Oceanologia No. 54 (2) / 12
Contents
Papers
-
A study of episodic events in the Baltic Sea - combined in situ and satellite observations:
Elżbieta Łysiak-Pastuszak, Maria Bartoszewicz, Katarzyna Bradtke, Mirosław Darecki, Natalia Drgas,
Piotr Kowalczuk, Wojciech Kraśniewski, Adam Krężel, Włodzimierz Krzymiński, Łukasz Lewandowski,
Hanna Mazur-Marzec, Bogusz Piliczewski, Sławomir Sagan, Katarzyna Sutryk, Barbara Witek
-
Numerical modelling of an oil spill in the northern Adriatic:Goran Lončar, Nenad Leder, Marin Paladin
-
Motion of water and sediment due to non-breaking waves in the swash zone: Jarosław Kapiński, Rafał Ostrowski
-
Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available meteorological, hydrological and ocean data: Mohamed Shaltout, Anders Omstedt
-
Variation of the cold intermediate water in the Black Sea exit of the Strait of Istanbul (Bosphorus) and its transfer through the strait: Hüsne Altiok, Halil İbrahim Sur, Hüseyin Yüce
-
Phytoplankton size structure and species composition as an indicator of trophic status in transitional ecosystems:
the case study of a Mediterranean fjord-like karstic bay: Sunčica Bosak, Tina Šilović, Zrinka Ljubešić, Grozdan Kušpilić, Branka Pestorić, Sladana Krivokapić, Damir Viličić
-
The link between shrimp farm runoff and blooms of toxic Heterosigma akashiwo in Red Sea coastal waters:
Zakaria A. Mohamed, Abdulrahman M. Al-Shehri
-
Tracing the signature of various frontal systems in stable isotopes (oxygen and carbon) of the planktonic foraminiferal species Globigerinabulloides in the Southern Ocean (Indian Sector):
Neloy Khare, Subodh Kumar Chaturvedi
-
A huge biocatalytic filter in the centre of Barents Sea shelf?:
Jan Marcin Węsławski, Monika Kędra, Joanna Przytarska, Lech Kotwicki, Ingrid Ellingsen, Jofrid Skardhamar,
Paul Renaud, Ilona Goszczko
Papers
A study of episodic events in the Baltic Sea - combined in situ and satellite observations
Oceanologia 2012, 54(2), 121-141
http://dx.doi.org/10.5697/oc.54-2.121
Elżbieta Łysiak-Pastuszak1,*, Maria Bartoszewicz2, Katarzyna Bradtke3, Mirosław Darecki4, Natalia Drgas1, Piotr Kowalczuk4, Wojciech Kraśniewski1, Adam Krężel3, Włodzimierz Krzymiński1, Łukasz Lewandowski1,
Hanna Mazur-Marzec3, Bogusz Piliczewski1, Sławomir Sagan4, Katarzyna Sutryk3, Barbara Witek3
1Institute of Meteorology and Water Management - Maritime Branch,
Jerzego Waszyngtona 42,Gdynia 81-342, Poland;
e-mail: Elzbieta.Lysiak-Pastuszak@imgw.pl
*corresponding author
2Institute of Marine and Tropical Medicine,
Medical University of Gdańsk,
Powstania Styczniowego 9b,Gdynia 81-519, Poland
3Institute of Oceanography, University of Gdańsk,
aleja Marszałka Piłsudskiego 46, Gdynia 81-378, Poland
4Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland
keywords:
Baltic Sea, Ferry Box, algal blooms, hepatotoxins, satellite imagery
Received 14 March 2011, revised 24 February 2012, accepted 27 February 2012.
The project was financed by the National Centre for Research and Development (NCBiR) of Poland as contract No. 14-0004-04.
Abstract
A project was developed concerning the operational system of surveillance and the recording of episodic events in the Baltic Sea.
In situ information was to be combined with multi-sensory satellite imagery to determine the extent of algal blooms, to track their evolution and that of rapid environmental events like hydrological fronts. The main element of the system was an autonomous Ferry Box module on a ferry operating between Gdynia and Karlskrona, automatically measuring temperature, salinity and chlorophyll a fluorescence. At pre-selected locations, discrete water samples were collected, which were subsequently analysed for their phytoplankton content, and algal hepato- and neurotoxins;
they were also used in toxicity tests with Artemia franciscana.
References
Artoxkit M, 1990, Artemia Toxicity Screening Test for Estuarine and Marine Waters. Standard Operational Procedure, Cerasel, Belgium, 22 pp.
Belkin I. M., O'Reilly J. E., 2009, An algorithm for oceanic front detection in chlorophyll and SST satellite imagery, J. Marine Syst., 78 (3), 319-326.
http://dx.doi.org/10.1016/j.jmarsys.2008.11.018
Carmichael W. W., 1992, Cyanobacterial secondary metabolites - the cyanotoxins, J. Appl. Bacteriol., 72 (6), 445-459, http://dx.doi.org/10.1111/j.1365-2672.1992.tb01858.x.
http://dx.doi.org/10.1111/j.1365-2672.1992.tb01858.x
Cayula J.-F., Cornillon P., 1992, Edge detection algorithm for SST images,J. Atmos. Ocean. Technol., 9 (1), 67-80.
http://dx.doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
Darecki M., Kaczmarek S., Olszewski J., 2005, SeaWiFS chlorophyll algorithms for the Southern Baltic, Int. J. Remote Sens., 26 (2), 247-260.
http://dx.doi.org/10.1080/01431160410001720298
Darecki M., Stramski D., 2004, An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea, Remote Sens. Environ., 89 (3), 326-350.
http://dx.doi.org/10.1016/j.rse.2003.10.012
Doerel K., 1989, Statystyka dla chemików analityków (Statistik in der analytischen Chemie), WNT, Warszawa, 120-122.
