. M. Gillanders(eds.),Oxford Univ. Press,Melbourne,556-568.
ConnellS. D., RussellB. D., TurnerD. J.,Shepherd S. A.,KildeaT., Miller D.,
AiroldiL.,CheshireA.,2008, Recoveringalostbaseline: missingkelp forestsfroma
metropolitancoast,Mar.Ecol.-Prog.Ser.,360,63-72,
http://dx.doi.org/10.3354/meps07526.
CribbA. B.,1983,Marine algaeofthesouthernGreat Barrier Reef. Part I.
Rhodophyta, Handbook- Aust.Coral Reef Soc., Brisbane,246 pp.
Cullen L., Valladares-Padua C., Rudran R., 2003, Métodosde estudos em biologia da conservaçao
e manejoda vidaSilvestre,Curitiba, PR:UFPR, Fundação O Boticário, 663 p.
DijkstraJ., Westerman E., Harris L., 2010, The effects of climate change on species composition,
successionand phenology:a case study, Glob. ChangeBiol., 17, 2360-2369,
http://dx.doi.org/10.1111/j.1365-2486.2010.02371.x.
Dukes J. S., Mooney H., 1999, Doesglobal change increasethe successof biological invaders?,
Trend. Ecol.Evol.,14 (1),135-139,http://dx.doi.org/10.1016/ S0169-5347(98)01554-7.
El BannaM. M.,HereherM. E.,2009, Detectingtemporal shorelinechanges and
erosion/accretionrates, using remote sensing, and their associated sediment characteristics
along the coast of NorthSinai, Egypt, Environ.Geol.,58 (7), 1419-1427,
http://dx.doi.org/10.1007/s00254-008-1644-y.
ElShoubakyG. A.,2005,SeasonalvariationsofseaweedsatElArish coastof
MediterraneanSea (Egypt), Egypt. J. Phycol.,6, 39-55.
Emanuelsson D.,MirchiA.,2007, Impactofcoastalerosionandsedimentation along the
northern coast of SinaiPeninsula,M. Sc. thesis,Lund University.
FaveriC.,SchernerF.,FariasJ.,OliveiraE. C. De.,Horta P. A.,2010, Temporal changes
in the seaweed flora in Southern Brazil and its potential causes, Pan- Am. J. Aquat.Sci., 5 (2),
350-357.
Frihy O. E., Badr A. A., Selim M. A., El Sayed W. R., 2002, EnvironmentalImpacts of El Arish
Power Plant on the Mediterranean Coast of Sinai, Egypt, Environ. Geol., 42 (6), 604-611,
http://dx.doi.org/10.1007/s00254-002-0563-6.
Garrabou J., Pérez T., Sartoretto S., Harmelin J. G., 2001, Mass mortality event in red coral
(Coralliumrubrum,Cnidaria, Anthozoa,Octocorallia)population in the Provenceregion
(France, NWMediterranean),Mar.Ecol.-ProgSer., 217, 263-272,
http://dx.doi.org/10.3354/meps217263.
HalpernB. S., WalbridgeS., KappelC. V., Micheli F.,D’Agrosa C., BrunoJ. F., CaseyK. S.,
Ebert C.,FoxH. E.,Fujita R.,HeinemannD.,LenihanH. S., MadinE. M. P.,PerryM. T.,
Selig E. R.,SpaldingM.,SteneckR.,Watson R.,2008,
A global mapofhumanimpactonmarineecosystems,Science,
319 (5865), 948-952,
http://dx.doi.org/10.1126/science.1149345.
HarleyC. D. G.,2011, Climatechange,keystone predation,and biodiversityloss, Science,
334 (6059), 1124-7,
http://dx.doi.org/10.1126/science.1210199.
Harley C. D. G., Hughes A. R., Hultgren K. M., Miner B. G., Sorte C. J. B.,
ThornberC. S.,Rodriguez L. F., Tomanek L.,WilliamsS. L.,2006,The impacts of
climate change incoastal marinesystems, Ecol. Lett., 9 (2),228-241,
http://dx.doi.org/10.1111/j.1461-0248.2005.00871.x.
Hoegh-Guldberg O.,Mumby P. J.,HootenA. J.,SteneckR. S.,Greenfield P., GomezE.,
HarvellC. D.,2007, Coralreefsunderrapidclimatechange and oceanacidification,
Science, 318 (5857),1737-42,
http://dx.doi.org/10.1126/science.1152509.
IPCC,2007, Climate change 2007: Thephysicalsciencebasis,Contribution of Working
GroupI to the Fourth Assessment Report of the Intergovernmental Panelon ClimateChange,S.
Solomon,D.Qin,M.Manning,Z. Chen,M. Marquis,K. B.Averyt, M.Tignor& H. L.
Miller(eds.),Cambridge Univ. Press,Cambridge, 996 pp.
Jeftic L., 1993, Implications of expected climate change in the Mediterranean region,
278-302,[in:] Regionalimplicationsoffutureclimatechange,M.Graber, A. Cohen& M.
Magaritz(eds.),Proc.Int. Workshop,WeizmannInst.Sci., Rehovot Israel, April 28-May 2 1991, Israeli Acad. Sci. Human.,State of Israel, Minist.Environ.
KaiserM. F.,GerieshM. H.,2007, Waterresourcesassessmentat El-Arish area, using
remotesensingandGIS, NorthSinai,Egypt,Geosci.RemoteSens. Symp.,IGARSS2007,5323-5326,
http://dx.doi.org/10.1109/IGARSS.2007.4424064.
Langford T. E. L., 1990, Ecological effects of thermal discharges, Appl. Sci., Elsevier, London, 468 pp.
LaubierL., 2001, Climaticchanges and trends in marine invertebrates:a need for relevant
observing networks and experimental ecophysiology, AttiAssoc. It. Oceanol. Limnol., 14, 15-24.
LiX., Pichel W. G., Clement-Colon P., KrasnopolskyV., Sapper J.,2001,
Validation of coastal sea and lake surfacetemperature measurementsderived fromNOAA/AVHRR
data, Int. J. RemoteSens.,22, 1285-1303,
http://dx.doi.org/10.1080/01431160151144350.
LittlerM. M.,ArnoldK. E.,1982,Primary productivityofmarinemacroalgal
functional-formgroup fromsouthwestern NorthAmerica,J. Phycol.,18 (3), 307-311,
http://dx.doi.org/10.1111/j.1529-8817.1982.tb03188.x.
LittlerM. M.,LittlerD. S.,1980,The evolutionofthallusformandsurvival
strategies in benthic marine macroalgae: field and laboratory tests of a
functional form model, Am. Nat., 116 (1), 25-44,
http://dx.doi.org/10.1086/283610.
Littler M. M., Littler D. S., 1981, Intertidal macrophyte communitiesfrom Pacific
Baja California andtheupperGulfofCalifornia: relativelyconstantvs.
environmentallyfluctuating systems, Mar.Ecol.-Prog.Ser., 4, 145-158,
http://dx.doi.org/10.3354/meps004145.
Littler M. M., Littler D. S., 1984, Relationshipsbetween macroalgal functional form groups and
substrata stability in a subtropical rocky intertidal system, J. Exp. Mar. Biol. Ecol., 74, 13-34,
http://dx.doi.org/10.1016/0022-0981(84)90035-2.
LobbanC. S.,HarrisonP. J., Duncan M. J.,1985,Thephysiologicalecologyof seaweed,
CambridgeUniv. Press,New York, 35-47.
McCormick P. V., CairnsJ.,1994, Algae as indicatorsof climate change, J. Appl.
Phycol.,6 (5-6), 509-526,
http://dx.doi.org/10.1007/BF02182405.
