Oceanologia No. 54 (3) / 12
Contents
Papers
-
Variability of temperature and salinity over the last decadein selected regions of thesouthern Baltic Sea:
Daniel Rak, Piotr Wieczorek
-
Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern BalticSea:Włodzimierz Freda
-
A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009: Andreas Lehmann, Kai Myrberg, Katharina Höflich
-
Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) usingremote sensing and in situ data: Rivo Uiboupin,, Jaan Laanemets, Liis Sipelgas, Laura Raag, Inga Lips, Natalia Buhhalko
-
Currents and waves in the northern Gulf of Riga: measurement and long-term hindcast: Ülo Suursaar, Tiit Kullas, Robert Aps
-
Response of eastern Indian Ocean (ODP Site 762B) benthic
foraminiferal assemblages to the closure of the Indonesian seaway: Ajai Kumar Rai, Virendra Bahadur Singh
-
Vertical distribution of zooplankton in the epipelagic zone off Sharm El-Sheikh, Red Sea, Egypt:
Mohamed Moussa Dorgham, Mohsen Mohamed Elsherbiny, Mahnoud Hassan Hanafi
-
Mapping an ecosystem service: A quantitative approach to derive fish feeding ground maps:
Andrius Šiaulys, Darius Daunys, Martynas Bučas, Egidijus Bacevičius
Papers
Variability of temperature and salinity over the last decadein selected regions of thesouthern Baltic Sea
Oceanologia 2012, 54(3), 339-354
http://dx.doi.org/10.5697/oc.54-3.339
Daniel Rak*, Piotr Wieczorek
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: rak@iopan.gda.pl
*corresponding author
keywords:
temperature, salinity, southern Baltic Sea, trend, seasonal variability
Received 1 July 2011, revised 16 February 2012, accepted 5 April 2012.
Abstract
Changes in the basic physical properties of selected areas of the Baltic Proper were analysed on the basis of the results of a 12-year series of high-resolution measurements collected during cruises of r/v "Oceania". The high-resolution CTD sections covered three main basins: the Bornholm Basin, Słupsk Furrow and Gdańsk Basin. Positive temperature trends of 0.11 and 0.16°C year-1 were observed in the surface and deep layers respectively. The salinity trend was also positive. The rise in the air temperature
has probably caused the increase in surface water temperature, while advection has been of greater significance in the deep layer.
The increase in salinity coincides with the more frequent occurrence of small and medium-size inflows through the Danish Straits, even though large inflows are evidently less frequent than used to be the case. The seasonal variability of temperature in the water column was analysed. The phase shift in the seasonal evolution with depth is described. The maximum temperature shift in the waters investigated varies from 32 to 38 days.
References
Beszczyńska-Möller A., 2004, Dynamika wód wlewowych w Bałtyku Południowym,
Ph.D. thesis, Inst. Oceanology, PAS.
Cyberska B., 1994, Temperatura wody, 108-111, [in:] Atlas Morza Bałtyckiego,
A. Majewski & Z. Lauer (eds.): IMGW, Seria atlasy i monografie, Warszawa,
214 pp.
Elken J., Matthäus W., 2008, Baltic Sea oceanography, [in:] Assessment of climate
change for the Baltic Sea basin, Annex A.1.1, H. von Storch & A. Omstedt
(eds.), BALTEX Publ., Springer, Berlin, 474 pp.
EmeryW. J., Thomson R.E., 2001, Data analysis methods in physical ceanography,
Elsevier Sci., Amsterdam, 380-392.
Feistel R., Nausch G., Hagen E., 2006, Unusual inflow activity in 2002-2003 and
varying deep-water properties, Oceanologia, 48 (S), 21-35.
Feistel R., Nausch G., Mohrholz V., Łysiak-Pastuszak E., Seifert T., Matthäus W.,
Krüger S., Sehested H. I., 2003, Warm waters of summer 2002 in the deep
Baltic Proper, Oceanologia, 45 (4), 571-592.
Fonselius S., 1969, Hydrography of the Baltic Sea deep basin III, Fishery Board of
Sweden, Ser. Hydrogr., 23, 1-97.
HELCOM, 1990, Second periodic assessment of the state of the marine environment
of the Baltic Sea, 1984-88, Background Doc., Baltic Sea Environ. Proc. No.
35 B, Helsinki Commiss., 432 pp.
Jakobsen F., 1995, The major inflow to the Baltic Sea during January 1993,
J. Marine Syst., 6 (3), 227-240,
http://dx.doi.org/10.1016/0924-7963(94)00025-7
Lehmann A., Lorenz P., Jacob D., 2004, Modelling the exceptional Baltic Sea inflow
events in 2002-2003, Geophys. Res. Lett., 31, L21308,
http://dx.doi.org/10.1029/2004GL020830
LepperäntaM., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer
Praxis, Chichester, 60-125.
Majewski A., Lauer Z. (eds.), 1994, Atlas Morza Bałtyckiego, IMGW, Ser. Atlasy
Monogr., Warszawa, 214 pp.
Matthäus W., Franck H., 1992, Characteristics of major Baltic inflows - a statistical
analysis, Cont. Shelf Res., 12 (12), 1375-1400,
http://dx.doi.org/10.1016/0278-4343(92)90060-W
Matthäus W., Lass H.U., 1995, The recent salt inflow into the Baltic Sea,
J. Phys. Oceanogr., 25, 280-286,
http://dx.doi.org/10.1175/1520-0485(1995)025<0280:TRSIIT>2.0.CO;2
Mikulski Z., 1982, River inflow to the Baltic Sea 1921-1975, PAS, Polish Natl.
Committ. IHP, Univ. Warsaw, Fac. Geogr. Reg. Stud., (mimeo).
Mikulski Z., 1987, Podział regionalny Morza Bałtyckiego, [in:] Bałtyk Południowy,
B. Augustowski (ed.), Gdańskie Tow. Nauk., Ossolineum, Wrocław, 41-51.
Meier H.E.M., Feistel R., Piechura J., Arneborg L., Burchard H., Fiekas V.,
Golenko N., Kuzmina N., Mohrholz V., Nohr C., Paka V.T., Sellschopp J.,
Stips A., Zhurbas V., 2006, Ventilation of the Baltic Sea deep water: A brief
review of present knowledge from observations and models, Oceanologia, 48 (S),
133-164.
MohrholzV.,DutzJ.,KrausG.,2006, Theimpactsofexceptionallywarm
summer inflow events on the environmental conditions in the Bornholm Basin, J. Marine Syst., 60
(3-4), 285-301,
http://dx.doi.org/10.1016/j.jmarsys.2005.10.002
OmstedtA.,1990, ModellingtheBalticSeaasthirteensub-basinswithvertical
resolution,Tellus A, 42 (2), 286-301,
http://dx.doi.org/10.1034/j.1600-0870.1990.00006.x
PiechuraJ., Beszczyńska-MöllerA.,2004, Inflowwatersin thedeepregionsof the
southern Baltic Sea - transport and transformations, Oceanologia, 46 (1),
113-141.
Reissmann J., Burchard H., Feistel R., Hagen E., Lass H. U., Mohrholz V., Nausch G., Umlauf L.,
WieczorekG., 2009, Verticalmixingin theBalticSeaand consequences for eutrophication - A
review, Progr. Oceanogr., 82, 47-80,
http://dx.doi.org/10.1016/j.pocean.2007.10.004
Reynolds R. W.,Rayner N. A.,Smith T. M.,Stokes D. C., Wang A.,
2002,An improved insitu andsatellite SST analysis for climate, J.Climate,15
(13),1609-1625,
http://dx.doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
Spectral dependence of the correlation between the backscattering coefficient and the volume scattering function measured in the southern Baltic Sea
Oceanologia 2012, 54(3), 355-367
http://dx.doi.org/10.5697/oc.54-3.355
Włodzimierz Freda
Gdynia Maritime University,
Morska 81-87, Gdynia 81-225, Poland;
e-mail: wfreda@am.gdynia.pl
keywords:
volume scattering function, backscattering coefficient, Baltic Sea
Received 29 March 2012, revised 14 May 2012, accepted 17 May 2012.
Abstract
Direct measurements of the backscattering coefficient bb require the determination ofthe Volume Scattering Function (VSF) and its integration over a backward hemisphere. In sea water they are difficult and are therefore carried out very rarely. That is why the backscattering coefficient is much more frequently obtained with so-called single
angle scattering meters: these operate by measuring the VSF for a fixed angleregion of the backward hemisphere. This article examines the spectral variability of the correlation between directly measured backscattering coefficients and VSFs.
Also presented are the averaged slopes of VSF spectra, measured in southern Baltic waters over a wide range of scattering angles.
References
Boss E., Pegau W. S., 2001, Relationship of light scattering at an angle in the
backward direction to the backscattering coefficient, Appl. Opt., 40, 55035507,
http://dx.doi.org/10.1364/AO.40.005503
Chami M., Shybanov E.B., Churilova T.Y., Khomenko G.A., Lee M.E.G.,
Martynov O.V., Berseneva G.A., Korotaev G.K., 2005, Optical properties
of the particles in the Crimea coastal waters (Black Sea), J. Geophys. Res.,
110, C11020, 117,
http://dx.doi.org/http://dx.doi.org/10.1029/2005JC003008
Chami M., Marken E., Stamnes J. J., Khomenko G., Korotaev G., 2006, Variability
of the relationship between the particulate backscattering coefficient and the
volume scattering function measured at fixed angles, J. Geophys. Res., 111,
C05013, 110,
http://dx.doi.org/http://dx.doi.org/10.1029/2005JC003230
Freda W., Król T., Martynov O.V., Shybanov E.B., Hapter R., 2007,
Measurements of Scattering Function of sea water in Southern Baltic,
Eur. Phys. J.-Spec. Top., 144 (1), 147154,
http://dx.doi.org/10.1140/epjst/e2007-00119-6
Freda W., Piskozub J., 2007, Improved method of Fournier-Forand marine phase
function parameterization, Opt. Express, 15 (20), 1276312768,
http://dx.doi.org/10.1364/OE.15.012763
Gordon H.R., Brown O.B., Evans R.H., Brown J.W., Smith R.C., Baker K. S.,
Clark D.K., 1988, A semianalitycal radiance model of ocean color, J. Geophys.
Res., 93 (D9), 10 909-10 924,
http://dx.doi.org/10.1029/JD093iD09p10909
Jerlov N.G., 1953, Particle distribution in the ocean, Rep. Swed. Deep-Sea Exped., Vol. 3, 7198.
Jonasz M., Fournier G.R., 2007, Light scattering by particles in water, Acad. Press,
Elsevier, London, 704 pp.
Lee M.E., Lewis M.R., 2003, A new method for the measurement of the optical
volume scattering function in the upper ocean, J. Atmos. Ocean. Tech., 20 (4),
563571,
http://dx.doi.org/10.1175/1520-0426(2003)20<563:ANMFTM>2.0.CO;2
Maffione R.A., Dana D.R., 1997, Instruments and methods for measuring the
backward-scattering coeffcient of ocean waters, Appl. Optics, 36 (24), 60576067,
http://dx.doi.org/10.1364/AO.36.006057
Maffione R.A., Dana D.R., Honey R.C., 1991, Instrument for underwater
measurement of optical backscatter, [in:] Underwater imaging, photography
and visibility, R.W. Spinrad, (ed.), Proc. SPIE, 1537, 173184.
Mankovsky V. I., 1971, On the relation between the integral light scattering
coefficient of seawater and the scattering coefficient in a fixed direction, Morsk.
Gidrofiz. Issled. Akad. Nauk SSSR, 6, 145154.