Edler L., Fernö S., Lind M. G., Lundberg R., Nilsson P. O., 1985, Mortality of dogs associated with a bloom of the cyanobacterium Nodularia spumigena in the Baltic Sea, Ophelia, 24 (2), 103-109.
Falconer I. R., Bartram J., Chorus I., Kuiper-Goodman T., Utkilen H., Burch M., Codd G. A., 1999, Safe levels and safe practices, [in:] Toxic cyanobacteria in water, I. Chorus & J. Bartram (eds.), E. and F. N. Spon, London, 155-178.
Finni T., Konnonen K., Olsonen R., Wallström K., 2001, The history of cyanobacterial blooms in the Baltic Sea, Ambio, 30, 172-178.
GOOS, 2005, An implementation strategy for the coastal module of the Global Ocean Observing System, GOOS Rep. No. 148, IOC Information Documents Series No. 1217, UNESCO.
HELCOM, 1997, Manual for marine monitoring in the COMBINE programme of HELCOM, Balt. Mar. Environ. Prot. Commiss., Helsinki, [http://sea.helcom.fi/Monas/CombineManual2/CombineHome.htm].
HELCOM, 2009, Eutrophication in the Baltic Sea - An integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region, Balt. Sea Environ. Proc., 115B, 148 pp.
Jamet C., Hubert H., Kuchinke C. P., Ruddick K., Zibordi G., Feng H., 2011, Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements, Remote Sens. Environ., 115, 1955-1965.
http://dx.doi.org/10.1016/j.rse.2011.03.018
Kahru M., Horstmann U., Rud O., 1994, Satellite detection of increased cyanobacteria blooms in the Baltic Sea: natural fluctuation or ecosystem change?, Ambio, 23, 469-472.
Kahru M., Leppänen J.-M., 1991, Monitoring the Baltic Sea from ferry lines (1991), BALTNEWS 2, 5-6, [http://cgi.vtt.fi/progs/inf/balticOAI].
Kankaanpää H., Sjövall O., Huttunen M., Olin M., Karlsson K., Hyvärinen K., Sneitz L., Härkönen J., Sipiä V. O., Meriluoto J. A. O., 2009, Production and sedimentation of peptide toxins nodularin-R and microcystinLR in the northern Baltic Sea, Environ. Pollut., 157 (4), 1301-1309,
http://dx.doi.org/10.1016/j.envpol.2008.11.044
Kowalewski M., Krężel A., 2004, System of automatic registration and geometric correction of AVHRR data, Arch. Fotogram., Kartogr. Teledet., XIIIb, 397-407, (in Polish).
Kraśniewski W., Łysiak-Pastuszak E., Piątkowska Z., 2010, Phytoplankton - community structure, biomass and abundance, [in:] Southern Baltic Sea - environmental conditions in 2008, M. Miętus, E. Łysiak-Pastuszak, T. Zalewska & W. Krzymiński (eds.), IMGW-OM, (Inst. Meteorol. Water Management, Maritime Branch), Gdynia, 89-94, (in Polish with English subtitles and summary).
Krężel A., Paszkuta M., 2011, Automatic detection of cloud cover over the Baltic Sea, J. Atmos. Ocean. Tech., 28 (9), 1117-1128,
http://dx.doi.org/10.1175/JTECH-D-10-05017.1
Mather P. M., 2004, Computer processing of remotely-sensed images, Wiley, Chichester, England, 324 pp.
Mazur-Marzec H., Krężel A., Kobos J., Pliński M., 2006, Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gdańsk: a ten-year survey, Oceanologia, 48 (2), 255-273.
Mazur-Marzec H., Pliński M., 2009, Do toxic cyanobacteria blooms pose a threat to the Baltic ecosystem?, Oceanologia, 51 (3), 293-319.
Meriluoto J., Codd A. G. (eds.), 2005, Toxic cyanobacterial monitoring and cyanotoxin analyses, Acta Acad. Aboensis, B 65 (1), Abo Akad. Univ. Press, Åbo, 149 pp.
Miętus M., Łysiak-Pastuszak E., Zalewska T., Krzymiński W. (eds.), 2011, Southern Baltic Sea - environmental conditions in 2008, IMGW-OM (Inst. Meteorol. Water Management, Maritime Branch), Gdynia, (in Polish with English subtitles and summary), (in press).
NOAA, 2003, NOAA KLM User's Guide, Appendix G.3, [http://www2.ncdc.noaa.gov/docs/klm/g/app-g3.htm].
Olli K., Klais R., Tamminen T., Ptacnik R., Andersen T., 2011, Long term changes in the Baltic Sea phytoplankton community, Boreal Environ. Res., 16 (suppl. A), 3-14.
O'Reilly J., Maritonera S., Siegel D., O'Brien M., Toole D., Mitchell B., Kahru M., Chavez F., Strutton P., Cota G., Hooker S., McClain C., Carder K., MüllerKarger F., Harding L., Magnuson A., Phinney D., Moore G., Aiken J., Arrigo K., Letelier R., Cuiver M., 2000, Ocean color chlorophyll-a algorithms for SeaWiFS, OC2 and OC4: version 4, SeaWiFS Postlaunch Technical Report Series, Vol. 11, S. B. Hooker & E. R. Firestone (eds.), NASA Tech. Memo. 2000-206892, Part 2, SeaWiFS Tech. Rep. Ser., NASA Goddard Space Flight Center, Greenbelt, Maryland, 9-23.
Persoone G., Marsalek B., Blinova I., Törökne A., Zarina D., Manusadzianas L., Nalecz-Jawecki G., Tofan L., Stepanova N., Tothova L., Kolar B., 2003, A practical and user-friendly toxicity classiffcation system with microbiotests for natural waters and wastewaters, Environ. Toxicol., 18 (6), 395-402.
http://dx.doi.org/10.1002/tox.10141
Petersen W., Colijn F., Elliot J., Howarth M. J., Hydes D. J., Kaitala S., Kontoyiannis H., Lavin A., Lips I., Pfeiffer K. D., Proctor R., Ridderinkhof H., Sorensen K., 2006, European FerryBox project: from online oceanographic measurements to environmental information, [in:] European operational oceanography: present and future, H. Dahlin et al. (eds.), Proceedings of the 4th EuroGOOS Conference, 6-9 June 2005, Brest, France, [ISBN 92-894-9722-2], 551-560.