MengeB. A.,2000,Top-down andbottom-upcommunityregulationinmarine rocky
intertidalhabitats, J. Exp.Mar.Biol. Ecol.,250 (1-2),257-289,
http://dx.doi.org/10.1016/S0022-0981(00)00200-8.
NardelliB.,MarulloS.,SantoleriR.,2005, DiurnalvariationsinAVHRR SST fields:a
strategy for removing warm layer effects from daily images, Remote Sens. Environ.,95 (1), 47-56,
http://dx.doi.org/10.1016/j.rse.2004.12.005.
Occhipinti-Ambrogi A., 2007, Global change and marine communities:alien species and climate
change, Mar.Pollut.Bull.,55 (7-9),342-52,
http://dx.doi.org/10.1016/j.marpolbul.2006.11.014.
Occhipinti-Ambrogi A., AmbrogiR.,2009, Globalchange and loss of biodiversity in the world’s
oceans, Studi Trent. Sci. Nat., 86, 91-97.
Olsvig-Whittaker L., 2010, Global climate change and marine conservation, [in:] Seaweedsand
theirroleinglobally changing environments,A.Israelet al. (eds.),Cell. Origin Life
Ext.,15, 21-28.
OrfanidisS., 1992, Light requirements for growthof six shade-acclimated
Mediterraneanmacroalgae, Mar.Biol.,112 (3),511-515,
http://dx.doi.org/10.1007/BF00356298.
PapenfussG. F.,1968, Ahistory,catalogue andbibliography ofRedSeabenthic algae,
Israel, J. Bot.,17, 1-118.
Parmesan C., 2006, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol.
Evol. Syst., 37, 637-669,
http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110100.
Parmesan C.,YoheG.,2003, Aglobally coherentfingerprintofclimatechange impacts across
natural systems, Nature, 421 (6918), 37-42,
http://dx.doi.org/10.1038/nature01286.
PérezT.,Garrabou J., SartorettoS.,HarmelinJ.-G., Francour P.,VaceletJ.,
2000, Mortalitémassived’invertébrésmarins:un événementsans précédent en
Méditerranéenord-occidentale,CompteRenduAcad.Sci. Paris,Sér.III,
323, 853-865,
http://dx.doi.org/10.1016/S0764-4469(00)01237-3.
RussellB. D.,ThompsonJ. I.,Falkenberg L. J.,ConnellS. D.,2009, Synergistic effects of
climate change and local stressors:CO2 and nutrient-drivenchange insubtidal rockyhabitats,
Glob.ChangeBiol., 15 (9),2153-2162,
http://dx.doi.org/10.1111/j.1365-2486.2009.01886.x.
Salat J.,Pascual J.,2002,The oceanographicandmeteorologicalstation at
L’Estartit(NW Mediterranean),Trackinglong-termhydrologicalchangein the Mediterranean
Sea, CIESM WorkshopSeries, 16, 29-32.
Schils T.,Wilson S. C., 2006, Temperaturethreshold as a biogeographic barrier in northern
Indian ocean macroalgae, J. Phycol., 42, 749-756,
http://dx.doi.org/10.1111/j.1529-8817.2006.00242.x.
ShamsEl DinN. G.,El Moselhy K. H. M.,AmerA.,2004, Distributionofsome macroalgae in
the intertidal zone of the Suez Bay in relation to environmental conditions, Egypt. J. Aquat.
Res., 30 (A), 171-188.
ShannonC. E.,WeaverW.,1949,Themathematicaltheoryofcommunication, Univ. Illinois
Press,Urbana.
Stachowicz J. J., Terwin J. R., Whitlatch R. B., Osman R. W., 2002, Linking climate changeand
biologicalinvasions:oceanwarmingfacilitatesnonindigenous speciesinvasions, P. Natnl.
Acad. Sci. USA, 99 (24), 15497-15500.
Strickland J. D. H., ParsonsT. R., 1972, Apractical handbook of seawater analysis, The Alger
Press Ltd.Ottawa, 310 pp.
Vitousek P. M., D’Antonio C. M., Loope L. L., RejmanekM., WestbrooksR., 1997, Introduced
species: asignificantcomponentofhuman-causedglobal change, New Zeal. J. Ecol., 21 (1), 116.
Walther G. R.,PostE.,ConveyP.,MenzelA.,Parmesan C.,BeebeeT. J. C., Fromentin J.
M., Hoegh-Guldberg O., BairleinF.,2002, Ecologicalresponses torecentclimatechange, Nature, 416, 3893959,
http://dx.doi.org/10.1038/416389a.
Wernberg T.,SmaleD. A.,Thomsen M. S.,2012,A decadeofclimatechange experiments
on marine organisms:procedures, patterns and problems, Glob. Change Biol., 18 (5), 1491-8,
http://dx.doi.org/10.1111/j.1365-2486.2012.02656.x.
WomersleyH. B. S., 1984, Themarinebenthic flora of southern Australia,part I, Handbook
Committ. S. Aust.Govt.,Adelaide,329 pp.
WomersleyH. B. S., 1987, Themarine benthic flora of southern Australia,PartII
HandbookCommitt. S. Aust.Govt.,Adelaide,484 pp.
WoodE. J. F.,ZiemanJ. C.,1969, Theeffectsoftemperature onestuarineplant
communities,ChesapeakeSci., 10 (3-4), 172-174,
http://dx.doi.org/10.2307/1350454.
Wootton J. T., PfisterC. A., ForesterJ. D., 2008, Dynamicpatterns and ecological impactsof
decliningoceanpHina high-resolutionmulti-yeardataset, Proc. Natnl. Acad. Sci. U.S.A.,
105 (48), 18848-53,
http://dx.doi.org/10.1073/pnas.0810079105.
Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis
Oceanologia 2013, 55(3), 687-707
http://dx.doi.org/10.5697/oc.55-3.687
Evgenia Gurova1,*, Andreas Lehmann2, Andrei Ivanov3
1Atlantic Branch of the P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS),
Pr. Mira 1, 236000 Kaliningrad, Russia;
e-mail: evguruna@gmail.com
*corresponding author
2GEOMAR Helmholtz Centre for Ocean Research,
Kiel, Germany;
e-mail: alehmann@geomar.de
3P. P. Shirshov Institute of Oceanology
Moscow, Russia;
e-mail: ivanoff@ocean.ru
keywords:
Baltic Sea, coastal upwelling, MODIS and SAR, images, circulation model
Received 21February 2013, revised 6 May 2013, accepted 11 June 2013.
The Envisat ASAR images used in this study were provided by ESA within
the framework of the Envisat AO project C1P.3424, and C1P.8116.
This work was supported by 1) the Russian Foundation for Basic Research,
grant 12-05-90807 mol_rf_nr, and 2) the Russian Government
(grant No. 11.G34.31.0078) for research under the supervision of leading
scientists at the Russian State Hydrometeorological University.
Abstract
Data from the space-borne synthetic aperture radar (SAR) aboard the
Envisat satellite and MODIS spectroradiometers on board the Terra/Aqua
satellites, and the high resolution Sea Ice-Ocean Model of the Baltic Sea
(BSIOM) have been used to investigate two upwelling events in the SE Baltic
Sea. The combined analysis was applied to the upwelling events in July 2006
along the coasts of the Baltic States, and in June 2008 along the Polish
coast and Hel Peninsula. Comparisons indicated good agreement between
the sea surface temperatures and roughness signatures detected in satellite
imagery and model results. It is shown that BSIOM can simulate upwelling
events realistically. The utilization of modelled hydrodynamics and
wind stress data together with SAR and SST information provides an extended
analysis and deeper understanding of the upwelling processes in the
Baltic Sea.
During the active phase of upwelling when the wind is strong, the resulting
coastal jet is controlled by vorticity dynamics related to depth variations
in the direction of the flow. Typical upwelling patterns are related
to the meandering coastal jet and thus associated with topographic features.