Mobley C.D., Sundman L.K., Boss E., 2002, Phase function effects on oceanic
light fields, Appl. Optics, 41 (6), 10351050,
http://dx.doi.org/10.1364/AO.41.001035
Morel A., 1974, Optical properties of pure water and pure sea water, [in:] Optical
aspects of oceanography, Acad. Press, New York, 1.24.
Oishi T., 1990, Significant relationship between the backward scattering coefficient
of sea water and the scatterance at 120., Appl. Optics, 29 (31), 4658.4665,
http://dx.doi.org/10.1364/AO.29.004658
Petzold T. J., 1972, Volume scattering functions for selected ocean waters, SIO Ref.
72.78, Scripps Inst. Oceanogr., La Jolla, 79 pp.
Slade W.H., Boss E. S., 2006, Calibrated near-forward volume scattering function
obtained from the LISST particle sizer, Opt. Express, 14 (8), 3602.3615,
http://dx.doi.org/10.1364/OE.14.003602
Sullivan J.M., Twardowski M. S., 2009, Angular shape of the oceanic particulate
volume scattering function in the backward direction, Appl. Optics, 48 (35),
6811.6819,
http://dx.doi.org/10.1364/AO.48.006811
A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009
Oceanologia 2012, 54(3), 369-393
http://dx.doi.org/10.5697/oc.54-3.369
Andreas Lehmann1,*, Kai Myrberg2,3, Katharina Höflich1
1
Helmholtz Centre for Ocean Research Kiel,
Düsternbrooker Weg 20, D-24105 Kiel, Germany;
e-mail: alehmann@geomar.de
*corresponding author
2
Finnish Environment Institute/Marine Research Centre,
Mechelininkatu 34a, FIN-00251 Helsinki, Finland;
3
Department of Geophysics, Klaipeda University,
Herkaus Manto 84, LT-92294 Klaipeda, Lithuania;
keywords:
Baltic Sea, upwelling, sea surface temperature, modelling
Received 8 December 2011, revised 3 April 2012, accepted 7 May 2012.
Abstract
A statistical analysis of Baltic Sea upwelling has been carried out to cover, for the first time, the entire sea area for the period 1990-2009. Weekly composite SST maps based on NOAA/AVHRR satellite data were used to evaluate the location and frequency of upwelling. The results obtained were analysed and compared with earlier studies with excellent agreement. Our study enables the most intense upwelling areas in the entire Baltic Sea to be evaluated. According to the analysis of 443 SST maps, the most common upwelling regions are found off the Swedish south and east coasts (frequency 10-25%), the Swedish coast of the Bothnian Bay (16%), the southern tip of Gotland (up to 15%), and the Finnish coast of the Gulf of Finland (up to 15%). Pronounced upwelling also occurs off the Estonian coast and the Baltic east coast (up to 15%), the Polish coast and the west coast of Rügen (10-15%); otherwise the upwelling frequency was between 5 and 10%. Additionally, simulated SST distributions derived from a Baltic Sea numerical model were analysed for the same period. Furthermore, at specific positions close to the coastline, surface winds based on the SMHI meteorological data base were analysed for the same 20-year period.
Wind components parallel to the coast were discriminated into favourable and unfavourable winds forcing upwelling. The obtained frequencies of upwelling-favourable winds fit very well the observed upwelling frequencies derived from satellite SST maps. A positive trend of upwelling frequencies along the Swedish east coast and the Finnish coast of the Gulf of Finland was calculated for the period 1990-2009.
References
Alenius P., Nekrasov A., Myrberg K., 2003, Variability of the baroclinic Rossby radius in the Gulf of Finland, Cont. Shelf Res., 23 (6), 563573,
http://dx.doi.org/10.1016/S0278-4343(03)00004-9
Bumke K., Karger U., Hasse L., Niekamp K., 1998, Evaporation over the Baltic Sea as an example of a semi-enclosed sea, Contr. Atmos. Phys., 71 (2), 249-261.
Bychkova I., Viktorov S., Shumakher., 1988, A relationship between the large scale atmospheric circulation and the origin of coastal upwelling in the Baltic,
Meteorol. Gidrol., 10, 9-98, (in Russian).
Demchenko N., Chubarenko I., Kaitala S., 2011, The development of seasonal structural fronts in the Baltic Sea after winters of varying severity, Climate
Res., 48 (1), 73-84,
http://dx.doi.org/10.3354/cr01032
Fennel W., Seifert T., Kayser B., 1991, Rossby radii and phase speeds in the Baltic Sea, Cont. Shelf Res., 11 (1), 23-36,
http://dx.doi.org/10.1016/0278-4343(91)90032-2
Gidhagen L., 1987, Coastal upwelling in the Baltic Sea satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling, Estuar.
Coast. Shelf Sci., 24 (4), 449-362,
http://dx.doi.org/10.1016/0272-7714(87)90127-2
Haapala J., 1994, Upwelling and its influence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland, Estuar.
Coast. Shelf Sci., 38 (5), 507.521,
http://dx.doi.org/10.1006/ecss.1994.1035
Haapala J., Alenius P., 1994, Temperature and salinity statistics for the northern
Baltic Sea 1961-1990, Fin. Mar. Res., 262, 51-121.
Hela I., 1976, Vertical velocity of the upwelling in the sea, Comment. Phys.-Math., 46 (1), 9-24.
Horstmann U., 1983, Distribution patterns of temperature and water colour in the Baltic Sea as recorded in satellite images: indicators for phytoplankton growth,
Ber. Inst. Meeresk., 106, 147 pp.
Kahru M., Håkansson B., Rud O., 1995, Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery, Cont.
Shelf Res., 15 (6), 663-679,
http://dx.doi.org/10.1016/0278-4343(94)E0030-P
Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47 (4), 453-475.
Krężel A., Ostrowski M., Szymelfenig M., 2005, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia, 47 (4), 415-432.
Lass H. -U., Schmidt T., Seifert T., 2003, Hiddensee upwelling field measurements and modelling results, ICES Coop. Res. Rep., 257, 204-208.
Lehmann A., 1995, A three-dimensional baroclinic eddy-resolving model of the Baltic Sea, Tellus A, 47 (5), 1013-1031,
http://dx.doi.org/10.1034/j.1600-0870.1995.00206.x
Lehmann A., Getzlaff K., Harlass J., 2011, Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009, Climate Res., 46 (2), 185-196,
http://dx.doi.org/10.3354/cr00876
Lehmann A., Hinrichsen H. -H., 2000, On the thermohaline variability of the Baltic Sea, J. Marine Syst., 25 (3-4), 333-357,
http://dx.doi.org/10.1016/S0924-7963(00)00026-9
Lehmann A., Hinrichsen H. -H., 2002, Water, heat and salt exchange between the deep basins of the Baltic Sea, Boreal Environ. Res., 7 (4), 405-415.
Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea . a review, J. Marine Syst., 74 (Suppl.), S3-S12,
http://dx.doi.org/10.1016/j.jmarsys.2008.02.010
Lips I., Lips U., 2008, Abiotic factors influencing cyanobacterial bloom development in the Gulf of Finland (Baltic Sea), Hydrobiologia, 614 (1), 133-140,
http://dx.doi.org/10.1007/s10750-008-9449-2
Lips I., Lips U., Liblik T., 2009, Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea),
Cont. Shelf Res., 29 (15), 1836-1847,
http://dx.doi.org/10.1016/j.csr.2009.06.010
Matciak M., Urbański J., Piekarek-Jankowska H., Szymelfenig M., 2001, Presumable groundwater seepage influence on the upwelling events along the Hel Peninsula, Oceanol. Hydrobiol. St., 30 (3-4), 125-132.
Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea: a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8 (2), 97-112.
Myrberg K., Andrejev O., Lehmann A., 2010, Dynamic features of successive upwelling events in the Baltic Sea - a numerical case study, Oceanologia,
52 (1), 77-99,
http://dx.doi.org/10.5697/oc.52-1.077
Novotny K., Liebsch K. G., Dietrich R., Lehmann A., 2005, Combination of sealevel observations and an oceanographic model for geodetic applications in the
Baltic Sea, [in:] A window on the future of geodesy, F. Sanso (ed.), IAG Symp. Vol. 128, 195-200.
Osiński R., Rak D., Walczowski W., Piechura J., 2010, Baroclinic Rossby radius of deformation in the southern Baltic Sea, Oceanologia, 52 (3), 417-429,
http://dx.doi.org/10.5697/oc.52-3.417
Rudolph C., Lehmann A., 2006, A model-measurements comparison of atmospheric forcing and surface fluxes of the Baltic Sea, Oceanologia, 48 (3), 333-380.
Siegel H., Gerth M., Rudolff R., Tschersich G., 1994, Dynamic features in the western Baltic Sea investigated using NOAA-AVHRR data, Dt. Hydrogr. Z.,
46 (3), 191-209,
http://dx.doi.org/10.1007/BF02226949
Suursaar Ü, 2010, Waves, currents and sea level variations along the Letipea - Sillamäe coastal section of the southern Gulf of Finland, Oceanologia, 52 (3),
391-416,
http://dx.doi.org/10.5697/oc.52-3.391
Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) usingremote sensing and in situ data
Oceanologia 2012, 54(3), 395-419
http://dx.doi.org/10.5697/oc.54-3.395
Rivo Uiboupin*, Jaan Laanemets, Liis Sipelgas, Laura Raag, Inga Lips
Marine Systems Institute, Tallinn Universityof Technology,
Akadeemia 15a, Tallinn 12618, Estonia;
e-mail: rivo.uiboupin@msi.ttu.ee
*corresponding author
keywords:
MERIS, MODIS, upwelling, chlorophyll a, SST,Baltic Sea, Gulf of Finland
Received 12 March 2012, revised 17 April 2012, accepted 8 May 2012.
The study was supported by the Estonian Science Foundation (grants No. 7467, No. 6752, No.7633, No. 7581 & No. 8968). The remote
sensing data were provided by ESA via Cat-1 project No. 6855.
Abstract
The spatio-temporal variability of chlorophyl a (Chl a) caused by a sequence of upwelling events in
the Gulf of Finland in July-August 2006 was studied using remote sensing data and field measurements. Spatial distributions of sea surface temperature (SST)
and Chl a concentration were examined using MODIS and MERIS data respectively. The MERIS data were processed with an algorithm developed by the
Free University of Berlin (FUB) for case 2 waters. Evaluation of MERIS Chl a versus in situ Chl a showed good correlation
(r2 = 0.67), but the concentration was underestimated. The linear regression for a 2 h window was applied to calibrate MERIS Chl a.
The spatio-temporal variability exhibited the clear influence of upwelling events and related filaments on Chl a distribution in
the western and central Gulf. The lowest Chl a concentrations were recorded in the upwelled water, especially at the upwelling centres, and
the highest concentrations (13 mg m-3) were observed about two weeks after the upwelling peak along the northern coast. The areas along the
northern coast of upwelled water (4879 km2) on the SST map, and increased Chl a (5526 km2) two weeks later, were roughly coincident.
The effect of upwelling events was weak in the eastern part of the Gulf, where Chl a concentration was relatively consistent throughout this period.
References
Bradtke K., Herman A., Urbański J.A., 2010, Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea, Oceanologia,
52 (3), 345-362,
http://dx.doi.org/10.5697/oc.52-3.345
Csanady G.T., 1982, Circulation in the coastal ocean, D. Reidel Publ. Co., Dordrecht, 279 pp.
Dekker A.G., 1993, Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing, Ph.D. thesis, Free University, Amsterdam.