Ponsar S., Andreau-Burillo I., Luyten P., 2006, Sea surface temperature assimilation in a high resolution model of the North Sea, [in:] European operational oceanography: present and future, H. Dahlin et al. (eds.), Proceedings of the 4th EuroGOOS Conference, 6-9 June 2005, Brest, France, [ISBN 92-894-9722-2], 719724.
Pulliainen J., Vepsäläinen J., Kaitala S., Kallio K., Rantajärvi E., Koponen S., 2003, Spatial mapping of chlorophyll concentration in the Baltic Sea through the assimilation of satellite data and with ship-of-opportunity observations, ICES Annual Science Conference 2003, 24-27 September 2003, Tallinn (Estonia), ICES ASC, CM/L:13.
Reinhart K. L., Harada K. I., Namikoshi M., Chen C., Harvis C. A., Munro M. H. G., Blunt J. W., Mulligan P. E., Beasley V. R., Dahlem A. M., Carmichael W. W., 1988, Nodularin, microcystin, and the con?guration of Adda, J. Am. Chem. Soc., 110 (25), 8557-8558.
http://dx.doi.org/10.1021/ja00233a049
Rantajärvi E. (ed.), 2003, Alg@line in 2003: 10 years of innovative plankton monitoring and research and operational information service in the Baltic Sea, Meri, Rep. Ser. Finn. Inst. Marine Res. No. 48, 55 pp.
Sivonen K., Jones G., 1999, Cyanobacterial toxins, [in:] Toxic cyanobacteria in water: a guide to their public health consequences, I. Chorus & J. Bartram (eds.), E. and F. N. Spon, London, 41-111.
Stumpf R. P., Arnone R. A., Gould R. W., Martinolich P. M., Ransibrahmanakul V., 2003, A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters, SeaWiFS Postlaunch Technical Report Series, Vol. 22, S. B. Hooker & E. R. Firestone (eds.), NASA Tech. Memo. 2000-206892, SeaWiFS Tech. Rep. Ser., NASA Goddard Space Flight Center, Greenbelt, Maryland, 51-59.
Suikanen S., Fistarol G. O., Gran´elli E., 2004, Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon os-aquae and Anabena lemmermannii on algal monocultures, J. Exp. Mar. Biol. Ecol., 308 (1), 85-101.
http://dx.doi.org/10.1016/j.jembe.2004.02.012
SMHI, 2008, AlgAware, online: http://www.smhi.se/oceanografi/oce_info_data/reports/algsit08
Vaiciute D., Olenina I., 2009, Chlorophyll-a versus phytoplankton biomass: do they show the same water quality?, BSSC 2009 Abstract Book, August 17-21, 2009, Tallinn, Estonia, O130, p. 155.
Wasmund N., 1997, Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions, Int. Rev. Ges. Hydrobiol., 82, 177-186.
http://dx.doi.org/10.1002/iroh.19970820205
Wasmund N., 2002, Harmful algal blooms in coastal waters of the south-eastern Baltic Sea, [in:] Baltic coastal ecosystems: structure, function and coastal zone management, G. Schernewski & U. Schiewer (eds.), Springer, Berlin, 93-116.
Wasmund N., Uhlig S., 2003, Phytoplankton trends in the Baltic Sea, ICES J. Mar. Sci., 60 (2), 177-186,
http://dx.doi.org/10.1016/S1054-3139(02)00280-1
Woźniak B., Krężel A., Darecki M., Woźniak S. B., Majchrowski R., Ostrowska M., Kozłowski Ł., Ficek D., Dera J., 2008, Algorithm for the remote sensing Oceanologia, 50 (4), 451-508.
Wrzołek L., 1996, Phytoplankton in the Gdańsk Basin in 1979-1993, Oceanol. Stud., 1-2, 87-100.
Numerical modelling of an oil spill in the northern Adriatic
Oceanologia 2012, 54(2), 143-173
http://dx.doi.org/10.5697/oc.54-2.143
Goran Lončar1, Nenad Leder2, Marin Paladin3
1Water Research Department, University of Zagreb,
Kaciceva 26, Zagreb 10000, Croatia;
e-mail: goran.loncar@grad.hr,
marin.paladin@grad.hr
2Hydrographic Institute of the Republic of Croatia,
Zrinsko-Frankopanska 161, Split 21000, Croatia;
e-mail: nenad.leder@hhi.hr
keywords:
oil spill, numerical model, northern Adriatic
Received 21 December 2011, revised 15 March 2012, accepted 5 April 2012.
Abstract
Hypothetical cases of oil spills, caused by ship failure in the northern Adriatic,
are analysed with the aim of producing three-dimensional models of sea circulation
and oil contaminant transport. Sea surface elevations, sea temperature and salinity
fields are applied as a forcing argument on the model's open boundaries.
The Aladin-HR model with a spatial resolution of 8 km and a time interval of 3
hours is used for atmospheric forcing. River discharges along the coastline in
question are introduced as point source terms and are assumed to have zero
salinity at their respective locations. The results of the numerical modelling
of physical oceanography parameters are validated by measurements carried out in
the "Adriatic Sea monitoring programme" in a series of current meter and CTD
stations in the period from 1 January 2008 to 15 November 2008.
The oil spill model uses the current field obtained from a circulation model.