The longshore transport of the coastal jet is of the order of 104 m3 s-1,
and the offshore transport at the surface is of the order of 103 m3 s-1,
which respectively correspond to the total and largest river runoff to the Baltic Sea.
References
Brown O. B., Minnett P. J., 1999,MODIS infrared seasurface temperature algorithm
theoretical basis document,Ver. 2.0,
http://modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf.
Bumke K., Karger U., Hasse L., Niekamp K., 1998, Evaporationover the Baltic Sea as an example of
a semi-enclosedsea, Contr. Atmos. Phys.,71 (2), 249-261.
BychkovaI., ViktorovS., Shumakher D.,1988, Arelationshipbetweenthe large- scale
atmosphericcirculationand the origin of coastal upwelling in the Baltic, Metorol. Gidrol.,10, 91-98, (in Russian).
Clemente-Colón P., Yan X. H., 1999, Observations of east coast upwelling conditions insynthetic
apertureradarimagery,IEEET.Geosci. Remote,37 (5),2239-2248,
http://dx.doi.org/10.1109/36.789620.
Clemente-ColónP.,YanX.-H.,2000, LowbackscatterfeaturesinSAR imagery, JHUAPL
Tech. Digest, 21 (1), 116-121.
CsanadyG. T.,1982, Circulationin the coastal ocean,D. Reidel Publ.Company, Dordrecht, 279 pp.,
http://dx.doi.org/10.1007/978-94-017-1041-1.
Fennel W., Seifert T., 1995, Kelvinwave controlled upwelling in the western Baltic, J. Marine
Syst., 6 (4), 289-300,
http://dx.doi.org/10.1016/0924-7963(94)00038-D.
Fennel W., Sturm M., 1992, Dynamicsof the western Baltic,J. Marine Syst., 3 (1-2), 183-205,
http://dx.doi.org/10.1016/0924-7963(92)90038-A.
Gelimbauskaite L.-Z. (ed.),1998, Bathymetric map of the CentralBaltic Sea, scale
1:500 000, LGT Ser. Marine Geol. Maps, No. 1 / SGU Ser. Ba No. 54., Geol. Survey Sweden, Lith.
Inst.Geol., Vilnius/Uppsala.
Gurova E. S., Ivanov A. Yu., 2011, Appearanceof sea surface signatures and current featuresin
the South-EastBalticSea on the MODISand SARimages, Issled. Zemli Kosm., 4, 41-54, (in Russian).
Hsu M. K., MitnikL. M., Liu C. T.,1995, Upwelling area northeastof Taiwan on
ERS-1SARimages, ActaOceanogr.Taiwan., 34 (3), 27-38.
Kowalewski M., OstrowskiM., 2005, Coastal up- and downwelling in the southern Baltic,Oceanologia, 47 (4), 454-475.
KozlovI. E.,Kudryavtsev V. N.,Johannessen J. A.,Chapron B.,DailidieneI., Myasoedov
A. G.,2011, ASAR imagingforcoastalupwellingintheBaltic Sea, Adv. Space Res., 50 (8), 1125-1137,
http://dx.doi.org/10.1016/j.asr.2011.08.017.
Krauss W., Brúgge B., 1991, Windproduced water exchange between the deep basins of the Baltic
Sea, J. Phys. Oceanogr.,21, 373-384,
http://dx.doi.org/10.1175/1520-0485(1991)021<0373:WPWEBT>2.0.CO;2.
Kronsell J., AnderssonP., 2012, Total regional runoff to the BalticSea, HELCOM Indicator Fact Sheets 2011.
Laanemets J., Váli G., ZhurbasV., Elken J., Lips I., Lips U., 2011, Simulationof mesoscale
structures and nutrienttransport during summerupwelling events in the Gulf of Finlandin 2006,
Boreal Environ.Res., 16 (Suppl.A), 15-26.
LargeW. G., Pond S.,1981,Open oceanfluxmeasurements in moderateto strong
winds,J. Phys.Oceanogr., 11,324-336,
http://dx.doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.
LehmannA., 1995, Athree-dimensional baroclinic eddy-resolving model of the
Baltic Sea, Tellus A,47 (5), 1013-1031,
http://dx.doi.org/10.1034/j.1600-0870.1995.00206.x.
LehmannA., HinrichsenH.-H., 2000, Onthe thermohaline variability of the Baltic
Sea, J. MarineSyst.,25, 333-357,
http://dx.doi.org/10.1016/S0924-7963(00)00026-9.
Lehmann A., Krauss W., Hinrichsen H.-H., 2002, Effects of remote and local atmospheric forcing on
circulationand upwelling in the BalticSea, Tellus A, 54 (3), 299-316.
LehmannA., MyrbergK., 2008, Upwelling in the BalticSea - Areview, J. Marine
Syst.,74 (Suppl.),S3-S12,
http://dx.doi.org/10.1016/j.jmarsys.2008.02.010.
Lehmann A.,MyrbergK.,HöflichK.,2012,A statisticalapproachtocoastal upwelling
inthe BalticSeabased onthe analysisof satellite data for1990-2009, Oceanologia, 54 (3), 369-393,
http://dx.doi.org/10.5697/oc.54-3.369.
Li X. M.,Li X. F.,He M. X.,2009, Coastalupwelling observed by multi-satellite sensors,
ScienceinChina, Sci. ChinaSer. D, 52 (7),1030-1038,
http://dx.doi.org/10.1007/s11430-009-0088-x.
Lin I.-I., Wen L.-S., Liu K.-K., Tsai W.-T.,Liu A.-K., 2002, Evidence and quantiffcationofthe
correlationbetween radarbackscatter andoceancolour supported by simultaneouslyacquired in
situseatruth, Geophys.Res.Lett., 29 (10),
http://dx.doi.org/10.1029/2001GL014039.
Mitnik L. M., Lobanov V. B., 1991, Reflectionof the oceanic fronts on the satellite radarimages,
[in:]OceanographyofAsian marginal seas,K.Takano(ed.), Elsevier Oceanogr.Ser., 54,
Elsevier, Amsterdam, 85-101.
MyrbergK.,AndrejevO.,LehmannA.,2010, Dynamics ofsuccessiveupwelling events in the
BalticSea - a numerical case study, Oceanologia, 52 (1), 77-99.
NovotnyK., LiebschG., Lehmann A., Dietrich R., 2006,Variabilityofsea surface
heightsintheBalticSea: An intercomparisonofobservationsand model simulations,
Mar.Geod.,29 (2),113-134,
http://dx.doi.org/10.1080/01490410600738054.
RuddickK. G., Ovidio F., Rijkeboer M., 2000, Atmosphericcorrection of SeaWiFS
imagery for turbid coastal and inland waters, Appl. Optics, 39 (6), 897-912.
RudolphC., LehmannA., 2006, A model-measurements comparison of atmospheric forcing and surface
fluxes of the BalticSea, Oceanologia, 48 (3), 333-380.
SmithS. D.,1988, Coeffcientsfortheseasurfacewindstress, heatflux, and
wind profiles as a functionof wind speed and temperature,J. Geophys.Res., 93 (C12), 15467-15472,
http://dx.doi.org/10.1029/JC093iC12p15467.
StoffelenA., Anderson D., 1997,
Scatterometerdata interpretation: Estimation
and validation of the transferfunctionCMOD4,J. Geophys. Res., 102 (C3), 5767-5780,
http://dx.doi.org/10.1029/96JC02860.
Valenzuela G. R., 1978, Theoriesfor the interaction of electromagnetic and oceanic waves: A
review,Bound.-Lay. Meteorol., 13, 61-85.