Dekker A.G., Peters S.W.M., 1993, The use of the thematic mapper for the analysis of eutrophic lakes - a case-study in the Netherlands, Int. J. Remote
Sens., 14 (5), 799-821,
http://dx.doi.org/10.1080/014311699212498
Doerffer R., Sorensen K., Aiken J., 1999, MERIS potential for coastal zone applications, Int. J. Remote Sens., 20 (9), 1809-1818,
http://dx.doi.org/10.1080/014311699212498
Doerffer R., Schiller H., 2007, The MERIS case 2 water algorithm, Int. J. Remote Sens., 28 (3-4), 517-535,
http://dx.doi.org/10.1080/01431160600821127
Gidhagen L., 1987, Coastal upwelling in the Baltic - satellite and in situ measurements of sea surface temperatures indicating coastal upwelling, Estuar.
Coast. Shelf Sci., 24 (4), 449-462,
http://dx.doi.org/10.1016/0272-7714(87)90127-2
Gower J., King S., Borstad G., Brown L., 2008, The importance of a band at 709 nm for interpreting water-leaving spectral radiance, Can. J Remote Sens., 34 (3), 287-295.
HELCOM, 1988, Guidelines for the Baltic Monitoring Programme for the third stage, Baltic Sea Environ. Proc., 27D.
Horstmann U., 1983, Distribution patterns of temperature and water colour in the Baltic Sea as recorded in satellite images: Indicators for phytoplankton growth,
Ber. Inst. Meeresk., Kiel, 106, 147 pp.
Kahru M.H., Håkansson B., Rud O., 1995, Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery, Cont.
Shelf Res., 15 (6), 663-679,
http://dx.doi.org/10.1016/0278-4343(94)E0030-P
Kanoshina I., Lips U., Leppänen J.-M., 2003, The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of
Finland (Baltic Sea), Harmful Algae, 2 (1), 29-41,
http://dx.doi.org/10.1016/S1568-9883(02)00085-9
Kononen K., Kuparinen J., Mäkelä K., Laanemets J., Pavelson J., Nömmann S., 1996, Initiation of cyanobacterial blooms in a frontal region at the entrance to
the Gulf of Finland, Baltic Sea, Limnol. Oceanogr., 41 (1), 98-112.
Koponen S., Attila J., Pulliainen J., Kallio K., Pyhälahti T., Lindfors A., Rasmus K., Hallikainen M., 2007, A case study of airborne and satellite remote sensing
of a spring bloom event in the Gulf of Finland, Cont. Shelf Res., 27 (2), 228-244,
http://dx.doi.org/10.1016/j.csr.2006.10.006
Kratzer S., Brockmann C., Moore G., 2008, Using MERIS full resolution data to monitor coastal waters . A case study from Himmerfjärden, a fjord-like bay
in the northwestern Baltic Sea, Remote Sens. Environ., 112 (5), 2284-2300,
http://dx.doi.org/10.1016/j.rse.2007.10.006
Krężel A., Ostrowski M., Szymelfenig M., 2005a, Sea surface temperature distribution during upwelling along the Polish Baltic coast, Oceanologia, 47 (4),
415-432.
Krężel A., Szymanek L., Kozłowski L., Szymelfenig M., 2005b, Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea, Oceanologia, 47 (4), 433-452.
Kutser T., Metsamaa L., Strömbeck N., Vahtmäe E., 2006, Monitoring cyanobacterial blooms by satellite remote sensing, Estuar. Coast. Shelf Sci.,
67 (1.2), 303-312,
http://dx.doi.org/10.1016/j.ecss.2005.11.024
Kuvaldina N., Lips I., Lips U., Liblik T., 2010, The influence of a coastal upwelling event on chlorophyll a and nutrient dynamics in the surface layer of the Gulf
of Finland, Baltic Sea, Hydrobiologia, 639 (1), 221-230,
http://dx.doi.org/10.1007/s10750-009-0022-4
Laanemets J., Väli G., Zhurbas V., Elken J., Lips I., Lips U., 2011, Simulation of mesoscale structures and nutrient transport during summer upwelling events
in the Gulf of Finland in 2006, Boreal Environ. Res., 16 (suppl. A), 15-26.
Laanemets J., Zhurbas V., Elken J., Vahtera E., 2009, Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments, Boreal Environ. Res., 14 (1), 213-225.
Lass H.U., Mohrholz V., Nausch G., Siegel H., 2010, On phosphate pumping into the surface layer of the eastern Gotland Basin by upwelling, J. Marine Syst.,
80 (1-2), 71-89,
http://dx.doi.org/10.1016/j.jmarsys.2009.10.002
Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - A review, J. Marine Syst., 74 (Suppl.), S3-S12,
http://dx.doi.org/10.1016/j.jmarsys.2008.02.010
Lips I., Lips U., 2008, Abiotic factors influencing cyanobacterial bloom development in the Gulf of Finland (Baltic Sea), Hydrobiologia, 614 (1), 133-140,
http://dx.doi.org/10.1007/s10750-008-9449-2
Lips I., Lips U., 2010, Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July-August 2006, J. Plankton Res., 32 (9),
1269-1282,
http://dx.doi.org/10.1093/plankt/fbq049
Lips I., Lips U., Liblik T., 2009, Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea),
Cont. Shelf Res., 29 (15), 1836-1847,
http://dx.doi.org/10.1016/j.csr.2009.06.010
Männik A., Merilain M., 2007, Verification of different precipitation forecasts during extended winter-season in Estonia, HIRLAM Newsletter, 52, 65-70.
Metsamaa L., Kutser T., Strombeck N., 2006, Recognising cyanobacterial blooms based on their optical signature: a modelling study, Boreal Environ. Res., 11 (6), 493-506.
Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea - a statistical analysis based on three-dimensional modelling, Boreal Environ. Res., 8 (2), 97-112.
Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M., Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka
L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J., Kaluźny M., Kozłowski L., Krajewska-Sołtys A., Ołdakowski B., OstrowskiM., Zalewski M., Andrejev O., Suomi I., Zhurbas V., Kauppinen O.-K., Soosaar E., Laanemets J., Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress at Rostock University, Germany, 19-22 March 2007, Oceanologia, 50 (1), 95-113.
Pavelson J., Kononen K., Laanemets J., 1999, Chlorophyll distribution patchiness caused by hydrodynamical processes: a case study in the Baltic Sea, ICES J. Mar. Sci., 56 (Suppl.), 87-99.
Petersen W., Wehde H., Krasernann H., Colijn F., Schroeder F., 2008, FerryBox and MERIS - Assessment of coastal and shelf sea ecosystems by combining in situ and remotely sensed data, Estuar. Coast. Shelf Sci., 77 (2), 296-307,
http://dx.doi.org/10.1016/j.ecss.2007.09.023
Rantajärvi E., Olsonen R., Hallfors S., Leppanen J.M., Raateoja M., 1998, Effect of sampling frequency on detection of natural variability in phytoplankton:
unattended high-frequency measurements on board ferries in the Baltic Sea, ICES J. Mar. Sci., 55 (4), 697-704,
http://dx.doi.org/10.1006/jmsc.1998.0384
Reinart A., Kutser T., 2006, Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea, Remote Sens. Environ., 102 (1-2), 74-85.
Schroeder T., Behnert I., Schaale M., Fischer J., Doerffer R., 2007a, Atmospheric correction algorithm for MERIS above Case-2 waters, Int. J. Remote Sens., 28 (7), 1469-1486,
http://dx.doi.org/10.1080/01431160600962574
Schroeder T., Schaale M., Fischer J., 2007b, Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case-2 water processor for
BEAM, Int. J. Remote Sens., 28 (24), 5627-5632,
http://dx.doi.org/10.1080/01431160701601774
Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea - 2nd edition, Baltic Sea Science Congress, Stockholm
25-29 November 2001, Poster No. 147, [http://www.io-warnemuende.deiowtopo].
Siegel H., Gerth M., Rudolff R., Tschersich G., 1994, Dynamic features in the western Baltic Sea investigated using NOAA-AVHRR data, Dt. Hydrogr. Zet.,
46, 191-209,
http://dx.doi.org/10.1007/BF02226949
Siegel H., Gerth M., Tschersich G., 2006, Sea surface temperature development of the Baltic Sea in the period 1990-2004, Oceanolgia, 48 (S), 119-131.
Sorensen K., Aas E., Hokedal J., 2007, Validation of MERIS water products and bio-optical relationships in the Skagerrak, Int. J. Remote Sens., 28 (3-4), 555-568,
http://dx.doi.org/10.1080/01431160600815566
Suikkanen S., Laamanen M., Huttunen M., 2007, Long-term changes in summer phytoplankton communities of the open northern Baltic Sea, Estuar.
Coast. Shelf Sci., 71 (3-4), 580-592,
http://dx.doi.org/10.1016/j.ecss.2006.09.004
Suursaar Ü, Aps R., 2007, Spatio-temporal variations in hydrophysical and chemical parameters during a major upwelling event off the southern coast
of the Gulf of Finland in summer 2006, Oceanologia, 49 (2), 209-229.
Uiboupin R., Laanemets J., 2009, Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea, Boreal
Environ. Res., 14 (2), 297-304.
Vahtera E., Laanemets J., Pavelson J., Huttunen M., Kononen K., 2005, Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in
the western Gulf of Finland. Baltic Sea, J. Marine Syst., 58 (1-2), 67-82,
http://dx.doi.org/10.1016/j.jmarsys.2005.07.001
Wu C., 2004, Normalized spectral mixture analysis for monitoring urban composition using ETM plus imagery, Remote Sens. Environ., 93 (4), 480-492,
http://dx.doi.org/10.1016/j.rse.2004.08.003
Zhurbas V.M., Laanemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to
the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113 (C5), C05004,
http://dx.doi.org/10.1029/2007JC004280
Currents and waves in the northern Gulf of Riga: measurement and long-term
hindcast
Oceanologia 2012, 54(3), 421-447
http://dx.doi.org/10.5697/oc.54-3.421
Ülo Suursaar*, Tiit Kullas, Robert Aps
Estonian Marine Institute, University of Tartu,
Mäealuse 14, EE-12618 Tallinn, Estonia;
e-mail: ulo.suursaar@ut.ee
*corresponding author
keywords:
hydrodynamic modelling, water exchange, wave hindcast,
wind climate, RDCP, Baltic Sea
Received 27 February 2012, revised 19 April 2012, accepted 30 April 2012.
The study was supported by the Estonian target financed project 0104s08, the Estonian Science Foundation grant No 8980 and by the EstKliima project of the European Regional
Fund programme No 3.2.0802.11-0043.
Abstract
Based on measurements of waves and currents obtained for a period of 302 days with a bottom-mounted RDCP (Recording Doppler Current Profiler) at two
differently exposed locations, a model for significant wave height was calibrated separately for those locations; in addition, the Gulf of
Riga-Väinameri 2D model was validated, and the hydrodynamic conditions were studied. Using wind forcing data from the Kihnu meteorological station,
a set of current, water exchange and wave hindcasts were obtained for the period 1966-2011. Current patterns in the Gulf and in the straits were
wind-dependent with characteristic wind switch directions. The Matsi coast was prone to upwelling in persistent northerly wind conditions. During the
hindcast period, currents increased along the Kõiguste coast and in the Suur Strait, waves decreased noticeably off Kõiguste but fluctuated without a clear
linear trend near Matsi. The spatially contrasting results for differently exposed coasts were related to the corresponding variations in local wind
conditions and to changes in atmospheric circulation patterns over northern Europe.
References
Andrejev O., Myrberg K., Alenius P., Lundberg P., 2004, Mean circulation and water exchange in the Gulf of Finland - a study based on three-dimensional
modelling, Boreal Environ. Res., 9 (1), 1-16.