Besides the convective dispersive transport of oil pollution (Lagrangian model of
discrete particles), the model takes into account a number of reactive processes
such as emulsification, dissolution, evaporation and heat balance
between the oil, sea and atmosphere. An actual event took place on 6 February 2008,
when the ship "Und Adriyatik" caught fire in the vicinity of the town of Rovinj (Croatia)
en route from Istanbul (Turkey) to Trieste (Italy). At the time the fire broke out,
the ship was carrying around 800 tons of oil. Thanks to the rapid intervention
of the fire department, the fire was extinguished during the following 12 hours,
preventing possible catastrophic environmental consequences. Based on this occurrence,
five hypothetical scenarios of ship failure with a consequent spill of 800 tons
of oil over 12 hours were analysed. The main distinction between the simulated
scenarios is the time of the start of the oil spill, corresponding to the times
when stronger winds were blowing (> 7 m s-1) with a minimum duration
of 24 h within the timeframe.Each scenario includes a simulation of oil transport
for a period of two months after the beginning of the oil spill.
The results show that the coastal belt between the towns of Porec and Rovinj
is seriously exposed to an oil pollution load, especially a few days after a strong and persistent bora (NE wind).
References
Acta Adriatica, 2006, 47 (Suppl.), 1-266, [http://jadran.izor.hr/acta/eng/].
Andročec V., Beg-Paklar G., DadićV., Djakovac T., Grbec B., Janeković I., KrstulovićN., Kupilić G., Leder N., Lončar G., MarasovićI., Precali R., ĄSolić M., 2009, The Adriatic Sea Monitoring Program - Final Report, MCEPP, Zagreb, Croatia.
Beg Paklar G., BajićA ., Dadić V., Grbec B., Orlić M., 2005, Bora-induced currents corresponding to different synoptic conditions above the Adriatic,
Ann. Geophys., 23, 1083-1091.
http://dx.doi.org/10.5194/angeo-23-1083-2005
Bird R. B., Steward W. E., Lightfoot N. E., 1960, Transport Phenomena, Wiley and Sons, New York, 780 pp.
Bretherton F.P., Fauday C.B., 1976, A technique for objective analysis and design ofo ceanographic experiments applied to MODE-73, Deep-Sea Res., 23, 559-582.
Brzović N ., 1999, Factors affecting the Adriatic cyclone and associated windstorms, Contribut. Atmos. Phys., 72, 51-65.
Brzović N ., Strelec-Mahović N., 1999, Cyclonic activity and severe jugo in the Adriatic, Phys. Chem. Earth Pt. B, 24, 653-657.
CMFMWOS, 1985, Computer model forecasting movements and weathering of oil spills - final report for the European Economic Community, WQI & DHI.
CONCAWE, 1983, Characteristics ofp etroleum and its behaviour at sea, Report No. 8/83, CONCAWE, Den Haag, 112 pp.
Cordoneanu E., Geleyn J.F., 1998, Application to local circulation above the Carpathian-Black Sea area ofa NWP-type meso-scale model, Contrib. Atmos. Phys., 71, 191-212.
Courtier P.C., Freydier J.F., Geleyn F., Rochas M., 1991, The ARPEGE project at METEO-FRANCE, Proceedings from the ECMWF workshop on numerical methods in atmospheric models, 9-13 September 1991, 2, 193-231.
Cushman-Roisin B., Gačic M., Poulain P.-M., Artegiani A., 2001, Physical oceanography oft he Adriatic Sea: past, present and future, Kluwer Acad., Norwell, Mass, 304 pp.
Cushman-Roisin B., Korotenko K.A., 2007, Mesoscale-resolving simulations of summer and winter bora events in the Adriatic Sea, J. Geophys. Res., 112 (C11),
http://dx.doi.org/10.1029/2006JC003516
Cushman-Roisin B., Korotenko K., Galos C., Dietrich D., 2007, Simulation and characterization oft he Adriatic Sea mesoscale variability, J. Geophys. Res.,
112 (C03S14),
http://dx.doi.org/10.1029/2006JC003515
Delvigne G.A. L., Sweeney C. E., 1988, Natural dispersion ofoil , Oil Chem. Pollut., 4 (4), 281-310,
http://dx.doi.org/10.1029/2006JC003516
DHI, 2005, Mike 3 flow model - user guide, DHI Water Environ. Soft., [www.dhigroup.com].
Duffie J.A., Beckmann W.A., 2006, Solar engineering ofth ermal processes, John Wiley & Sons, New Jersey, 893 pp.
Fay J., 1969, The spread ofoil slicks on a calm sea, [in:] Oil on the sea, D.P. Hoult (ed.), Plenum Press., New York, 53-63.
Fingas M., 2011, Oil spill science and technology, Elsevier-Gulf Prof. Publ., 1156 pp.
Flores H., Andreatta A., Llona G., Saavedra I., 1998, Measurements ofoil spill spreading in the wave tank using digital image processing, [in:] Oil and hydrocarbon spills - modelling, analysis and control, WIT Press, Southampton,
165-173.
Galos C., 2000, Seasonal circulation in the Adriatic Sea, M.S. thesis, Dartmouth Coll., Hanover, 127 pp.
Gardiner C.W., 1985, Handbook ofs tochastic methods: for physics, chemistry and natural science, Springer-Verlag, Berlin, 409 pp.
Guo W. J., Wang Y.X., 2009, A numerical oil spill model based on a hybrid method, Mar. Pollut. Bull., 58 (5), 726-734, http://dx.doi.org/10.1016/j.marpolbul.2008.12.015, PMid:19157462,
http://dx.doi.org/10.1016/j.marpolbul.2008.12.015
Hasselmann K., 1974, On spectral dissipation ofo cean waves due to white capping, Bound.-Lay. Meteorol., 6 (1-2), 107-127,
http://dx.doi.org/10.1007/BF00232479
Hossain K., Mackay D., 1980, Demoussifier - a new chemical for oil spill countermeasures, Spill Technol. Newsletter, 5 (6), 154-156.
IKU - Institut For Kontinentalsokkelundersogelser, 1984, The experimental oil spill in Haltenbanken 1982, IKU Publ. No. 112, Trondheim, Norway.