Zhurbas V. M., StipaT., MälkkiP., PakaV. T., Kuz’minaN. P., Sklyarov E. V.,
2004, Mesoscalevariability of the upwelling in the southeastern Baltic Sea:IR
images and numerical modeling,Oceanology, 44 (5),619-628.
Zhurbas V., Lannemets J., VahteraE., 2008, Modelingof the mesoscalestructure ofcoupled
upwelling/downwelling eventsandtherelated inputtotheupper mixed layer in the Gulf of
Finland,BalticSea, J. Geophys. Res., 113, C05004,
http://dx.doi.org/10.1029/2007JC004280.
Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey)
Oceanologia 2013, 55(3), 709-732
http://dx.doi.org/10.5697/oc.55-3.709
Muhammet Turkoglu
Marine Biology Section, Fisheries Engineering Department, Marine Sciences and Technology Faculty, Çanakkale Onsekiz Mart University,
Terzioglu Campus 17100 Çanakkale, Turkey;
e-mail: mturkoglu@comu.edu.tr
keywords:
Sea of Marmara, Dardanelles, Noctiluca scintillans, red-tide, eutrophication
Received 16 August 2012, revised 26 November 2012, accepted 4 April 2013.
This study contains the findings of various project such as ‘Turkish Scientific and Technical Research Council (TUBITAK,
YDABAG,Project No: 101Y081)’ and Çanakkale Onsekiz Mart University Scientific Research Projects (COMU, BAP, Project No:
2000//22)’. This study was presented as an oral presentation at a Workshop on Algal and Jellyfish Blooms in the Mediterranean and Black
Sea organized by the General Fisheries Commission for the Mediterranean (GFCM) on 6-8 October 2010, Istanbul, Turkey. This study was also published
as an abstract in the List of Documents and Abstracts of the Workshop.
Abstract
This investigation focused on weekly variations in cell density and volume of the dinoflagellate
Noctiluca scintillans between March 2001 and January 2004 in the Dardanelles. March-June and
October-December periods were excessive bloom periods. During the bloom
periods the density of N. scintillans reached 2.20 × 105 cells L-1 with
a volume of 1.32 × 1012 µm3 L-1. In addition to
the high surface density, there was an increase in subsurface waters during
the blooms. The bloom of N. scintillans, like that of diatom and other
dinoflagellate blooms, was associated not only with eutrophication, but also
with stable temperatures and salinities.
References
AiyarR. R., 1936, Mortalityof fish of the Madrascoast in June1935,Curr. Sci.,
4 (7),488-489.
BabaA., DenizO., TurkogluM., OzcanH., 2007, Investigation of dischargeof fresh water in
the Canakkale Strait(Dardanelles-Turkey), [in:] Environmental security in harbors and coastal
areas, Springer-Verlag, Dordrecht, 421-427,
http://dx.doi.org/10.1007/978-1-4020-5802-8_30.
Basturk O., Tugrul S., Yilmaz A., Saydam A. C., 1990, Oceanography of the Turkish Straits.Third
AnnualReport, Vol. II, Inst. Mar. Sci.,Middle East Tech. Univ., Erdemli, 69 pp.
Bhimichar B. S., George P. C., 1950, Abrupt setbacks in the fisheries of the Malabar and Kanaro
coasts and ‘red water phenomenon’as their probable cause, Proc. Indi.Acad. Sci., 31, 339-350.
Chang F. H., 2000, Pinkblooms inthe springsinWellingtonHarbour,Aquacult. Update,24, 10-12.
Dela-CruzJ., AjaniP., Lee R., Pritchard T., Suthers I., 2002, Temporal abundance patternsof
the red tidedinoflagellate,Noctilucascintillans,along the south- east coast of Australia,
Mar.Ecol.Prog.Ser.,236, 75-88,
http://dx.doi.org/10.3354/meps236075.
Dodge J. D., 1982, MarineDinoflagellatesof the BritishIsles,2nd edn., HMStat. Office, London, 303 pp.
EckertR.,ReynoldsG. T.,1967, Thesubcellularoriginofbioluminescence in
Noctilucamiliaris, J. Gen.Physiol.50 (5), 1429-58,
http://dx.doi.org/10.1085/jgp.50.5.1429.
ElbrächterM.,Qi Y. Z.,1998, Aspects ofNoctiluca(Dinophyceae)population dynamics,
[in:] Physiological ecology of harmfulalgal blooms, D. M. Anderson, A. D. Cembella & G. M.
Hallegrae? (eds.),Springer-Verlag, Berlin, 315-335.
FukuyoY., TakanoH.,Chihara M.,MatsuokaK., 1990, Redtideorganismsin
Japan.Anillustratedtaxonomicguide,Uchida Rokakuho Publ.Press, Tokyo,
430 pp.
Guillard R. R. L.,1978, Countingslides, [in:] Phytoplankton manual, Unesco, Paris,
182-189.
Hallegraeff G. M., 1991, Aquaculturists guide to harmful Australian microalgae, 1st edn., Fish. Ind.
Train.Board, Tasmania/CSIRO Div.Fisher., Hobart, 111 pp. Hallegrae? G. M., BolchC. J.,1991,
Transportoftoxicdinoflagellatecystsvia
ships’ballast water,Mar.Pol.Bull., 22, 27-30,
http://dx.doi.org/10.1016/0025-326X(91)90441-T.
HarrisonP. J., Furuya K.,GlibertP. M.,Xu J.,Liu H. B.,Yin K.,Lee J. H. W., Anderson
D. M.,GowenR.,Al-AzriA. R.,Ho A. Y. T.,2011, Geographical distributionof red and
green Noctiluca scintillans,Chinese J. Oceanol. Limnol., 29 (4), 80-831,
http://dx.doi.org/10.1007/s00343-011-0510-z.
HasleG. R.,1978,Usingtheinvertedmicroscope, [in:] Phytoplanktonmanual, A. Sournia
(ed.),Unesco, Paris,191-196.
Hausmann K., HulsmannN., Radek R., 2003, Protistology,3rd edn., Schweizerbart
Sci. Publ.,Stuttgart, 379 pp.
HuangC.,QiH.,1997, Theabundancecycleandinfluencefactorsonredtide phenomena
of Noctilucascintillans(Dinophyceae) in Dapeng Bay,the South ChinaSea,J. PlanktonRes.,
19 (3), 303-318,
http://dx.doi.org/10.1093/plankt/19.3.303.
IgnatiadesL.,Gotsis-SkretasO.,2010,Areviewontoxicandharmfulalgae inGreek
coastalwaters(E.MediterraneanSea),Toxins,2 (5),1019-1037,
http://dx.doi.org/10.3390/toxins2051019.
Koray T., Buyukisik B., Parlak H., GokpinarS., 1996, Eutrophication processes and algal blooms
(red-tides) inIzmirBay,[in:]Finaleportson researchprojects dealing with
eutrophication and heavy metal accumulation, UNEP/FAO (eds), UNEP,MAP Tech.Rep. Ser. 104,
Athens, 1-26.
Miyaguchi H., FujikiT., Kikuchi T., Kuwahara V. S., TodaT., 2006, Relationship betweenthe
bloom of Noctilucascintillansandenvironmental factorsinthe coastalwatersof Sagami
Bay,Japan,J. Plank.Res.,28 (3),313-324,
http://dx.doi.org/10.1093/plankt/fbi127.
NikolaidisG.,KoukarasK.,AligizakiK.,HeracleousA.,KalopesaE., MoschandreouK.,
Tsolaki E., Mantoudis A., 2005,Harmful microalgal episodes in Greek coastal waters, J.
Biol. Res.-Thessal., 3, 77-85.