Astok V., Otsmann M., Suursaar Ü., 1999, Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga case, Hydrobiologia, 393 (0), 11-18,
http://dx.doi.org/10.1023/A:1003517110726
Berzinsh V., Bethers U., Sennikovs J., 1994, Gulf of Riga: bathymetric, hydrological and meteorological databases, and calculations of the water exchange, Proc.
Latvian Acad. Sci., B7/8, 107-117.
Bowman M. J., Esaias W. E. (eds.), 1978, Oceanic fronts in coastal processes, Springer-Verlag, Berlin, 114 pp.
Broman B., Hammarklint T., Rannat K., Soomere T., Valdmann A., 2006, Trends
and extremes of wave fields in the north-eastern part of the Baltic Proper, Oceanologia, 48 (S), 165-184.
Csanady G.T., 1973, Wind-induced barotropic motions in long lakes, J. Phys. Oceanogr., 3, 429-438,
http://dx.doi.org/10.1023/A:1003517110726
Huttula T., 1994, Suspended sediment transport in Lake Säkylän Pyhäjärvi, Aqua Fenn., 24 (2), 171-185.
Jaagus J., Post P., Tomingas O., 2008, Changes in storminess on the western coast of Estonia in relation to large-scale atmospheric circulation, Climate Res., 36 (1), 29-40,
http://dx.doi.org/10.3354/cr00725
Jankowski A., 2002, Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast, Oceanologia, 44 (4), 395-418.
Jones J.E., Davies A.M., 2001, Influence of wave-current interaction, and high frequency forcing upon storm induced currents and elevations, Estuar. Coast.
Shelf Sci., 53 (4), 397-413,
http://dx.doi.org/10.1006/ecss.1999.0622
Jönsson A., 2006, A model study of suspended sand due to surface waves during a storm in the Baltic Proper, J. Marine Syst., 63 (3-4), 91-104,
http://dx.doi.org/10.1016/j.jmarsys.2006.05.005
Keevallik S., Soomere T., Pärg R., Zhukova V., 2007, Outlook for wind measurements at Estonian automatic weather stations, Proc. Estonian Acad. Sci.-Eng., 13 (3), 234-251.
Kotta J., Paalme T., Püss T., Herkül K., Kotta I., 2008, Contribution of scaledependent environmental variability on the biomass patterns of drift algae and
associated invertebrates in the Gulf of Riga, northern Baltic Sea, J. Marine Syst., 74 (Suppl. 1), S116-S123,
http://dx.doi.org/10.1016/j.jmarsys.2008.03.030
Kovtun A., Torn K., Martin G., Kullas T., Kotta J., Suursaar Ü., 2011, Influence of abiotic environmental conditions on spatial distribution of charophytes in
the coastal waters of West Estonian Archipelago, Baltic Sea, J. Coastal Res., SI64 (1), 412-416.
Kullas T., Otsmann M., Suursaar Ü., 2000, Comparative calculations of flows in the straits of the Gulf of Riga and the Väinameri, Proc. Estonian Acad. Sci.
Eng., 6 (4), 284-294.
Lehmann A., Getzlaff K., Harlass J., 2011, Detailed assessment of climate
variability in the Baltic Sea area for the period 1958 to 2009, Climate Res., 46 (2), 185-196,
http://dx.doi.org/10.3354/cr00876
Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Praxis, Berlin-Heidelberg-New York, 378 pp.
Lilover M. J., Lips U., Laanearu J., Liljebladh B., 1998, Flow regime in the Irbe Strait, Aquat. Sci., 60 (3), 253-265,
http://dx.doi.org/10.1007/s000270050040
Luhamaa A., Kimmel K., Männik A., Room R., 2011, High resolution re-analysis for the Baltic Sea region during 1965-2005 period, Clim. Dynam., 36 (3-4), 727-738,
http://dx.doi.org/10.1007/s00382-010-0842-y
Massel S.R., 1996, Ocean surface waves: their physics and prediction, World Sci., Singapore, 491 pp.,
http://dx.doi.org/10.1142/9789812795908
Ojaveer E., 1995, Ecosystem of the Gulf of Riga between 1920 and 1990, Academia 5, Estonian Acad. Publ., Tallinn, 272 pp.
Otsmann M., Astok V., Suursaar Ü., 1997, A model for water exchange between the Baltic Sea and the Gulf of Riga, Nord. Hydrol., 28 (4-5), 351-364.
OtsmannM., Suursaar Ü., Kullas T., 2001, The oscillatory nature of the flows in the system of straits and small semi-enclosed basins of the Baltic Sea, Cont. Shelf
Res., 21 (15), 1577-1603,
http://dx.doi.org/10.1016/S0278-4343(01)00002-4
Pinto J.G., Ulbrich U., Leckenbusch G.C., Spangehl T., Reyers M., Zacharias S., 2007, Changes in storm track and cyclone activity in three SRES ensemble
experiments with the ECHAM5/MPI-OM1 GCM, Clim. Dynam., 29 (2-3), 195-210,
http://dx.doi.org/10.1007/s00382-007-0230-4
Raudsepp U., Laanemets J., Haran G., Alari V., Pavelson J., Kouts T., 2011, Flow, waves and water exchange in the Suur Strait, the Gulf of Riga in 2008, Oceanologia, 53 (1), 35-56,
http://dx.doi.org/10.5697/oc.53-1.035
Räämet A., Suursaar Ü., Kullas T., Soomere T., 2009, Reconsidering uncertainties of wave conditions in the coastal areas of the northern Baltic Sea, J. Coastal Res., Sp. Iss. (56), 257-261.
Scientific-practical handbook of the climate of the U.S.S.R, 1990, Part 3, Gidrometeoizdat, Leningrad, (in Russian).
Seymour R. J., 1977, Estimating wave generation in restricted fetches, J. Waterw. Port. C. Div., 103 (WW2), Paper No. 12924, 251-263.
Smith S.D., Banke E.G., 1975, Variations of the sea surface drag coefficient with wind speed, Q. J. Roy. Meteorol. Soc., 101, 665-673,
http://dx.doi.org/10.1002/qj.49710142920
Soomere T., 2003, Anisotropy of wind and wave regimes in the Baltic proper, J. Sea Res., 49 (4), 305-316,
http://dx.doi.org/10.1016/S1385-1101(03)00034-0
Soomere T., Räämet A., 2011, Long-term spatial variations in the Baltic Sea wave fields, Ocean Sci., 7 (1), 141-150,
http://dx.doi.org/10.5194/os-7-141-2011
Suursaar Ü., 2010, Waves, currents and sea level variations along the Letipea - Sillamäe coastal section of the southern Gulf of Finland, Oceanologia, 52 (3), 391-416,
http://dx.doi.org/10.5697/oc.52-3.391
Suursaar Ü., Aps R., 2007, Spatio-temporal variations in hydro-physical and -chemical parameters during a major upwelling event off the southern coast
of the Gulf of Finland in summer 2006, Oceanologia, 49 (2), 209-228.
Suursaar Ü., Astok V., Kullas T., Nomm A., Otsmann M., 1995, Currents in the Suur Strait and their role in the nutrient exchange between the Gulf of
Riga and the Baltic Proper, Proc. Estonian Acad. Sci. Ecol., 5 (3/4), 103-123.
Suursaar Ü., Kullas T., 2006, Influence of wind climate changes on the mean sea level and current regime in the coastal waters of west Estonia, Baltic Sea, Oceanologia, 48 (3), 361-383.
Suursaar Ü., Kullas T., 2009, Decadal variations in wave heights off Kelba, Saaremaa Island, and their relationships with changes in wind climate, Oceanologia, 51 (1), 39-61,
http://dx.doi.org/10.5697/oc.51-1.039
Suursaar Ü., Kullas T., Otsmann M., 2002, A model study of the sea level variations in the Gulf of Riga and the Väinameri Sea, Cont. Shelf Res., 22 (14), 2001-2019,
http://dx.doi.org/10.1016/S0278-4343(02)00046-8
Suursaar Ü., Kullas T., Otsmann M., Saaremäe I., Kuik J., Merilain M., 2006, Cyclone Gudrun in January 2005 and modelling its hydrodynamic
consequences in the Estonian coastal waters, Boreal Environ. Res., 11 (2), 143-159.
Suursaar Ü., Sooäär J., 2007, Decadal variations in mean and extreme sea level values along the Estonian coast of the Baltic Sea, Tellus A, 59 (2), 249-260,
http://dx.doi.org/10.1111/j.1600-0870.2006.00220.x
Tõnisson H., Orviku K., Jaagus J., Suursaar Ü., Kont A., Rivis R., 2008, Coastal damages on Saaremaa Island, Estonia, caused by the extreme storm and flooding on January 9, 2005, J. Coastal Res., 24 (3), 602-614,
http://dx.doi.org/10.2112/06-0631.1
USACE - U.S. Army Corps of Engineers, 2002, Coastal engineering manual, Rep. EM 1110-2-1100, U.S. Govt. Print. Office, Washington DC.
Zhurbas V., Elken J., Väli G., Kuzmina N., Paka V., 2010, Pathways of suspended particles transport in the bottom layer of the southern Baltic
Sea depending on wind forcing (numerical simulations), Oceanology, 50 (6), 841-854,
http://dx.doi.org/10.1134/S0001437010060032
Response of eastern Indian Ocean (ODP Site 762B) benthic foraminiferal assemblages to the closure of the Indonesian seaway
Oceanologia 2012, 54(3), 449-472
http://dx.doi.org/10.5697/oc.54-3.449
Ajai Kumar Rai*, Virendra Bahadur Singh
Department of Earth & Planetary Sciences, University of Allahabad,
Allahabad-211002, India;
e-mail: raikajai@gmail.com
*corresponding author
keywords:
Indian Ocean, benthic foraminifera, Indonesian seaway, productivity, upwelling
Received 8 December 2011, revised 3 April 2012, accepted 7 May 2012.
Abstract
Pliocene-Pleistocene deep sea benthic foraminifera from ODP Site 762B in the eastern Indian Ocean were examined to understand the tectonically/climatically
induced palaeoceanographic changes. In addition to already published data on this site by Rai & Singh (2001), some more faunal parameters were considered
in the present work. Characteristic benthic foraminiferal assemblages as well as more diverse fauna during the early Pliocene (before 3.5 Ma) reflected
relatively oligotrophic and warm bottom water conditions. At the beginning of the late Pliocene (i.e. ~3 ± 0.5 Ma) relative abundances of
Uvigerina proboscidea, infaunal taxa and high productivity taxa increased, whereas faunal diversity showed a distinct decline, suggesting the development of pronounced upwelling resulting in higher surface water productivity. The strongly reduced inflow of warm and oligotrophic water masses as the South Equatorial Current (SEC) from the South Pacific to the eastern Indian Ocean due to the effective closure of the Indonesian seaway increased the surface water productivity. The closing of the Indonesian seaway during the late Pliocene was also responsible for the cessation of the warm, southward-flowing Leeuwin Current (LC) and the greater influence of the cold, deep and northward-flowing Western Australian Current (WAC) in the eastern Indian Ocean.
References
Altenbach A.V., Pflaumann U., Schiebl R., Thies A., Timm S., Trauth M., 1999,
Scaling percentages and distributional patterns of benthic foraminifera with flux
rates of organic carbon, J. Foramin. Res., 29 (3), 173-185.
An Z., 2000, The history and variability of the East Asian paleomonsoon
climate, Quaternary Sci. Rev., 19 (1-5), 171-187,
http://dx.doi.org/10.1016/S0277-3791(99)00060-8
Bartoli G., Sarnthein M., Weinelt M., Erlenkeuser H., Garbe-Schönberg D., Lea
D.W., 2005, Final closure of Panama and the onset of northern hemisphere
glaciation, Earth Planet. Sci. Lett., 237 (1-2), 33-44,
http://dx.doi.org/10.1016/j.epsl.2005.06.020
Berggren W.A., Kent D.V., Swisher III C.C., Aubry M.P., 1995, A revised
Cenozoic geochronology and chronostratigraphy, SEPM Spec. Publ., 54, 129-212.