IHO - International Hydrographic Organization, 1953, Limits ofocea ns and seas, Spec. Publ. No. 28, 3rd edn., IMP Monegasque, Monte Carlo, 45 pp.
Ivatek-Šahdan S., Tudor M., 2004, Use ofhigh- resolution dynamical adaptation in operational suite and research impact studies, Meteorol. Z., 13 (2), 99-08, http://dx.doi.org/10.1127/0941-2948/2004/0013-0099.
http://dx.doi.org/10.1127/0941-2948/2004/0013-0099
JanekovićI ., BobanovićJ. , Kuzmić M., 2003, The Adriatic Sea M2 and K1 tides by 3D model and data assimilation, Estuar. Coast. Shelf Sci., 57 (5-6), 873-885.
JanekovićI ., Kuzmić M., 2005, Numerical simulation oft he Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207-3218.
JanekovićI ., Sikirić-Dutour M., 2007, Improving tidal open boundary conditions for the Adriatic Sea numerical model, Geophys. Res. Abstr., 9, 203-217,
http://dx.doi.org/10.5194/angeo-23-3207-2005
Kloeden P.E., Platen E., 1999, Numerical solution ofs tochastic differential equations, Springer-Verlag, Berlin, 636 pp.
Korotenko K., Bowman M., Dietrich D., 2010, High-resolution numerical model for predicting the transport and dispersal ofoil spilled in the Black Sea, Terr. Atmos.
Ocean. Sci., 21 (1), 123-136,
http://dx.doi.org/10.3319/TAO.2009.04.24.01(IWNOP)
Korotenko K., Mamedov R., Kontar A., Korotenko L., 2004, Particle tracking method in the approach for prediction of oil slick transport in the sea: modelling
oil pollution resulting from river input, J. Mar. Syst., 48 (1-4), 159-170,
http://dx.doi.org/10.1016/j.jmarsys.2003.11.023
Korotenko K., Mamedov R., Mooers C., 2001, Prediction oft he dispersal of oil transport in the Caspian Sea resulting from a continuous release, Spill Sci. Technol. Bull., 6 (5-6), 323-339, http://dx.doi.org/10.1016/S1353-2561(01)00050-0.
http://dx.doi.org/10.1016/S1353-2561(01)00050-0
Lamarre E., Melville W. K., 1991, Air entrainment and dissipation in breaking waves, Nature, 351, 469-472, http://dx.doi.org/10.1038/351469a0.
http://dx.doi.org/10.1038/351469a0
Lončar G., Ocvirk E., Andročec V., 2010, Comparison ofm odelled and measured surface wind waves, Gradevinar, 62 (3), 45-55.
Mackay D., Bruis I., Mascarenhas R., Peterson S., 1980, Oil spill processes and models, Environmental protection service publication No. EE-8, Canada.
Members of the ALADIN international team, 1997, The ALADIN project: mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research, WMO Bull., 46, 317-324
MorovićM ., Ivanov A., 2011, Oil Spill Monitoring in the Croatian Adriatic Waters: needs and possibilities, Acta Adriat., 52 (1), 45-56.
OrlićM., GačićM ., La Violette P. E., 1992, The currents and circulation of the Adriatic Sea, Oceanol. Acta, 15, 109-124.
OrlićM ., Kuzmić M., Pasarić Z., 1994, Response ofth e Adriatic Sea to the bora and sirocco forcing, Cont. Shelf Res., 14 (1), 91-116,
http://dx.doi.org/10.1016/0278-4343(94)90007-8
Owens E.H., Taylor E., Humphrey B., 2008, The persistence and character of stranded oil on coarse-sediment beaches, Mar. Pollut. Bull., 56 (1), 14-26,
http://dx.doi.org/10.1016/j.marpolbul.2007.08.020
Raicich F., 1996, On the fresh water balance of the Adriatic Sea, J. Mar. Syst., 9 (3-4), 305-319,
http://dx.doi.org/10.1016/S0924-7963(96)00042-5
Rodi W., 1987, Examples ofc alculation methods for flow and mixing in stratified fluids, J. Geophys. Res., 92 (C5), 5305-5328,
http://dx.doi.org/10.1029/JC092iC05p05305
Science of the Total Environment, 2005, 353 (1-3), 1-380, [http://www.journals.elsevier.com/science-of-the-total-environment/],
http://dx.doi.org/10.1016/j.scitotenv.2005.09.007
Smagorinsky J., 1993, Some historical remarks on the use ofn onlinear viscosities, [in:] Large eddy simulation ofc omplex engineering and geophysical flows, B. Galperin & S. Orszag (eds.), Cambridge Univ. Press, 1-34.
SupićN ., Orlić M., Degobbis D., 2000, Istrian Coastal Countercurrent and its year-to-year variability, Estuar. Coast. Shelf Sci., 51 (3), 385-397,
http://dx.doi.org/10.1006/ecss.2000.0681
Tkalich P., Chan E. S., 2002, Vertical mixing ofoil droplets by breaking waves, Mar. Pollut. Bull., 44 (11), 1219-1229,
http://dx.doi.org/10.1016/S0025-326X(02)00178-9
Wheeler R. B., 1978, The fate of petroleum in the marine environment, Exxon Prod. Res. Co., Houston, TX, 32 pp.
Wu J., 1994, The sea surface is aerodynamically rough even under light winds, Bound.-Lay. Meteorol., 69 (1-2), 149-158.
http://dx.doi.org/10.1007/BF00713300
Yang W. E., Wang H., 1977, Modelling ofoil evaporation in aqueous environment, Water Res., 11 (10), 879-887,
http://dx.doi.org/10.1016/0043-1354(77)90076-8
ZaninovićK., Gajić-čapka M., Perčec-Tadić M., 2008, Climate atlas of Croatia 1961-1990; 1971-2000, Meteorol. Hydrol. Service Croatia, Zagreb.
Zore-Armanda M., GačićM ., 1987, Effects ofB ora on the circulation in the North Adriatic, Ann. Geophys., 5B, 93-102.