Okaichi T., Nishio S., 1976, Identification of ammoniaas the toxic principle of red tide of
Noctilucamiliaris,Bull. Plank.Societ. Jpn., 23, 75-80.
Pithakpol S., TadaK.,MontaniS., 2000, Nutrient regenerationduringNoctiluca scintillans
red tide in Harima Nada, the Seto Inland Sea, Japan, Kaiyo Kogaku Shinpo jiumu,15, 127-134.
Polat C., Tugrul S., 1995, Nutrient and organic carbon exchanges between the Black and Marmara seas
through the Bosphorus Strait, Cont. Shelf Res., 15 (9), 1115-1132,
http://dx.doi.org/10.1016/0278-4343(94)00064-T.
PolatC., Tugrul S., Coban Y., BasturkO., Salihoglu I., 1998,Elemental
compositionof seston and nutrientdynamics in the Sea ofMarmara, Hydrobiol.,
363, 157-167,
http://dx.doi.org/10.1023/A:1003117504005.
Porumb F., 1992, On the developmentof Noctiluca scintillansunder eutrophication of Romanian
Black sea waters, Sci. Tot.Environ.,126 (Suppl.),907-920.
ReddenA. M., KobayashiT.,Suthers I., Bowling L., Rissik D., Newton G., 2009, Plankton
processesandtheenvironment,[in:] Plankton. Aguidetotheir ecology andmonitoring
forwaterquality,I. M. Suthers& D.Rissik(eds.), CSIROPub.,Collingwood, 15-38.
Rissik D., Suthers I., 2009, The importanceof plankton,[in:]Plankton.Aguide
to theirecology and monitoring forwater quality,I. M. Suthers &D. Rissik
(eds.),CSIRO Pub.,Collingwood, 1-14.
Steidinger K. A., Tangen K., 1996, Dinoflagellates, [in:] Identifyingmarinediatoms and
dinoflagellates, C. R.Tomas(ed.), Acad.Press,NewYork,387-598,
http://dx.doi.org/10.1016/B978-012693015-3/50006-1.
Strickland J. D. H., Parsons T. R., 1972, A practical handbook of seawater analysis,
2nd edn.,Fisher. Res. Board Canad., Ottawa, 310 pp.
Sweeney B. M., 1978, Ultrastructure of Noctilucamiliaris(Pyrrophyta) with green symbionts, J.
Phycol., 14,116-120,
http://dx.doi.org/10.1111/j.1529-8817.1978.tb00643.x.
TadaK., PithakpolS., MontaniS., 2004, Seasonalvariationin the abundanceof
NoctilucascintillansintheSetoInlandSea,Japan,Plank.Biol.Ecol., 51, 7-14.
Taylor F. J. R., 1993, The species problem and its impacton harmful phytoplankton studies,with
emphasison dinoflagellate morphology, [in:] Toxic phytoplankton bloomsin thesea, T. J.
Smayda & Y.Shimizu (eds.), Elsevier-Verlag, Amsterdam, 81-86.
Taylor F. J. R., Fukuyo Y., Larzen J., 1995, Taxonomy of harmfulDinoflagellates, [in:] Manual on
harmful marine microalgae, G. M. Hallegrae?, D. M. Anderson
& A. D. Cembella (eds.), Monogr. Oceanogr. Methodol., UNESCO, Paris, 283-317.
Thomas K.,Titelman J.,1998,Feeding, preyselection andpreyencounter mechanisms
in the heterotrophicdinoflagellate Noctilucascintillans, J. Plank. Res., 20 (8),1615-1636,
http://dx.doi.org/10.1093/plankt/20.8.1615.
Tugrul S., Polat C., 1995, Quantitative comparisonof the influxes of nutrients and organic carbon
into the Sea of Marmaraboth fromanthropogenicsources and fromthe Black Sea, Water Sci.
Techn.,32 (2),115-121,
http://dx.doi.org/10.1016/0273-1223(95)00576-9.
TugrulS.,Be¸siktepeS¸ ., Salihoglu I., 2002, Nutrient exchange fluxesbetweenthe
Aegeanand BlackSeas through the MarmaraSea, Mediterr. Mar.Sci., 3 (1), 33-42.
TurkogluM.,2005,Succession ofpicoplankton (coccoidcyanobacteria) inthe Southern
Black Sea (SinopBay,Turkey), Pak.J. Biol. Sci., 8 (9),1318-1326,
http://dx.doi.org/10.3923/pjbs.2005.1318.1326.
TurkogluM., 2008, Synchronous blooms of thecoccolithophoreEmilianiahuxleyi (Lohmann)Hay
&Mohler and three dinoflagellates in the Dardanelles (TurkishStraits System),J.
Mar. Bio.Assoc.UK,88 (3), 433-441,
http://dx.doi.org/10.1017/S0025315408000866.
Turkoglu M., 2010a, Temporal variationsof surfacephytoplankton, nutrients and chlorophyll-ain
the Dardanelles(Turkish StraitsSystem):Acoastalstation sample in weekly timeintervals,
Turk.J. Biol., 34 (3),319-333.
TurkogluM.,2010b, Winter bloomandecologicalbehaviorsofcoccolithophore
Emilianiahuxleyi (Lohmann) Hay & Mohler, 1967 in the Dardanelles (Turkish
StraitsSystem), Hydrol.Res., 41 (2), 104-114,
http://dx.doi.org/10.2166/nh.2010.124.
TurkogluM.,2010c, Shorttimevariationsofchlorohylla andnutrients inthe
Dardanelles,Turkey, Rapp.Comm. Int.Mer M´edit., 39, 411 pp.
Turkoglu M., Baba A., Ozcan H., 2006, Determination and evaluation of some physicochemical
parametersintheDardanelles(CanakkaleStrait- Turkey) using multiple probe system and
geographic information system, Hydrol. Res. (Formerly Nord. Hydrol.),37 (3), 293-301.
TurkogluM., Buyukates Y., 2005, Short timevariationsin densityand bio-volume ofNoctiluca
scintillans (Dinophyceae)inDardanelles, XIII. Natnl.Fish. Symp., 01-04 Semptember
2005, Çanakkale,Turkey,Abstr.Book (Abstracts),
59, (in Turkish).
TurkogluM., ErdoganY., 2010, Diurnalvariationsof summerphytoplanktonand interactions
with some physicochemicalcharacteristics under eutrophication of surfacewaterinthe
Dardanelles(ÇanakkaleStrait,Turkey), Turk.J.Biol.,
34 (2), 211-225.
TurkogluM.,KorayT.,2002, Phytoplankton speciessuccessionand nutrients in
SouthernBlack Sea (Bayof Sinop),Turk.J. Bot.,26, 235-252.
TurkogluM., KorayT.,2004, Algal blooms in surfacewaters of the SinopBayin the Black
Sea, Turkey, Pak.J. Biol. Sci., 7 (9), 1577-1585,
http://dx.doi.org/10.3923/pjbs.2004.1577.1585.
Turkoglu M.,OnerC., 2010,Short time variations ofwinter phytoplankton, nutrient
andchlorophyllaofKepezHarborintheDardanelles(Çanakkale Strait,Turkey), Turk.
J. Fish. Aquat.Sci., 10 (4), 537-548.
TurkogluM.,UnsalM.,IsmenA.,MaviliS.,SeverT. M.,YeniciE.,KayaS., Coker
T.,2004a, Dynamicsof lower and high food chainof the Dardanelles andSarosBay(North
AegeanSea),TUBITAKYDABAGTech.Fin.Rep.,
101Y081, Çanakkale,314 pp., (in Turkish).
Turkoglu M., Yenici E., Ismen A., Kaya S., 2004b, Variations of nutrient and chlorophyll-a inthe
CanakkaleStrait(Dardanelles),EU J. Fish.Aqua.Sci.,
21, 93-98, (in Turkish).