Bé A.W.H., Hutson W.H., 1977, Ecology of planktonic foraminifera and
biogeographic patterns of life and fossil assemblages in the Indian Ocean,
Micropaleontology, 23 (4), 369-414,
http://dx.doi.org/10.2307/1485406
Billups K., Schrag D.P., 2002, Paleotemperatures and ice volume of the
past 27 Myr revisited with paired Mg/Ca and 18O/ 16O measurements on
benthic foraminifera, Paleoceanography, 17 (1),
http://dx.doi.org/10.1029/2000PA000567
Burke S.C., Berger W.H., Coulbourn W.T., Vincent E., 1993, Benthic
foraminifera in box core ERDC 112, Ontong Java Plateau, J. Foramin. Res.,
23 (1), 19-39,
http://dx.doi.org/10.2113/gsjfr.23.1.19
Burton K.W., Ling H. F., O’nions R.K., 1997, Closure of the Central American
Isthmus and its effect on deep-water formation in the North Atlantic, Nature,
386, 382-385,
http://dx.doi.org/10.1038/386382a0
Cane M.A., Molnar P., 2001, Closing of the Indonesian seaway as a precursor to
east African aridification around 3-4 million years ago, Nature, 411, 157-162,
http://dx.doi.org/10.1038/35075500
Cerling T.E., Harris J.M., MacFadden B. J., Leakey M.G., Quade J.,
Eisenmann V., Ehleringer J.R., 1997, Global vegetation change through the
Miocene/Pliocene boundary, Nature, 389, 153-158,
http://dx.doi.org/10.1038/38229
Chaisson W., Ravelo A.C., 2000, Pliocene development of the East-West
hydrographic gradient in the equatorial Pacific, Paleoceanography, 15, 497-505,
http://dx.doi.org/10.1029/1999PA000442
Corliss B.H., Chen C., 1988, Morphotype patterns of Norwegian Sea deep-sea
benthic foraminifera and ecological implications, Geology, 16 (8), 716-719,
http://dx.doi.org/10.1130/0091-7613(1988)016<0716:MPONSD>2.3.CO;2
Cresswell G.R., Golding T. J., 1980, Observation of south-flowing current in
the southeastern Indian Ocean, Deep-Sea Res. Pt. A, 27 (6), 449-466,
http://dx.doi.org/10.1016/0198-0149(80)90055-2
De S., Gupta A.K., 2010, Deep-sea faunal provinces and their inferred
environments in the Indian Ocean based on distribution of Recent benthic
foraminifera, Palaeogeogr. Palaeocl., 291 (3-4), 429-442,
http://dx.doi.org/10.1016/j.palaeo.2010.03.012
Den Dulk M., Reichart G. J., Heyst S.V., Zachariasse W. J., van der Zawn
G. J., 2000, Benthic foraminifera as proxies of organic matter flux and
bottom water oxygenation? A case history from the northern Arabian
Sea, Palaeogeogr. Palaeocl., 161 (3-4), 337-359,
http://dx.doi.org/10.1016/S0031-0182(00)00074-2
Den Dulk M., Reichart G. J., Memon G.M., Roelofs E.M.P., Zachariasse W. J.,
van der Zwaan G. J., 1998, Benthic foraminiferal response to variations in the
surface water productivity and oxygenation in the northern Arabian Sea, Mar.
Micropaleontol., 35 (1-2), 43-66,
http://dx.doi.org/10.1016/S0377-8398(98)00015-2
Dickens G.R., Owen R.M., 1994, Late Miocene-early Pliocene manganese
redirection in the central Indian Ocean: expansion of the intermediate water
oxygen minimum zone, Paleoceanography, 9, 169-181,
http://dx.doi.org/10.1029/93PA02699
Dowsett H., Barron J., Poore R., 1996, Middle Pliocene sea surface temperatures:
a global reconstruction, Mar. Micropaleontol., 27 (1-4), 13-25,
http://dx.doi.org/10.1016/0377-8398(95)00050-X
Fedorov A., Philander G., 2000, Is El Nino changing?, Science, 288 (5473),
997-1002,
http://dx.doi.org/10.1126/science.288.5473.1997
Gaudant J., Courme-Rault M., Saint-Martin S., 2010, On the fossil fishes, diatoms,
and foraminifera from Zanclean (Lower Pliocene) diatomitic sediments of
Aegina Island (Greece): a stratigraphical and paleoenvironmental study,
Palaeodiversity, 3, 141-149.
Gooday A. J., 1994, The biology of deep-sea foraminifera; a review of some
advances and their applications in Paleoceanography, Palaios, 9 (1), 14-31,
http://dx.doi.org/10.2307/3515075
Gooday A. J., 2003, Benthic foraminifera (protista) as tools in deep-water
palaeoceanography: environmental influences on faunal characteristics, Adv.
Mar. Biol., 46, 1-90,
http://dx.doi.org/10.1016/S0065-2881(03)46002-1
Godfrey J. S., Weaver A. J., 1991, Is the Leeuwin Current driven by Pacific heating
and winds?, Prog. Oceanogr., 27 (3-4), 225-272,
http://dx.doi.org/10.1016/0079-6611(91)90026-I
v
Gourlan A.T., Meynadier L., All`egre C. J., 2008, Tectonically driven changes in the
Indian Ocean circulation over the last 25 Ma: neodymium isotope evidence,
Earth Planet. Sci. Lett., 26 (1-2), 353-364,
http://dx.doi.org/10.1016/j.epsl.2007.11.054
Gupta A.K., Das M., Bhaskar K., 2006, South Equatorial Current (SEC) driven
changes at DSDP Site 237, Central Indian Ocean, during the Plio-Pleistocene:
evidence from benthic foraminifera and stable isotopes, J. Asian Earth Sci.,
28 (4-6), 276-290,
http://dx.doi.org/10.1016/j.jseaes.2005.10.006
Gupta A.K., Satapathy S.K., 2000, Latest Miocene-Pleistocene abyssal
benthic foraminifera from west-central Indian Ocean DSDP Site 236:
paleoceanographic and paleoclimatic inferences, J. Palaeontol. Soc. India, 45,
33-48.
Gupta A.K., Srinivasan M. S., 1992, Uvigerina proboscidea abundances and
paleoceanography of the northern Indian Ocean DSDP Site 214 during the
Late Neogene, Mar. Micropaleontol., 19 (4), 355-367,
http://dx.doi.org/10.1016/0377-8398(92)90038-L
Gupta A.K., Thomas E., 1999, Latest Miocene through Pleistocene paleoceanographic
evolution of the northwestern Indian Ocean (DSDP Site 219): global
and regional factors, Paleoceanography, 14 (1), 62-73,
http://dx.doi.org/10.1016/0377-8398(92)90038-L
Hall R., 2002, Cenozoic geological and plate tectonic evolution of SE
Asia and the SW Pacific: computer-based reconstructions, model and
animations, J. Asian Earth Sci., 20 (4), 353-431,
http://dx.doi.org/10.1016/S1367-9120(01)00069-4
Haug G.H., Tiedemann R., 1998, Effect of the formation of the Isthmus of
Panama on Atlantic Ocean thermohaline circulation, Nature, 393, 673-676,
http://dx.doi.org/10.1038/31447
Haug G.H., Tiedemann R., Zahn R., Ravelo A.C., 2001, Role of Panama uplift
on oceanic freshwater balance, Geology, 29 (3), 207-210,
http://dx.doi.org/10.1130/0091-7613(2001)029<0207:ROPUOO>2.0.CO;2
Hayward B.W., 2001, Global deep-sea extinction during the Pleistocene ice
ages, Geology, 29 (7), 599-602,
http://dx.doi.org/10.1130/0091-7613(2001)029<0599:GDSEDT>2.0.CO;2
Hayward B.W., 2002, Late Pliocene to middle Pleistocene extinctions of deep
sea benthic foraminifera (‘Stilostomella Extinction’) in the southwest Pacific,
J. Foramin. Res., 32 (3), 274-307,
http://dx.doi.org/10.2113/32.3.274
Haywood A.M., Valdes P. J., Sellwood B.W., 2000, Global scale palaeo-climate
reconstruction of the middle Pliocene climate using the UKMO GCM, Initial
results, Global Planet. Change, 25 (3-4), 239-256,
http://dx.doi.org/10.1016/S0921-8181(00)00028-X
Hurlbert S.H., 1971, The nonconcept of species diversity: a critique and alternative
parameters, Ecology, 52 (4), 577-586,
http://dx.doi.org/10.2307/1934145
Jian Z., Yu Y., Li B., Wang J., Zhang X., Zhou Z., 2006, Phased evolution of
the south-north hydrographic gradient in the South China Sea since the middle
Miocene, Palaeogeogr. Palaeoclimatol., 230 (3-4), 251-263,
http://dx.doi.org/10.1016/j.palaeo.2005.07.018
Kaiho K., 1994, Benthic foraminiferal dissolved oxygen index and dissolved oxygen
levels in the modern ocean, Geology, 22 (8), 719-722,
http://dx.doi.org/10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2
Karas C., Nürnberg D., Gupta A.K., Tiedemann R., Mohan K., Bickert T., 2009,
Mid-Pliocene climate change amplified by a switch in Indonesian subsurface
throughflow, Nat. Geosci., 2, 434-438,
http://dx.doi.org/10.1038/ngeo520
Keller G., 1985, Depth stratification of planktonic foraminifers in the Miocene
Ocean, Geol. Soc. Am. Mem., 163, 177-195.
Kennett J.P., Keller G., Srinivasan M. S., 1985, Miocene planktonic foraminiferal
biogeography and paleoceanographic development of the Indo-pacific Region,
Geol. Soc. Am. Mem., 163, 197-236.
Kuhnt W., Holbourn A., Hall R., Zuvela M., Käse R., 2004, Neogene history
of the Indonesian throughflow continent-ocean interactions with in East
Asian marginal seas, Geophys. Monogr. Ser., 149,
http://dx.doi.org/10.1029/149GM16
Kuhnt W., Holbourn A., Zhao Q., 2002, The early history of the South
China Sea: evolution of Oligocene-Miocene deep water environments, Rev.
Micropal´eontol., 45, 99-159.
Linke P., Lutze G. F., 1993, Microhabitat preferences of benthic foraminifera -
a static concept or a dynamic adaptation to optimize food acquisition?, Mar.
Micropaleontol., 20 (3-4), 215-234,
http://dx.doi.org/10.1016/0377-8398(93)90034-U
Lisiecki L.E., Raymo M.E., 2005, A Pliocene-Pleistocene stack of 57 globally
distributed benthic δ
18O records, Paleoceanography, 20 (PA1003),
http://dx.doi.org/10.1029/2004PA001071
Loubere P., 1996, The surface ocean productivity and bottom water oxygenation
signals in deep water benthic foraminiferal assemblages, Mar. Micropaleontol.,
28 (3-4), 247-261,
http://dx.doi.org/10.1016/0377-8398(96)00004-7
Lourens L. J., Hilgen F. J., Laskar J., Shackleton N. J., Wilson D., 2004, The
Neogene period, [in:] A geologic time scale, F.M. Gradstein, J.G. Ogg & A.G.
Smith (eds.), Cambridge Univ. Press., Cambridge, 409-440.