Motion of water and sediment due to non-breaking waves in the swash zone
Oceanologia 2012, 54(2), 175-197
http://dx.doi.org/10.5697/oc.54-2.175
Jarosław Kapiński*, Rafał Ostrowski
Institute of Hydro-Engineering, Polish Academy of Sciences (IBW PAN),
Kościerska 7, Gdańsk 80-328, Poland;
e-mail: kapinski@ibwpan.gda.pl
*corresponding author
keywords:
wave run-up, swash zone, bed shear stress, sediment transport, bottom changes, beach face
Received 8 December 2011, revised 3 February 2012, accepted 14 February 2012.
The study was sponsored by the Ministry of Science and Higher Education,
Poland, within the framework of IBW PAN's statutory programme and national
research project N306 003 31/2, which are gratefully acknowledged.
Abstract
A long wave run-up theory is applied to the modelling of wave-induced flow
velocities, sediment transport rates and bottom changes in a swash zone.
First, the properties of the water tongue motion and the resulting
lithodynamic response are analysed theoretically. Next, an attempt is made to
run the model for the natural conditions encountered on the southern Baltic
Sea coast. The Lagrangian swash velocities are used to determine the Eulerian
phase-resolved bed shear stresses with a momentum integral method, after which
the motion of sand is described by the use of a two-layer model, comprising
bedload and nearbed suspended load. Seabed evolution is then found from the
spatial variability of the net sediment transport rates. The results presented
are limited to cases of the small-amplitude waves that seem to be responsible
for accretion on beaches.
References
Alsina J.M., Baldock T.E., Hughes M.G., Weir F., Sierra J.P., 2005, Sediment transport numerical modelling in the swash zone, Proc. Coastal Dynamics '05, ASCE (CD),
http://dx.doi.org/10.1061/40855(214)105
Baldock T.E., Alsina J.M., 2005, On the transport of suspended sediment by a swash event on a plane beach, Coast. Eng., 52 (9), 811-814,
http://dx.doi.org/10.1016/j.coastaleng.2005.06.003
Butt T., Russell P., 2000, Hydrodynamics and cross-shore sediment transport in the swash-zone of natural beaches: a review, J. Coast. Res., 16 (2), 255-268.
Deigaard R., 1993, Modelling of sheet flow: dispersion stresses vs. the diffusion concept, Prog. Rep. 74, Inst. Hydrodyn. Hydraul. Eng., Tech. Univ. Denmark, 65-81.
Fredsøe J., 1984, Turbulent boundary layer in combined wave-current motion, J. Hydraul. Eng.-ASCE, 110 (HY8), 1103-1120,
http://dx.doi.org/10.1061/(ASCE)0733-9429(1984)110:8(1103)
Kaczmarek L.M., Ostrowski R., 1998, Modelling of a three-layer sediment transport system in oscillatory flow, Proc. 26th ICCE, ASCE, 2559-2572.
Kaczmarek L.M., Ostrowski R., 2002, Modelling intensive near-bed sand transport under wave-current flow versus laboratory and field data, Coast. Eng., 45 (1), 1-18,
http://dx.doi.org/10.1016/S0378-3839(01)00041-2
Kapiński J., 2003, Lagrangian-Eulerian approach to modelling of wave transformation and flow velocity in the swash zone and its Seaward vicinity, Arch. Hydro-Eng. Environ. Mech., 50 (3), 165-192.
Kapiński J., 2006, On modelling of long waves in the Lagrangian and Eulerian description, Coast. Eng., 53 (9), 759-765,
http://dx.doi.org/10.1016/j.coastaleng.2006.03.009
Kapiński J., Kołodko J., 1996, Wave run-up on gentle slopes: a hybrid approach, Arch. Hydro-Eng. Environ. Mech., 43 (1-4), 79-89.
Keller J.B., Keller H.B., 1964, Water wave run-up on a beach, Res. Rep. No. NONR-3828(00), Office Naval Res., Dept. Navy, New York.
Kobayashi N., 1999,Wave runup and overtopping on beaches and coastal structures, Adv. Coast. Ocean Eng., 5, 95-154.
Kobayashi N., Johnson B.D., 2001, Sand suspension, storage, advection and settling in surf and swash zones, J. Geophys. Res., 106 (C5), 9363-9376,
http://dx.doi.org/10.1029/2000JC000557
Larson M., Kubota S., Erikson L., 2001, A model of sediment transport and profile evolution in the swash zone, Proc. Coastal Dynamics '01, ASCE, 908-917,
http://dx.doi.org/10.1061/40566(260)93
Masselink G., Puleo J.A., 2006, Swash zone morphodynamics, Cont. Shelf Res., 26 (5), 661-680,
http://dx.doi.org/10.1016/j.csr.2006.01.015
Nielsen P., 2002, Shear stress and sediment transport calculations for swash zone modelling, Coast. Eng., 45 (1), 53-60,
http://dx.doi.org/10.1016/S0378-3839(01)00036-9
Ostrowski R., 2003, A quasi phase-resolving model of net sand transport and shortterm cross-shore profile evolution, Oceanologia, 45 (2), 261-282.
Prasad R. S., Svendsen I.A., 2003, Moving shoreline boundary condition for nearshore models, Coast. Eng., 49 (4), 239-261,
http://dx.doi.org/10.1016/S0378-3839(03)00050-4
Pritchard D., Hogg A. J., 2003, On fine sediment transport by long waves in the swash zone of a plane beach, J. Fluid Mech., 493, 255-275,
http://dx.doi.org/10.1017/S0022112003005901
Pritchard D., Hogg A. J, 2005, On the transport of suspended sediment by a swash event on a plane beach, Coast. Eng., 52 (9), 1-23,
http://dx.doi.org/10.1016/j.coastaleng.2004.08.002
Pruszak Z., Zawadzka E., 2005, Vulnerability of Poland's coast to sea-level rise, Coast. Eng. J., 47 (2-3), 131-155,
http://dx.doi.org/10.1142/S0578563405001197
Shuto N., 1967, Run-up of long waves on a sloping beach, Coast. Eng. Japan, 10, 23-38.