UhligG.,SahlingG.,1990, Long-termstudiesonNoctilucascintillans.German Bight
populationdynamicsandredtidephenomena1968-88,Neth.J. Sea Res., 25 (1-2), 101-112,
http://dx.doi.org/10.1016/0077-7579(90)90012-6.
Unsal M., TurkogluM., Yenici E.,2003, Biological and physicochemical
researches in the Dardanelles, TUBITAK-YDABAG Tech. Fin. Rep., 101Y075, Canakkale, 92 pp., (in
Turkish).
Van Moll B., RuddickK., Astoreca R., Park Y., Nechad B., 2007, Optical detection of a Noctiluca
scintillansbloom, EARSeL eProc.,6 (2), 130-137.
VenrickE. L.,1978,Howmany cellstocount?, [in:] Phytoplanktonmanual, A. Sournia
(ed.),Unesco, Paris,167-180.
Protozoa in a stressed area of the Egyptian Mediterranean coast of Damietta, Egypt
Oceanologia 2013, 55(3), 733-750
http://dx.doi.org/10.5697/oc.55-3.733
Mohamed Moussa Dorgham1,*, Wael Salah El-Tohamy2, Nagwa Elsayed Abdel Aziz3, Ahmed El-Ghobashi2, Jian G. Qin4
1Department of Oceanography, Faculty of Science, Alexandria University,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author
2Department of Zoology, Faculty of Science, Mansoura University,
Damietta, Egypt
3National Institute of Oceanography and Fisheries,
Alexandria, Egypt
4School of Biological Sciences, Flinders University,
Adelaide SA, Australia
keywords:
environmental conditions, pollution indicators, coastal protozoa, tintinnids, non-tintinnid ciliates
Received 5 July 2012, revised 21 March 2013, accepted 16 April 2013.
Abstract
The Damietta coast is part of the Egyptian Mediterranean coast off the Nile Delta and has recently been polluted as a result of intensive human activities.
The environmental parameters and protozoan community in the area were studied biweekly from January to December 2007. The results of the environmental
parameters indicated low salinity, oxic and anoxic conditions, high nutrient levels and intensive phytoplankton growth. A total of 69 protozoan species
were identified, belonging to Amoebozoa (8 species), Foraminifera (12 species), non-tintinnid ciliates (22 species) and tintinnids (27 species). The numerical density of protozoans was high over the whole area, with annual averages between 8.2 × 103 cells m-3 and 51.4 × 103 cells m-3.
Spring was the most productive season for protozoans, but several distinct peaks were observed during the year at the sampling sites. The protozoan
groups showed clearly different spatial patterns in both composition and abundance: whereas amoebozoans and non-tintinnid ciliates were dominant in the
more polluted areas (sites IV and V), tintinnids dominated in the less polluted areas (sites, I, II and III). Several pollution indicators were
recorded:amoebozoans - Centropyxis aculeata, Centropyxis sp., Cochliopodium sp.,
Difflugia sp.; non-tintinnids - Bursaridium sp., Frontonia atra,
Holophrya sp., Paramecium sp., Paramecium bursaria,
Vasicola ciliata, Vorticella sp., Strombidium sp.; tintinnids
-Favella ehrenbergii, Helicostomella subulata, Leprotintinnus nordgvisti,
Tintinnopsis beroidea, Stenosemella ventricosa, Tintinnopsis campanula,
T. cylindrica, T. lobiancoi, Eutintinnus lusus-undae.
References
Abdel-Aziz N. E., 2001, Zooplankton in beach waters of the southeastern Abu Qir
Bay, J. Egypt. Acad. Soc. Environ. Dev., 2 (4), 31-53.
Abdel-Aziz N. E., 2002, Impact of water circulation and discharged wastes on
zooplankton dynamics in the Western Harbour of Alexandria, Egypt, Egypt.
J. Aquat. Biol. Fish., 6 (1), 1-21.
Abdel-Aziz N. E., 2004, The changes of zooplankton community in a chronic
eutrophic bay on Alexandria coast, Egypt, Egypt. Bull. Fac. Sci. Alex. Univ.,
43 (1-2), 203-220.
Abdel-Aziz N. E., 2005, Short term variations of zooplankton community in the
West Naubaria Canal, Egypt, Egypt. J. Aquat. Res. (A.R.E.), 31 (1), 119-132.
Abdel-Aziz N. E., Aboul-Ezz S.M., 2003, Zooplankton community of the Egyptian
Mediterranean Coast, Egypt. J. Aquat. Biol. Fish., 7 (4), 91-108.
Abdel-Aziz N. E., Dorgham M.M., 2004, Short-term variations of zooplankton
diversity in a mixing area between sea and lake, Alexandria, Egypt, Egypt.
J. Aquat. Biol. Fish., 8 (2), 19-36.
Anon., 2007, Final project report; distribution biological and rearing aspect of
marine fish fries from Mediterranean Sea between Alexandria and Damietta, NIOS, Acad. Sci. Res., Alexandria.
Balloch D., Davies C.E., Jones F.H., 1976, Biological assessment of water quality
in three British rivers: the North Esk (Scotland), the Ivel (England) and the
Taff (Wales), Water Pollut. Control, 75 (1), 92-114.
Bloem J., Albert C., Bär-Gillissen M. J.B., Berman T., Cappenberg E.T., 1989,
Nutrient cycling through phytoplankton, bacteria and protozoa, in selectively
filtered Lake Vechten water, J. Plankton Res., 11 (1), 119-131,
http://dx.doi.org/10.1093/plankt/11.1.119.
Boyle T.P., Smillie G. M., Anderson J. C., Beeson D. R., 1990, A sensitivity analysis
of nine diversity and seven similarity indexes, Res. J. Water Pollut. C., 62 (6), 749-762.
Charubhun B., Charubhun N., 2000, Biodiversity of freshwater Protozoa in
Thailand, Kasetsart J. (Nat. Sci.), 34, 486-494.
Corliss J.O., 1979, The ciliated protozoa: characterization, classification, and guide
to the literature, Pergamon Press, Oxford, New York, 455 pp.
Cosper T.C., 1972, The identification of tintinnids (protozoa: Ciliata: Tintinnida)
of the St. Andrew Bay system, Florida, Bull. Mar. Sci., 22 (2), 391-418.
Curds C., 1982, Pelagic protists and pollution. A review of the past decade, Annal.
Inst. Oceanogr., 58 (S), 117-136.
Dopheide A., Lear G., Stott R., Lewis G., 2009, Relative diversity and community
structure of ciliates in stream biofilms according to molecular and microscopy
methods, Appl. Environ. Microb., 75 (16), 5261-5272,
http://dx.doi.org/10.1128/AEM.00412-09.
DorghamM.M., 1987, Occurrence of Tintinnids in two polluted areas of Alexandria
Coast, FAO/UNEP Meeting on the Effects of Pollution on Marine Ecosystems,
Blanes (Spain), 7-11 October 1985, FAO Fish. Rep., 352 (Suppl.), 76-83.
Dorgham M.M., Abdel-Aziz N. E., El-Ghobashy A. E., El-Tohamy S.W., 2009,
Preliminary study on Protozoan community in Damietta Harbor, Egypt, Global Veterinaria, 3 (6), 495-502.
El-Bassat R.A., Taylor W.D., 2007, The zooplankton community of Lake Abo
Zaabal, a newly-formed mining lake in Cairo, Egypt, Afr. J. Aquat. Sci., 32(2), 185-192.
El-Ghobashy A., 2009, Natural fish fry food of seven commercial species in the
Egyptian Mediterranean water, World Appl. Sci. J., 7 (3), 320-331.