Mackensen A., Sejrup H. P., Janse E., 1985, Living benthic foraminifera off
Norway, Mar. Micropaleontol., 9 (4), 275-306,
http://dx.doi.org/10.1016/0377-8398(85)90001-5
Miao Q., Thunell R., 1993, Reccent deep-sea benthic foraminiferal distributions
in the South China and Sulu Seas, Mar. Micropaleontol., 22 (1-2), 1-32,
http://dx.doi.org/10.1016/0377-8398(93)90002-F
Murgese S.D., Deckker P.D., 2007, The late Quaternary evolution of water masses
in the eastern Indian Ocean between Australia and Indonesia, based on benthic
foraminifera faunal and carbon isotope analyses, Mar. Micropaleontol., 247 (3-4), 382-401,
http://dx.doi.org/10.1016/j.palaeo.2006.11.002
Nishimura S., 1992, Tectonic approach to changes in surface-water circulation
between the tropical Pacific and Indian Oceans, [in:] Pacific Neogeneenvironment,
evolution and events, R. Tsuchi & J.C. Ingle Jr. (eds.), Univ.
Tokyo Press, 157-167.
Nishimura S., Suparka S., 1997, Tectonic approach to the Neogene evolution of
the Pacific Indian Ocean seaways, Tectonophysics, 281 (1-2), 1-16,
http://dx.doi.org/10.1016/S0040-1951(97)00155-8
Nomura R., 1995, Paleogene to Neogene deep-sea paleoceanography in the eastern
Indian Ocean: benthic foraminifera from ODP Sites 747, 757 and 758,
Micropaleontology, 41 (3), 251-290,
http://dx.doi.org/10.2307/1485862
Pearce A. F., 1991, Eastern boundary currents of the southern hemisphere, J. Roy.
Soc. West. Aust., 74, 35-45.
Rai A.K., Singh V.B., 2001, Late Neogene deep-sea benthic foraminifer at ODP
site 762B, eastern Indian Ocean: diversity trends and Paleoceanography,
Palaeogeogr. Palaeoclimatol., 173 (1-2), 1-8,
http://dx.doi.org/10.1016/S0031-0182(01)00299-1
Rai A.K., Singh V.B., 2004, Late Neogene deep sea benthic foraminiferal
biostratigraphy of ODP sites 762B and 763A, (Exmouth Plateau) eastern
Indian Ocean, J. Geol. Soc. India, 63, 415-429.
Rai A.K., Srinivasan M. S., 1994, Pleistocene oceanographic changes indicated by
deep sea benthic foraminifera in the northern Indian Ocean, Proceedings of the
Indian Academy of Sciences (Earth and Planetary Sciences), 103 (4), 499-517.
Rai A.K., Srinivasan M. S., Maurya A. S., 2007, Influence of antarctic bottom water
(AABW) and monsoonal activity in the central Indian Ocean over past 5
million years: benthic foraminiferal record at DSDP site 238, J. Geol. Soc.
India, 69 (2), 222-231.
Rathburn A.E., Corliss B.H., 1994, The ecology of living (stained) deep-sea
benthic foraminifera from the Sulu Sea, Paleoceanography, 9 (1), 87-150,
http://dx.doi.org/10.1029/93PA02327
Ravelo A.C., Andreasen D.H., Lyle M., Lyle A.O., Wara M.W., 2004, Regional
climate shifts caused by gradual global cooling in the Pliocene epoch, Nature,
429, 263-267,
http://dx.doi.org/10.1029/93PA02327
Raymo M.E., Grant B., Horowitz M., Rau G.H., 1996, Mid-Pliocene warmth:
stronger greenhouse stronger conveyor, Mar. Micropaleontol., 27 (1-4), 313-
326,
http://dx.doi.org/10.1016/0377-8398(95)00048-8
Raymo M.E., Ruddiman W. F., 1992, Tectonic forcing of late Cenozoic climate,
Nature, 359, 117-122,
http://dx.doi.org/10.1038/359117a0
Rodgers K.B., Latif M., Lugetke S., 2000, Sensitivity of equatorial Pacific and
Indian Ocean watermasses to the position of the Indonesian throughflow,
Geophys. Res. Lett., 27 (18), 2941-2945.
Ruddiman W. F., Raymo M.E., Martinson D.G., Clement B.M., Backman
J., 1989, Pleistocene evolution: northern hemisphere ice sheets and North
Atlantic Ocean, Paleoceanography, 4 (4), 353-412,
http://dx.doi.org/10.1029/PA004i004p00353
Schmiedl G., Mackensen A., Müller P. J., 1997, Recent benthic foraminifera from
the eastern South Atlantic Ocean: dependence on food supply and water
masses, Mar. Micropaleontol., 32 (3-4), 249-288,
http://dx.doi.org/10.1016/S0377-8398(97)00023-6
Schönfeld J., 1996, The ‘Stilostomella extinction’. Structure and dynamics of the
last turnover in deep-sea benthic foraminiferal assemblages, [in:] Microfossils
and oceanic environments, A. Moguilevsky & R.C. Whatley (eds.), Univ.
Wales-Aberystwyth Press, Aberystwyth, 27-37.
Siesser W.G., Bralower T. J., Tang C., Galrun B., 1992, Late Miocene-
Quaternary calcareous nannofossil biomagnetochronology on the Exmouth
Plateau, Northwest Australia, Proceedings of Ocean Drilling Program,
Scientific Results Vol. 122, U. von Rad, B.U. Haq et al. (eds.), Ocean Drilling
Program, College Station, TX, 677-681.
Sinha D.K., Singh A.K., Tiwari M., 2006, Palaeoceanographic and palaeoclimatic
history of ODP site 763A (Exmouth Plateau), southeast Indian Ocean: 2.2
Ma record of planktic foraminifera, Curr. Sci. India, 90 (10), 1363-1369.
Smart C.W., Thomas E., Ramsay A.T. S., 2007, Middle-late Miocene
benthic foraminifera in a western equatorial Indian Ocean depth transect:
paleoceanographic implications, Palaeogeogr. Palaeoclimatol., 247 (3-4), 402-420,
http://dx.doi.org/10.1016/j.palaeo.2006.11.003
Smith R. L., 1992, Coastal upwelling in the modern ocean, [in:] Upwelling systems:
evolution since the early Miocene, C.P. Summerhayes, W. L. Prell & K.C.
Emeis (eds.), Geol. Soc. Spec. Publ., 64, 9-28.
Smith W., Grassle J., 1977, Sampling properties of a family of diversity measures,
Biometrics, 33 (2), 282-292,
http://dx.doi.org/10.2307/2529778
Srinivasan M. S., Sinha D.K., 1998, Early Pliocene closing of the Indonesian
seaway: evidence from north-east Indian Ocean and Tropical Pacific deep
sea cores, J. Asian Earth Sci., 16 (1), 29-44,
http://dx.doi.org/10.1016/S0743-9547(97)00041-X
Stehli F.G., Webb S.D. (eds.), 1985, The great American biotic interchange,
Plenum, New York, 532 pp.
Tchernia P., 1980, Descriptive regional oceanography, Pergamon, Oxford, 252 pp.
Thomas E., Gooday A. J., 1996, Cenozoic deep-sea benthic foraminifers: tracers
for changes in oceanic productivity?, Geology, 24 (4), 355-358,
http://dx.doi.org/10.1130/0091-7613(1996)024<0355:CDSBFT>2.3.CO;2
Toggweiler J.R., Samuels B., 1995, Effect of Drake Passage on the global
thermohaline circulation, Deep-Sea Res., 42 (4), 477-500,
http://dx.doi.org/10.1016/0967-0637(95)00012-U
Tomczak M., Godfrey J. S., 2001, Regional Oceanography: an introduction,
[originally published by Pergamon 1994. Retrieved Jan., 2002, from
http://www.es.flinders.edu.au/mattom/regoc/pdfversion.html].
Venkatarathnam K., Biscaye P.E., 1977, Distribution and origin of quartz in the
sediment of the Indian Ocean, J. Sediment. Res., 47 (2), 642-649.
Wells P., Wells G., Cali J., Chivas A., 1994, Response of deep-sea benthic
foraminifera to Late Quaternary climate changes, southeast Indian Ocean,
offshore western Australia, Mar. Micropaleontol., 23 (3), 185-229,
http://dx.doi.org/10.1016/0377-8398(94)90013-2
Wyrtki K., 1971, Oceanographic atlas of the International Indian Ocean Expedition,
Nat. Sci. Found. Publ., OCE/NSF 86-00-001 Washington, DC, 531 pp.
Zachos J.C., Pagani M., Sloan L., Thomas E., Billups K., 2001, Trends, rhythms,
and aberrations in global climate 65 Ma to present, Science, 292 (5517), 686-692,
http://dx.doi.org/10.1126/science.1059412
Vertical distribution of zooplankton in the epipelagic zone off Sharm El-Sheikh, Red Sea, Egypt
Oceanologia 2012, 54(3), 473-489
http://dx.doi.org/10.5697/oc.54-3.473
MohamedMoussa Dorgham1,*, Mohsen Mohamed Elsherbiny2,3, Mahnoud Hassan Hanafi2
1
Department of Oceanography, University of Alexandria,
Alexandria, 21511, Egypt;
e-mail: mdorgham1947@yahoo.com
*corresponding author
2
Department of Marine Sciences, University of Suez Canal,
Ismaelia, 41522, Egypt
3
Department of Marine Biology, Faculty of Marine Sciences, King Abdul Aziz University,
Jeddah, Saudi Arabia;
e-mail: ooomar@kau.edu.sa
keywords:
hydrography, copepods, Red Sea plankton, Sharm EL-Sheikh plankton,zooplankton dynamics, epipelagic zone, vertical plankton,Chaetognatha,Appendicularia
Received 4 August 2011, revised 18 April 2012, accepted 22 May 2012.
Abstract
The purpose of the present study was to track the seasonal vertical distribution of zooplankton abundance in the epipelagic zone off Sharm El-Sheikh, Red Sea. Zooplankton samples were collected seasonally within the depth ranges of 0-25, 25-50, 50-75, 75-100 m at a single station off Sharm El-Sheikh City. The present study is a trial to expand knowledge about the structure as well as the vertical distribution of the epipelagic zooplankton community in the Gulf of Aqaba in general and in its southern part in particular. The results indicate the occurrence of 52 copepod species and several species of other planktonic groups in the study area; the zooplankton standing crop fluctuated between 1124 and 4952 organisms m-3. Copepods appeared to be the predominant component, forming an average of 86.5% of the total zooplankton count, and with other groups demonstrated a markedly different seasonal vertical distribution. Twelve bathypelagic copepod species were reported during the present study, and five species were new to the area, having migrated northwards from the main basin of the Red Sea.
References
Aamer M.A., El-Sherbiny M.M., Gab-Alla A.A., Kotb M.M., 2007, Ecological
studies on zooplankton standing crop of Sharm El-Maiya Bay, Sharm El-Sheikh, northern Red Sea, Catrina, 1 (1), 73-80.
Almogi-Labin A., 1984, Population dynamics of planktonic Foraminifera and
Pteropoda, Gulf of Aqaba, Red Sea, Proc. KNAW, Ser. B Paleontol., 87, 481-511.
Al-Najjar T.H., 2000, The seasonal dynamics and grazing control of Phyto-
and mesozooplankton in the northern Gulf of Aqaba, Ph.D. thesis, Bremen
University.
Al-Najjar T.H., 2004, Quantitative Estimation of surface zooplankton biomass in
the Gulf of Aqaba, Red Sea, Dirasat Pure Sci., 31 (2), 115-122.
Al-Najjar T.H., BadranM., Zibdeh M., 2002, Seasonal cycle of surface zooplankton
biomass in relation to the chlorophyll a in the Gulf of Aqaba, Red Sea, Abhath
Al-Yarmouk Basic Sci. Eng., 12 (1), 109-118.