Van Rijn L.C., Walstra D. J.R., Grasmeijer B., Sutherland J., Pan S., Sierra J.P., 2003, The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models, Coast. Eng., 47 (3), 295-327,
http://dx.doi.org/10.1016/S0378-3839(02)00120-5
Zelt J.A., Raichlen F., 1990, A Lagrangian model for wave-induced harbour oscillation, J. Fluid Mech., 213, 203-225,
http://dx.doi.org/10.1017/S0022112090002294
Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available eteorological, hydrological and ocean data
Oceanologia 2012, 54(2), 199-232
http://dx.doi.org/10.5697/oc.54-2.199
Mohamed Shaltout1,*, Anders Omstedt2
1Faculty of Science, Department of Oceanography,
University of Alexandria, Alexandria, Egypt;
currently:
Department of Earth Sciences, University of Gothenburg,
P.O. Box 460, Götenburg 40530, Sweden;
e-mail: mohamed.shaltout@gvc.gu.se
*corresponding author
2Department of Earth Sciences,
University of Gothenburg,
P.O. Box 460, Götenburg 40530, Sweden
keywords:
Mediterranean Sea, heat budget, water budget, Sicily Channel, climate
Received 11 October 2011, revised 25 January 2012, accepted 12 March 2012.
Abstract
Eastern Mediterranean water and heat balances were
analysed over 52 years. The modelling uses a process-oriented
approach resolving the one-dimensional equations of momentum,
heat and salt conservation; turbulence is modelled using a two-equation
model. The results indicate that calculated temperature and salinity
follow the reanalysed data well. The water balance in the Eastern
Mediterranean basin was controlled by the difference between inflows
and outflows through the Sicily Channel and by net precipitation.
The freshwater component displayed a negative trend over the study
period, indicating increasing salinity in the basin.
The heat balance was controlled by heat loss from the water surface, solar radiation
into the sea and heat flow through the Sicily Channel. Both solar radiation
and net heat loss displayed increasing trends, probably due to decreased
total cloud cover. In addition, the heat balance indicated a net import
of approximately 9 W m-2 of heat to the Eastern Mediterranean
Basin from the Western Basin.
References
Béranger K., Mortier L., Crépon M., 2002, Seasonal transport variability through Gibraltar, Sicily and Corsica Straits, The 2nd Meeting on the Physical Oceanography of Sea Straits, 15-19 April 2002 (pp. 77-81), Villefranche, France.
Bodin S., 1979, A predictive numerical model of the atmospheric boundary layer based on the turbulent energy equation, Norrkoping, Sweden: SMHI (Report: Meteorology and Climatology No. 13, SE-601 76).
Buongiorno Nardelli B., Cavalieri O., Rio, M.H., Santoleri R., 2006, Subsurface geostrophic velocities inference from altimeter data: Application to the Sicily Channel (Mediterranean Sea), J. Geophys. Res., 111, C04007,
http://dx.doi.org/10.1029/2005JC003191
Burchard H., Petersen O., 1999, Models of turbulence in the marine environment: a comparative study of two-equation turbulence models, J. Marine Syst., 21 (1-4), 29-53.
Ferjani D., Gana S., 2010, Seasonal circulation and mass flux estimates in the western Sicily Strait derived from a variational inverse section model, Deep-Sea Res. Pt. I, 57, 1177-1191.
Hasselmann S., Hasselmann K., Bauer E., Janssen P.A.E.M., Komen G. J., Bertotti L., Lionelli P., Guillome A., Cardone V.C., Greenwood J.A., Reistad M., Zambresky L., Ewing J.A., 1988, The WAM Model - a third generation
ocean wave prediction model, J. Phys. Oceanogr., 18 (12), 1775-1810.
Jerlov N.G., 1968, Optical oceanography, Oceanography Ser., Vol. 5, Elsevier, Amsterdam.
Launiainen J., 1995, Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux profiles, Bound.-Lay. Meteorol., 76 (1-2), 165-179,
http://dx.doi.org/10.1007/BF00710895
Ludwig W., Dumont E., Meybeck M., Heussner S., 2009, River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?, Prog. Oceanogr., 80 (3-4), 199-217,
http://dx.doi.org/10.1016/j.pocean.2009.02.001
Malanotte-Rizzoli P., Manca B., d'Alcala M., Theocharis A., Brenner S., Budillon G., Ozsoy E., 1999, The eastern Mediterranean in the 80s and in the 90s:
The big transition in the intermediate and deep circulations, Dynam. Atmos. Oceans, 29 (2-4), 365-395,
http://dx.doi.org/10.1016/S0377-0265(99)00011-1
Mariotti A., Struglia M., Zeng N., Lau K., 2002, The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea, J. Climate, 15, 1674-1690,
http://dx.doi.org/10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2
Nixon S.W., 2003, Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river?, Ambio, 32 (1), 30-39.