Ibrahim S., Abdullahi B.A., 2008, Effect of lead on zooplankton dynamics in
Challawa River, Kano state, Nigeria, Bayero J. Pure Appl. Sci. (Bajopas),
1 (1), 88-94.
Ignatiades L., Karydis M., Vounatsou P., 1992, A possible method for evaluating
oligotrophy and eutrophication based on nutrient concentrations, Mar. Pollut.
Bull., 24 (5), 238-243,
http://dx.doi.org/10.1016/0025-326X(92)90561-J.
Ismael A.A., Dorgham M.M., 2003, Ecological indices as a tool for assessing
pollution in El-Dekhaila Harbour (Alexandria, Egypt), Oceanologia, 45 (1), 121-131.
Kneitel J.M., Chase J.M., 2004, Disturbance, predator, and resource interactions
alter container community composition, Ecology, 85 (8), 2088-2093,
http://dx.doi.org/10.1890/03-3172.
Lepš J., Šmilauer P., 2003, Multivariate analysis of ecological data using CANOCO,
Cambridge Univ. Press., Cambridge, 269 pp.,
http://dx.doi.org/10.1017/CBO9780511615146.
Marchetti R., 1984, Quadro analitico complessivo del risultati delle indagini
condotte negli anni 1977-1980. II. Problema dell’eutrofizzazione delle acque
costiere dell’Emilia Romagna: situazione ipotesi di intervento, Regione Emilia
Romagna, Bologna, 308 pp.
Margalef D.R., 1978, Life forms of phytoplankton as survival alternatives in an
unstable environment, Oceanologica Acta, 1 (4), 493-509.
Marshall S.M., 1969, Protozoa order Tintinnida, Cons. Int. Explor. Mer Zooplankton Sheet, 117-127.
Newell G. E., Newell R.C., 1963, Marine plankton, a practical guide, Hutchinson Edu. Ltd., London, 221 pp.
Newell G. E., Newell R.C., 1979, Marine plankton, a practical guide, Hutchinson Edu. Ltd, London, 244 pp.
Odum H.T., Cantlon J. E., Kornicker L. S., 1960, An organizational hierarchy
postulate for the interpolation of species individual distribution, species entropy
and ecosystem evolution and the meaning of a species-variety index, Ecology,
41 (2), 395-399,
http://dx.doi.org/10.2307/1930248.
Salvado H., Gracia M.P., Amigo J.M., 1995, Capability of ciliated protozoa as
indicators of effluent quality in activated-sludge plants, Water Research, 29 (4), 1041-1050,
http://dx.doi.org/10.1016/0043-1354(94)00258-9.
Shannon C.E., Weaver W., 1949, The mathematical theory of communication, Univ. Illinois Press, Urbana, 117 pp.
SousaW., Attayde J. L., Rocha E.D., Eskinazi-Sant’anna E.M., 2008, The response
of zooplankton assemblages to variations in the water quality of four manmade
lakes in semi-arid northeastern Brazil, J. Plankton Res., 30 (6), 699-708,
http://dx.doi.org/10.1093/plankt/fbn032.
Strickland J.D.H., Parsons T.R., 1972, A practical handbook of seawater analysis,
2nd edn., Bull. 167, Fish. Res. Board Canada, Ottawa, 310 pp.
Ter Braak C. J. F., Prentice I.C., 1988, A theory of gradient analysis, Adv. Ecol.
Res., 18, 271-317,
http://dx.doi.org/10.1016/S0065-2504(08)60183-X.
Tregouboff G., Rose M., 1957, Manuel de planctologie méediterranéeenne, Tom I (texte), C.N.R.S, Paris, 587 pp.
Tsirtsis G., KarydisM., 1998, Evaluationof phytoplankton communityindicesfor detecting
eutrophic trends in the marine environment, Environ. Monit. Assess., 50 (3), 255-269,
http://dx.doi.org/10.1023/A:1005883015373.
UNEP/UNESCO/FAO, 1988, Eutrophicationinthe Mediterraneansea:receiving capacityand monitoringof long term effects, MAPTech.Rep.Ser. Vol. 21, UNEP,Athens, 200 pp.
Vickerman K., 1992, The diversity and ecological significance of protozoa, Biodivers.
Conserv.,1 (4), 334-341,
http://dx.doi.org/10.1007/BF00693769.
Vucak Z. A. S., Stirn J., 1982, Basicphysical,chemical and biological data reports, R.V.A
Mohorov ICIC Adriaticcruises 1974-76, Hydrogr. Inst. Yugoslav Navy, Split,175 pp.
Biocontamination of the western Vistula Lagoon (south-eastern Baltic Sea, Poland)
Oceanologia 2013, 55(3), 751-763
http://dx.doi.org/10.5697/oc.55-3.751
Izabela Jabłońska-Barna1,*, Agata Rychter2, Marek Kruk1
1University of Warmia & Mazury, Faculty of Environmental Sciences,
M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
e-mail: ijpb@uwm.edu.pl
*corresponding author
2The State School of Higher Professional Education in Elbląg, Institute of Technology,
Wojska Polskiego 1, 82-300 Elbląg, Poland
keywords:
Vistula Lagoon, zoobenthos, biocontamination, alien species
Received 28 January 2013, revised 27 March 2013, accepted 22 May 2013.
This work was supported by Norway grantPNRF82AI.
Abstract
Non-native species exert considerable pressure on aquatic ecosystems;
accordingly, they are treated as biopollutants. The Vistula Lagoon, one of the largest brackish water
bodies in the Baltic, has become a part of the central corridor for hydrobionts migrating in the direction of western
Europe and species expanding in inshore waters.
Ten non-indigenous species of benthic invertebrates from five different biogeographical regions have been found in the
western part of the Lagoon. Their considerable abundance relative to the numbers and abundance of native species
testifies to the high level of biopollution there.
The integrated biological contamination index (IBC) calculated for the macrobenthos in the western
Vistula Lagoon was 4 andcorresponds to the Lagoon's poor ecological status.
References
ArbačiauskasK.,SemenchenkoV.,GrabowskiM.,LeuvenR. S. E. W.,Paunović M.,
SonM. O., Csányi B., GumuliauskaitĖ S., Konopacka A., Nehring S.,
Van der VeldeG., Vezhnovetz V., Panov V. E., 2008,Assessment of
biocontamination of benthic macroinvertebrate communities in European inland waterways, Aquat.
Invasions, 3 (2), 211-230,
http://dx.doi.org/10.3391/ai.2008.3.2.12.
Aristova G. I., 1965, Benthosof the Vistula Bay, Proc.Atlantic Res. Inst.Fishery
Oceanogr.,Kaliningrad, 40-49.
Aristova G. I., 1973, Thebenthos of the Vistula and Curonian lagoons of the Baltic
Sea and its significancefor fish diets, Diss., GosNIIORH,Leningrad. Chubarenko B., 2008, The
Vistula Lagoon, [in:] Transboundarywaters and basins in the South-EastBaltic,Kaliningrad, B. Chubarenko (ed.) TerraBaltica,37-57.
CywińskaA., RóżańskaZ ., 1978, Zoobenthos of the Vistula Lagoon, Stud.Mater.
Oceanol.,(4) 21, 145-160, (in Polish).
DauvinJ. C., 2007, Paradoxof estuarine quality:Benthicindicatorsand indices, consensus
ordebateforthefuture,Mar.Pollut. Bull.,55 (1-6),271-281,
http://dx.doi.org/10.1016/j.marpolbul.2006.08.017..
Directive 2000/60/EC of the European Parliament and of the Council of 23 October
2000 establishing aframeworkfor Communityactioninthe fieldof water policy, European
Commission PE-CONS 3639/1/00 REV 1, Luxemburg2000.