Al-Najjar T.H., El-Sherbiny M.M., 2008, Spatial and seasonal variations in
biomass and size structure of zooplankton in coastal waters of the Gulf of
Aqaba, Jordan J. Biol. Sci., 1 (2), 55-59.
Al-Najjar T.H., Rasheed M., 2005, Zooplankton biomass in the most northern tip
of the Gulf of Aqaba, a case study, Leb. Sci. J., 6 (2).
Aoki I., Komatsu T., Fishelson L., 1990, Surface zooplankton dynamics and
community structure in the Gulf of Aqaba (Eilat), Red Sea, Mar. Biol., 107,
179-190,
http://dx.doi.org/10.1007/BF01313255
APHA, 1985, Standard methods for the examination of the water and waste waters,
16th edn.
Arnemo R., 1965, Limnological studies in Hyttodamman. 3 - Zooplankton, Inst.
Freshwater Res., Drottinghon, Rep. No. 46.
Böttger-Schnack R., 1995, Summer distribution of micro- and small mesozoo-
plankton in the Red Sea and Gulf of Aden, with special reference to non-
calanoid copepods, Mar. Ecol.-Prog. Ser., 118, 81-102,
http://dx.doi.org/10.3354/meps118081
Böttger-Schnack R., Hagen W., Schiel B. S., 2001, The microcopepod fauna in
the Gulf of Aqaba, northern Red Sea: species diversity and distribution of
Oncaeidae (Poecilostomatoida), J. Plankton Res., 23 (9), 1029-1035,
http://dx.doi.org/10.1093/plankt/23.9.1029
Böttger-Schnack R., Schnack D., Hagen W., 2008, Microcopepod community
structure in the Gulf of Aqaba and northern Red Sea, with special reference
to Oncaeidae, J. Plankton Res., 30 (5), 529-550,
http://dx.doi.org/10.1093/plankt/fbn018
Buckley L. J., Lough R.G., 1987, Recent growth, biochemical composition, and
prey field of larval haddock (Melanogrammus aeglefinus) and Atlantic cod
(Gadus morhua) on Georges Bank, Canad. J. Fish. Aquat. Sci., 44 (1), 14-25,
http://dx.doi.org/10.1139/f87-003
Checkley D.M. Jr., Dagg M. J., Uye S., 1992, Feeding, excretion and egg production
by individuals and populations of the marine planktonic copepods Acartia spp.
and Centropages furcatus, J. Plankton Res., 14 (1), 71-96,
http://dx.doi.org/10.1093/plankt/14.1.71
Christou E.D., 1998, Interannual variability of copepods in a Mediterranean coastal
area (Saronikkos Gulf, Aegean Sea), J. Marine Syst., 15 (1-4), 523-532,
http://dx.doi.org/10.1016/S0924-7963(97)00080-8
Conway D.V. P., White R.G., Hugues-Dit-Ciles J., Gallienne C.P., Robins D.B.,
2003, Guide to the coastal and surface zooplankton of the south western Indian
Ocean, Occas. Publ. No. 15, Marine Biol. Assoc. UK, 354 pp.
Cornils A., Schnack-Schiel S.B., Al-Najjar T., BadranM. I., RasheedM., Manasreh
R., Richter C., 2007, The seasonal cycle of the epipelagic mesozooplankton in
the northern Gulf of Aqaba (Red Sea), J. Marine Syst., 68 (1-2), 278-292,
http://dx.doi.org/10.1016/j.jmarsys.2007.01.001
Cornils A., Schnack-Schiel S.B., Hagen W., Dowidar M., Stambler N., Plehn O.,
Richter C., 2005, Spatial and temporal distribution of mesozooplankton in the
Gulf of Aqaba and the northern Red Sea in February/March 1999, J. Plankton
Res., 27 (6), 505-518,
http://dx.doi.org/10.1093/plankt/fbi023
Dorgham M.M., Hussein M.M., 1997, Zooplankton dynamics in a neritic area of
the Arabian Gulf (Doha Harbour), Arab Gulf J. Scient. Res., 15 (2), 415-435.
Echelman T., Fishelson L., 1990, Surface zooplankton dynamics and community
structure in the Northern Gulf of Aqaba, Red Sea, Mar. Biol., 107 (1), 179-190,
http://dx.doi.org/10.1007/BF01313255
El-Serehy H., Abdel-Rahman N., 2004, Distribution patterns of planktonic copepods
crustaceans in the coral reefs and sandy areas along the Gulf of Aqaba, Red
Sea, Egypt, Egypt. J. Biol, 6, 126-135.
El-Sherbiny M.M., Hanafy M.H., Aamer M.A., 2007, Monthly variations in
abundance and species composition of the epipelagic zooplankton off Sharm
El-Sheikh, Northern Red Sea, Res. J. Environ. Sci., 1, 200-210.
Farstey V., Lazar B., Genin A., 2002, Expansion and homogeneity of the vertical
distribution of zooplankton in a very deep mixed layer, Mar. Ecol.-Prog. Ser.,
238, 91-100,
http://dx.doi.org/10.3354/meps238091
Fenaux R., 1979, First data on the ecology of Appendicularia in the Gulf of Eilat,
Isr. Jour. Zool., 28, 177-192.
Giesbrecht W., 1892, Systematik und Faunistik der pelagischen Copepoden des
Golfes von Neapel und der angrenzenden Meeres-Abschnitte, [in:] Fauna und
Flora des Golfes von Neapel, Vol. 19., 1-831.
Godeaux J., 1978, The population of Thaliacea in the Gulf of Eilat, Bull. Soc.
R. Sci. Liege, 74, 376-389.
Goldman C.R., Heron A. J., 1984, Limnology, McGraw-Hill, New York, 464 pp.
Hanafy M.H., Dorgham M.M., El-Sherbiny M.M., 1998, Zooplankton community
in Mangal Ecosystem on Sharm El-Sheikh Coast, Red Sea, Egypt, J. Aquat
Biol. Fish., 2 (4), 465-482.
Heron G.A., Bradford-Grieve J.M., 1995, The marine fauna of New Zealand.
Pelagic cyclopoid (Copepoda, Poecilostomatoida, Oncaeidae), Memoires, New
Zel. Oceanogr. Inst., 104, 1-57.
Incze L. S., Aas P., Ainare T., 1996, Distributions of copepod nauplii and turbulence
on the southern flank of Georges Bank: implications for feeding by larval cod
(Gadus morhua), Deep-Sea Res. Pt. II, 43 (7-8), 1855-1874,
http://dx.doi.org/10.1016/S0967-0645(96)00055-0
Khalil M.T., Abdel-Rahman N. S., 1997, Abundance and diversity of surface
zooplankton in the Gulf of Aqaba, Red Sea, Egypt, J. Plankton Res., 19, 927-936.
Kimor B., Golandsky B., 1977, The microplankton of the Gulf of Eilat: aspects
of seasonal and bathymetric distribution, Mar. Biol., 42 (1), 55-76,
http://dx.doi.org/10.1007/BF00392014
Manasrah R., Raheed M., Badran M. I., 2006, Relationships between water
temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba,
Red Sea, Oceanologia, 48 (2), 237-253.
Mathew P.H., 1977, Studies on the zooplankton of a tropical lake, [in:] Proceedings
of the symposium on ‘warm water zooplankton’, Natl. Inst. Oceanogr., Goa,
India, 297-308.
Michel H.B., Behbehani M., Herring D., 1986, Zooplankton of the Western Arabian
Gulf South of Kuwait waters, Kuwait Bull. Mar. Sci., KISR, Ser. No. 1435,
1-36.
Omori M., Ikeda T., 1984, Methods in marine zooplankton ecology, John Wiley and
Sons Inc., New York, 372 pp.
Parsons T.R., Maita Y., Lalli G.M., 1984, A manual of chemical and biological
methods for seawater analysis, Pergamon Press Ltd., Oxford, 173 pp.
Prado-Por M. S.A., 1990, A diel cycle of vertical distribution of the Calanoida
(Crustacea: Copepoda) in the Northern Gulf of Aqaba, Bull. Nat. Inst.
Oceanogr. Monaco, 7, 109-116.
Reiss Z., Hottinger L., 1984, The Gulf of Aqaba, ecological micropaleontology,
Springer, Berlin, New York, 354 pp.,
http://dx.doi.org/10.1007/978-3-642-69787-6
Schnack-Schiel S.B., Niehoff B., Hagen W., Böttger-Schnack R., Cornils A.,
Dowidar M.M., Pasternak A., Stambler N., Stübing D., Richter C., 2008,
Population dynamics and life strategies of Rhincalanus nasutus (Copepoda) at
the onset of the spring bloom in the Gulf of Aqaba (Red Sea), J. Plankton Res.,
30 (6), 655-672,
http://dx.doi.org/10.1093/plankt/fbn029
Vaissiere R., Seguin G., 1984, Initial observations of the zooplankton micro
distribution on the fringing coral reef at Aqaba (Jordan), Mar. Biol., 83 (1),
1-11,
http://dx.doi.org/10.1007/BF00393080
Webber M.K., Roff J.C., 1995, Annual structure of the copepod community and
its associated pelagic environment off Discovery Bay, Jamaica, Mar. Biol.,
123 (3), 467-479,
http://dx.doi.org/10.1007/BF00349226
Weikert H., 1982, The vertical distribution of zooplankton in relation to habitat
zones in the area of the Atlantis II Deep, central Red Sea, Mar. Ecol.-Prog.
Ser., 8, 129-143,
http://dx.doi.org/10.1007/BF00349226
Weikert H., 1987, Plankton and the pelagic environment, [in:] Key environments,
Red Sea, A. J. Edwards & S.M. Head (eds.), Pergamon Press, Oxford, 90-111.
Williamson D. L., 1967, On a collection of planktonic Decapoda and Stomatopoda
(Crustacea) from the Mediterranean coast of Israel, Bull. Sea Fisher. Res.
Station, Haifa, 45, 32-64.
Wolf-Vecht A., Paldor N., Brenner S., 1992, Hydrographic indications of
advection/convection effects in the Gulf of Eilat, Deep-Sea Res. Pt. A, 39 (7-8),
1393-1401,
http://dx.doi.org/10.1016/0198-0149(92)90075-5
Yahel R., Yahel G., Berman T., Jaffe J. S., Genin A., 2005, Diel pattern with abrupt
crepuscular changes of zooplankton over a coral reef, Limnol. Oceanogr., 50 (3),
930-944,
http://dx.doi.org/10.4319/lo.2005.50.3.0930
Mapping an ecosystem service:A quantitative approach to derive fish feeding ground maps
Oceanologia 2012, 54(3), 491-505
http://dx.doi.org/10.5697/oc.54-3.491
Andrius Šiaulys1,*, Darius Daunys1, Martynas Bučas1, Egidijus Bacevičius1,2
1
Coastal Research and Planning Institute, Klaipėda University,
Herkaus Manto 84, Klaipėda 92294, Lithuania;
e-mail: andrius@corpi.ku.lt
*corresponding author
2
Fisheries Service under the Ministry of Agriculture of the Republic of Lithuania,
Division of Fisheries Research and Science,
Smiltynės Str. 1/1, Klaipėda 91001, Lithuania
keywords:
Seabed quality, macrozoobenthos, fish diet, modelling, random forests, Baltic Sea
Received 13 March 2012, revised 17 May2012, accepted 25 May 2012.
This study was supported by Norwegian Financial Mechanism (project No. LT0047) and BONUS PREHAB.