Dobrzycka-KrahelA., TarałaA., Chabowska A., 2012, Expansionof alien gammarids
inthe VistulaLagoonandthe Vistula Delta(Poland), Environ. Monit.
Assess., 185 (6), 5165-5175,
http://dx.doi.org/10.1007/s10661-012-2933-1..
EzhovaE. E.,2000,A recentnewcomertotheVistulaLagoon-Marenzelleria viridis
(Polychaeta, Spionidae)and its role in the ecosystem, [in:] Alienspecies in the EuropeanSeas
in Russia,Apatity, 184-193.
EzhovaE. E., 2002, Zoobenthos of the Vistula Lagoon, [in:] Geologyof the Gdańsk basin Baltic
Sea, E. M. Emelyanov (ed.) Izd. Jantarny Skaz., Kaliningrad, 366-371.
EzhovaE. E., PavlenkoM. V., 2001, New data on the macrobenthos of the Vistula Lagoon (Baltic
Sea).Composition and structure of marinebottom biota, Izd. VNIRO,Moscow, 40-45.
EzhovaE. E.,Polunina J. J.,2011, Invasionsofalieninvertebrate speciesinthe Baltic
Lagoons - The Curonian Lagoon and The Vistula Lagoon, Problemy izucheniaiokhranyprirodnogoi
kulturnogo nasledyanatsyonalnogoparka ‘Kurskaya kosa’, Kaliningrad, Izd-vo. BFUim. I. Kanta, Wyp.7, 25-37, (in Russian).
Ezhova E. E., RudinskajaL. V., Pavlenko-LyatunM. V., 2004,Vistula Bay.
Macrozoobenthos. Regularities ofhydrobiologicalregimeinwaterbodiesof different
types, Scientific World,Moscow, 146-164.
EzhovaE. E.,Żmudziński L.,MaciejewskaK.,2005,Long-term trendsinthe
macrozoobenthos oftheVistula Lagoon, southeastern Baltic Sea. Species composition
and biomass distribution,Bull. Sea Fish. Inst.,1 (164), 55-73.
GrabowskiM.,KonopackaA.,JażdżewskiK.,JanowskaE.,2006, Invasionsof aliengammarid
speciesandretreatof nativesintheVistulaLagoon(Baltic Sea,Poland), Helgol.
Mar.Res.,60 (2),90-97,
http://dx.doi.org/10.1007/s10152-006-0025-8.
Kotta J., Kotta I., 1998, Distributionand invasionecology of Marenzelleriaviridis inthe
Estoniancoastalwaters,Proc.Estonian AcadSci. Biol. Ecol.,47 (3), 212-220.
Kruk M., Rychter A., Mróz M., 2012, The Vistula Lagoon. Environment and its research in the VISLA
project,Wydawnictwo PWSZ,Elbląg, 178 pp.
Krylova O. I., Ten V. V., 1992, Long-termdynamicsand modern state of zoobenthos in the Vistula
Bay, [in:] Ecological and fishery research in the Baltic Sea, Tr. AtlantNIRO, Kaliningrad, 52-64,
(in Russian).
LazarenkoN. N.,Majewski A.,1971, Hydrometeorological regimeoftheVistula
Lagoon, Gidrometeoizdat, Leningrad.
Nawrocka L.,KobosJ., 2011,The trophic stateoftheVistula Lagoon:an
assessmentbased onselectedbioticandabioticparametersaccordingtothe Water
FrameworkDirective,Oceanologia, 53 (3), 881-894,
http://dx.doi.org/10.5697/oc.53-3.881..
Nowak E.,1971, Therange expansionof animalsand itscause (asdemonstrated by 28 species
presentlyspreadingfromEurope),Zesz. Nauk.BINOZUG,3, 1-255, Transl.Smithsonian Inst.and National. Sci. Foundation.
Panov V. E., Alexandrov B., Arbačiauskas K., Binimelis R., Copp G. H., Grabowski M., Lucy F.,
Leuven R. S. E. W.,NehringS., PaunovićM., SemenchenkoV., Son M. O., 2009, Assessingthe
risks of aquatic species invasionsvia European inland waterways:from concepts to environment al
indicators,Integr. Environ. Assess. Manag.,5 (1), 110-126,
http://dx.doi.org/10.1897/IEAM_2008-034.1..
Paturej E.,KrukM., 2011, Theimpactof environmental factorson zooplankton communities in
theVistulaLagoon,Oceanol.Hydrobiol.St.,40 (2),37-48,
http://dx.doi.org/10.2478/s13545-011-0015-6..
Paturej E.,GutkowskaA., MierzejewskaJ., 2012, Areview of biological research inthe
VistulaLagoon,Oceanol.Hydrobiol.St.,41 (4),81-88,
http://dx.doi.org/10.2478/s13545-012-0042-y..
Pliński M., 2005, The hydrobiological characteristics of the Polish part of the Vistula
Lagoon:a review, Oceanol. Hydrobiol.St., 34 (Suppl.3), 287-294.
Renk H., Ochocki S., Zalewski M., Chmielowski H., 2001, Environmental factors controlingprimary
productionin the Polish part of the VistulaLagoon,Bull. Sea Fish. Inst.Gdynia,1 (152), 77-95.
Report on the state of the environment of Warmiaand Mazury in 2010, 2011, Bibl.
Monit. Środow., Olsztyn,45-49, (in Polish).
RiechF., 1926, Beiträgezur Kenntnis der litoralen Lebensgemeinschafteninder poly- und
mesohalinen Regionendes FrischenHaffes, Schr. d. Phys.-Ökonom.
Ges., 65 (1),32-47.
Różańska Z., CywińskaA., 1983, Thecharacteristicof abundance and biomass of the Vistula
Lagoon benthic fauna,Oceanologia, 14, 188-200.
Rudinska jaL. V., 1999, Watersalinityimpactuponbottom investigationonthe Vistula
Lagoon. Freshwater fish and the herring populations in the coastal lagoons,Proc. Symposium Sea
Fish.Inst.Gdynia, 202-219.
SeninY. M., SmyslovV. A., KhlopnikovM. M.,2004, ObschayaKharakteristika Vislinskogo
Zaliva, Alimov A.F., Ivanova M.B., (Ed) Zakonomenosti Gidrobiologicheskogo RezhimaVodoemov
Raznogo Tipa.,Nauchnymir Moskva, 18-19.
Vanhöffen E., 1917, Die niedere Tierwelt des FrischenHaffs, Sitzung Ber. Gesellsch.
Naturforschender Freunde, 2, Berlin, 113-147.
Willer A., 1925, StudienÜberdas FrischeHaff,Z. Fisch.,23, 317-349.
Zettler M. L., DaunysD., 2007, Long-termmacrozoobenthos changes ina shallow boreal lagoon:
Comparisonofarecentbiodiversityinventorywith historical data, Limnologica, 37,170-185,
http://dx.doi.org/10.1016/j.limno.2006.12.004..
ŻmudzińskiL.,1957, ZoobenthosoftheVistulaLagoon, Pr. Mor. Inst. Ryb. (Gdynia),
9, 453-491, (in Polish).
Żmudziński L., 1996, Theeffect of the introduction of the Americanspecies Marenzelleria viridis
(Polychaeta:Spionidae)on the benthic ecosystemof the VistulaLagoon,Mar.Ecol.,19
(1-3),221-226,
http://dx.doi.org/10.1111/j.1439-0485.1996.tb00503.x..
ŻmudzińskiL., Chubarova-SolovjevaS., Dobrowolski Z., Gruszka P.,OleninS., Wolnomiejski
N.,1996, Expansion ofthespionidpolychaeteMarenzelleria viridisinthe southernpart
ofthe BalticSea,Proc.13th BalticMar.Biol. Symp.,Jurmala,Latvia, 127-129.