Abstract
This study presents a quantitative approach to mapping benthophagous fish feeding grounds. This approach combines the spatial biomass
distribution of benthic prey items and their importance for the diets of predators. A point based biomass data of macrozoobenthos together
with a set of environmental factors was used to develop Random Forests models that produce continuous biomass distribution layers
for individual prey species. Depending on the diet composition and the importance of prey for fish feeding, these layers are overlaid
and an integrated GIS map of the seabed showing the quality of feeding grounds is generated. These maps provide a useful basis
for conservation and marine spatial planning. In addition, this method could be applied to the mapping of resources used by other benthophagous
organisms. The method is presented using the example of three common Baltic fish species: cod, flounder and viviparous eelpout.
References
Bendtsen J., Söderkvist J., Dahl K., Hansen J.L. S., Reker J., 2007, Model simulations of blue corridors in the Baltic Sea, BALANCE Interim Report
No. 9.
Bitinas A., Aleksa P., Damušytė A., Gulbinskas S., Jarmalavičius D., Kuzavinis M., Minkevičius V., Pupienis D., Trimonis E., Šečkus R., Žaromskis R., Žilinskas G., 2004, Baltijos juros Lietuvos krantu. geologinis atlasas, Lietuvos geologijos tarnyba, Vilnius, 95 pp.
Björnsson B., 1993, Swimming speed and swimming metabolism of Atlantic Cod (Gadus morhua) in relation to available food: A laboratory study, Can. J.
Fish. Aquat. Sci., 50 (12), 2542-2551.
http://dx.doi.org/10.1139/f93-277
Booij N., Ris R.C., Holthuijsen L.H., 1999, A third-generation wave model for coastal regions. 1. Model description and validation, J. Geophys. Res.,
104 (C4), 7649-7666,
http://dx.doi.org/10.1029/98JC02622
Breiman L., 2001, Random forests, Mach. Learn., 45 (5), 32 pp.
Bromley P. J., 1994, The role of gastric evacuation experiments in quantifying the feeding rates of predatory fish, Rev. Fish. Biol. Fisher., 4 (1), 36-66.
http://dx.doi.org/10.1007/BF00043260
Bubinas A., Ložys L., 2000, The Nutrition of fish in the Curonian Lagoon and the coastal zone of the Baltic Sea, Acta Zool. Lituan., 10 (4), 60-73.
Bučas M., Daunys D., Olenin S., 2009, Recent distribution and stock assessment of the red alga Furcellaria lumbricalis on an exposed Baltic Sea coast: combined
use of field survey and modelling methods, Oceanologia, 51 (3), 1-19.
Collin A., Archambault P., Long B., 2011, Predicting species diversity of benthic communities within turbid nearshore using full-waveform
bathymetric LiDAR and machine learners, PLoS ONE, 6 (6), e21265,
http://dx.doi.org/10.1371/journal.pone.0021265
Didžiulis V., 1999, Pagrindinės makrozoobentosinių organizmų bendrijų charakteristikos LEZ ir jų reikšmė upinės plekšnės (Platichthys flesus trachurus) mitybai ir jupaplitimui, Pajūrio regiono ekologija, 36-39.
Ellis J., Ysebaert T., Hume T., Norkko A., Bult T., Herman P., Thrush S., Oldman J., 2006, Predicting macrofaunal species distributions in estuarine gradients
using logistic regression and classification systems, Mar. Ecol. Prog. Ser., 316, 69-83.
Gelumbauskaitė L.Ž., Grigelis A., Cato I., Repečka M., Kjellin B., 1999, Bottom sediment maps of the central Baltic Sea, Scale 1:500,000. A short description, LGT Ser. Marine Geol. Maps No. 1, SGU Ser. Geol. Maps Ba No. 54, Vilnius-Uppsala.
Gogina M., Zettler M. L., 2010, Diversity and distribution of benthic macrofauna in the Baltic Sea: data inventory and its use for species distribution modelling
and prediction, J. Sea Res., 64, 313-321,
http://dx.doi.org/10.1016/j.seares.2010.04.005
Hansen I. S., Keul N., Sorensen J.T., Erichsen A., Andersen J.H., 2007, Baltic Sea oxygen maps, BALANCE Interim Report No. 17.
He P., 1991, Swimming endurance of the Atlantic cod, Gadus morhua L., at low temperatures, Fish. Res., 12 (1), 65-73,
http://dx.doi.org/10.1016/0165-7836(91)90050-P
Hiscock K., Tyler-Walters H., 2006, Assessing the sensitivity of seabed species and biotopes - the Marine Life Information Network (MarLIN), Hydrobiologia,
555 (1), 309-320,
http://dx.doi.org/10.1007/s10750-005-1127-z
Hyslop E. J., 1980, Stomach contents analysis - a review of methods and their applications, J. Fish. Biol., 17 (4), 411-429,
http://dx.doi.org/10.1111/j.1095-8649.1980.tb02775.x
Järvekülg A., 1979, Bottom fauna of the Eastern part of the Baltic Sea. (Donnaja fauna vosochnoj chasti Baltijskogo morja), Valgus, Tallinn, (in Russian), 324 pp.
Kremen C., Ostfeld R. S., 2005, A call to ecologists: measuring, analyzing, and managing ecosystem services, Front. Ecol. Environ., 3 (10), 540-548.
Liaw A., Wiener M., 2002, Classification and regression by random forest, R News, 2/3, 18-22,
http://dx.doi.org/10.1890/1540-9295(2005)003[0540:ACTEMA]2.0.CO;2
Macdonald J. S., Waiwood K.G., Green R.H., 1982, Rates of digestion of different prey in Atlantic cod (Gadus morhua), ocean pout (Macrozoarces americanus),
winter flounder (Pseudopleuronectes americanus), and American plaice (Hippoglossoides platessoides), Can. J. Fish. Aquat. Sci., 39 (5), 651-659
http://dx.doi.org/10.1139/f82-094
McArthur M.A., Brooke B.P., Przeslawski R., Ryan D.A., Lucieer V. L., Nichol S., McCallum A.W., Mellin C., Cresswell I.D., Radke L.C., 2010, On the use
of abiotic surrogates to describe marine benthic biodiversity, Estuar. Coast. Shelf Sci., 88 (1), 21-32,
http://dx.doi.org/10.1016/j.ecss.2010.03.003
Mulicki Z., 1947, Odżywianie się storni (Pleuronectes flesus L.) w Zatoce Gdańskiej (Food and feeding habit of the flounder [Pleuronectes flesus L.] in the Gulf of
Gdańsk), Arch. Hydrobiol. Ryb., 13, 221-259.
Ojaveer H., Jaanus A., MacKenzie B.R., Martin G., Olenin S., Radziejewska T., Telesh I., Zettler M. I., Zaiko A., 2010, Status of biodiversity in the Baltic Sea,
PLoS ONE, 5 (9), e12467,
http://dx.doi.org/10.1371/journal.pone.0012467
Olenin S., 1997, Benthic zonation of the Eastern Gotland Basin, Neth. J. Aquat. Ecol., 30 (4), 265-282,
http://dx.doi.org/10.1007/BF02085871
Ostrowski J., 1997, Odżywianie się storni (Pleuronectes flesus L.) w południowym Bałtyku w 1996 i 1997. (Diet of the flounder [Pleuronectes flesus L.] in the
southern Baltic in 1996-1997), Rep. Sea Fish. Inst., Gdynia, 237-247.
Potts J.M., Elith J., 2006, Comparing species abundance models, Ecol. Model., 199, 153-163,
http://dx.doi.org/10.1016/j.ecolmodel.2006.05.025
Quinn G.P., Keough M. J., 2002, Experimental design and data analysis for biologists, Cambridge Univ. Press, Cambridge, 520 pp,
http://dx.doi.org/10.1017/CBO9780511806384
Repečka M., Gelumbauskaitė Ž., Grigelis A., Šimkevičius P., Radzevičius R., Monkevičius A., Bubinas A., Kasperovičienė J., Gadeikis S., 1997, Valstybinis jurinis geologinis kartografavimas 1:50 000 masteliu Klaipėdos-šventosios akvatorijoje. I objektas, Lietuvos geologijos tarnyba, Lietuvos geologijos institutas, Vilnius, 227 pp.
Rosenberg R., Blomqvist M., Nilsson H.C., Cederwall H., Dimming A., 2004, Marine quality assessment by use of benthic species-abundance distributions:
a proposed new protocol within the European Union Water Framework Directive, Mar. Pollut. Bull., 49 (9-10), 728-739,
http://dx.doi.org/10.1016/j.marpolbul.2004.05.013
Sanchirico J.N., Mumby P., 2009, Mapping ecosystem functions to the valuation of ecosystem services: implications of species-habitat associations for coastal
land-use decisions, Theor. Ecol., 2, 67-77,
http://dx.doi.org/10.1007/s12080-008-0034-0
Santos J., Jobling M., 1991, Factors affecting gastric evacuation in cod, Gadus morhua L., fed single-meals of natural prey, J. Fish. Biol., 38 (5), 697-713,
http://dx.doi.org/10.1111/j.1095-8649.1991.tb03159.x
Snelgrove P.V.R., 1998, The biodiversity of macrofaunal organisms in marine sediments, Biodivers. Conserv., 7 (9), 1123-1132,
http://dx.doi.org/10.1023/A:1008867313340
Thrush S. F., Pridmore R.D., Hewitt J.E., 1994, Impacts on soft-sediment macrofauna: the effects of spatial variation on temporal trends, Ecol. Appl.,
4 (1), 31-41,
http://dx.doi.org/10.2307/1942112
Tomczak M.T., Müller-Karulis B., Järv L., Kotta J., Martin G., Minde A., Põllumäe A., Razinkovas A., Strake S., Bucas M., Blenckner T., 2009, Analysis of trophic networks and carbon flows in South Eastern Baltic costal ecosystems, Prog. Oceanogr., 81 (1-4), 111-131,
http://dx.doi.org/10.1016/j.pocean.2009.04.017
Troy A., Wilson M.A., 2006, Mapping ecosystem services: Practical challenges and opportunities in linking GIS and value transfer, Ecol. Econ., 60, 435-449,
http://dx.doi.org/10.1016/j.ecolecon.2006.04.007
Tyler A.V., 1970, Rates of gastric emptying in young cod, J. Fish. Res. Board Can., 27 (7), 1177-1189. Urtans E., 1992, Feeding daily rhythm of eelpout (Zoarces viviparus (L.)) in the Gulf of Riga, ICES CM 1992/J:28, 12 pp., (mimeo).
Uzars D., 2000, Variation in environmental conditions, feeding and growth of cod in the Eastern Baltic, ICES CM 2000/Q10, 1-9.
Wei C. L., Rowe G.T., Escobar-Briones E., Boetius A., Soltwedel T., et al., 2010, Global patterns and predictions of seafloor biomass using random forests, PLoS
ONE, 5 (12), e15323,
http://dx.doi.org/10.1371/journal.pone.0015323
Wentworth C.K., 1922, A scale grade and class terms for clastic sediments, J. Geol., 30 (5), 377-392,
http://dx.doi.org/10.1086/622910
Węsławski J.M.,Warzocha J.,Wiktor J., Urbański J., Radtke K., Kryla L., Tatarek A., Kotwicki L., Piwowarczyk J., 2009, Biological valorisation of the southern Baltic Sea (Polish Exclusive Economic Zone), Oceanologia, 51 (3), 415-435,
http://dx.doi.org/10.5697/oc.51-3.415
Willems W., Goethals P., Van den Eynde D., Van Hoey G., Van Lancker V., Verfaillie E., Vincx M., Degraer S., 2008, Where is the worm? Predictive
modelling of the habitat preferences of the tube-building polychaete Lanice conchilega, Ecol. Model., 212, 74-79,
http://dx.doi.org/10.1016/j.ecolmodel.2007.10.017