Omstedt A., 2011, Guide to process based modelling of lakes and coastal seas, Springer-Praxis books in Geophysical Sciences, Springer-Verlag, Berlin, Heidelberg,
http://dx.doi.org/10.1007/978-3-642-17728-6
Omstedt A., Axell L.B., 2003, Modeling the variations of salinity and temperature in the large gulfs of the Baltic Sea, Cont. Shelf. Res., 23 (3-4), 265-294,
http://dx.doi.org/10.1016/S0278-4343(02)00207-8
Omstedt A., Nohr C., 2004, Calculating the water and heat balances of the Baltic Sea using ocean modelling and available meteorological, hydrological and ocean data, Tellus, 56A, 400-414,
http://dx.doi.org/10.1111/j.1600-0870.2004.00070.x
Rixen J., Beckers M., Levitus S., Antonov J., Boyer T., Maillard C., Fichaut M., Balopoulos E., Iona S., Dooley H., Garca M. J., Manca B., Giorgetti A., Manzella G., Mikhailov N., Pinardi N., Zavatarelli M., 2005, The Western Mediterranean deep water: A proxy for climate change, Geophys. Res. Lett., 32, L12608,
http://dx.doi.org/10.1029/2005GL022702
Roether W., Schlitzer R., 1991, Eastern Mediterranean deep water renewal on the basis of chlorofluoromethane and tritium data, Dynam. Atmos. Oceans, 15, 333-354,
http://dx.doi.org/10.1016/0377-0265(91)90025-B
Romanou A., Tselioudis G., Zerefos C., Clayson C., Curry J., Andersson A., 2010, Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates, J. Climate, 23 (19), 5268-5287,
http://dx.doi.org/10.1175/2010JCLI3525.1
Skliris N., Sofianos S., Gkanasos A., Mantziafou A., Vervatis V., Axaopoulos P., Lascaratos A., 2012, Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability, Ocean Dynam., 62 (1), 13-30,
http://dx.doi.org/10.1007/s10236-011-0493-5
Skliris N., Sofianos S., Lascaratos A., 2007, Hydrological changes in the Mediterranean Sea in relation to changes in the freshwater budget: a numerical modelling study, J. Marine Syst., 65 (1-4), 400-416.
Sorgente R., Drago A. F., Ribotti A., 2003, Seasonal variability in the Central Mediterranean Sea circulation, Ann. Geophys., 21, 299-322.
Stanev E.V., Le Traon P.Y., Peneva E.L., 2000, Sea level variations and their dependency on meteorological and hydrological forcing: Analysis of altimeter and surface data for the Black Sea, J. Geoph. Res., 105, C7, 17203-17216.
Stanev E., Peneva E.L., 2002, Regional sea level response to global climatic change: Black Sea examples, Global Planet. Change, 32 (1), 33-47,
http://dx.doi.org/10.1016/S0921-8181(01)00148-5
Stansfield K., Smeed D. A., Gasparini G. P., 2002, The path of the overflows from the sills in the Sicily Strait, The 2nd Meeting on the Physical Oceanography of Sea Straits, 15-19 April 2002 (pp. 211-215), Villefranche, France.
Turkes M., 1996a, Meteorological drought in Turkey: a historical perspective, 1930-1993, Drought Network News, 8, 17-21, [http://digitalcommons.unl.edu/droughtnetnews/84].
Turkes M., 1996b, Spatial and temporal analysis of annual rainfall variations in Turkey, Int. J. Climatol., 16, 1057-1076.
Zervakis V., Georgopoulos D., Drakopoulos P., 2000, The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes, J. Geophys. Res., 105, C11, 26103-26116,
http://dx.doi.org/10.1029/2000JC900131
Variation of the cold intermediate water in the Black Sea exit of the Strait of Istanbul (Bosphorus) and its transfer through the strait
Oceanologia 2012, 54(2), 233-254
http://dx.doi.org/10.5697/oc.54-2.233
Hüsne Altiok*, Halil İbrahim Sur, Hüseyin Yüce
Institute of Marine Science and Management, Istanbul University,
Muskule sk. 1, Vefa Istanbul, Turkey;
e-mail: altiokh@istanbul.edu.tr
*corresponding author
keywords:
cold intermediate water, Strait of Istanbul, monthly variations, two-layered stratification
Received 12 August 2011, revised 1 March 2012, accepted 5 March 2012.
Abstract
The cold intermediate water (CIW, T < 8°C) entering the
Strait of Istanbul and its variation along the strait have been
studied by using monthly conductivity-temperature-depth (CTD)
data sets collected during the period from 1996 to 2000. In the
northern exit of the strait, CIW is located between the seasonal
thermocline and Mediterranean water originating from the lower
layer of the Sea of Marmara. The thickness of CIW decreases from
April to October. In the Strait of Istanbul, CIW is observed
as a layer of temperature < 14°C. The thickness of this
modified cold intermediate water flowing southwards with the
upper layer decreases, while its temperature increases along the
strait due to mixing with adjacent water. In the southern exit
of the strait, the modified cold intermediate water is observed
during the period from May to October. If CIW exists in the Black
Sea exit region of the strait, modified cold water is found in
the Marmara exit region during the same period. The distribution
of CIW in the Strait of Istanbul contributes to our understanding
of the dynamics of the strait, especially in the summer months.
References
Altiok H., Yüce H., Alpar B., 2000, Seasonal variation of the cold intermediate water in the Southwestern Black Sea and its interaction with the Sea ofMarmara during the period of 1996-1998, Mediterr. Mar. Sci., 1 (2), 31-40.
Altiok H., 2001, Istanbul Boğazi Karadeniz Çikişinda Su Kütlelerinin Mevsimsel Değişimi, Ph.D. thesis, Inst. Marine Sci. Manag., Istanbul Univ., (unpublished).
Andrianova O. R., Kholoptsev A. V., 1992, On water stratification in the western Black Sea, Oceanology, 32 (2), 234-240.
Beşiktepe Ş. T., Sur H. I., Özsoy E., Latif M. A., Oğuz T., Ünlüata Ü., 1994, The circulation and hydrography of the Marmara Sea, Prog. Oceanogr., 34 (4), 285-333,
http://dx.doi.org/10.1016/0079-6611(94)90018-3
Buesseler K. O., Livingston H. D., Casso S. A., 1991, Mixing between oxic and anoxic waters of the Black Sea as traced by Chernobyl cesium isotopes, Deep-Sea Res. Pt. A, 38 (Suppl. 2), 725.745,
http://dx.doi.org/10.1016/S0198-0149(10)80006-8
Di Iorio D., Yüce H., 1999, Observation of Mediterranean flow into the Black Sea, J. Geophys. Res., 104 (C2), 3091.3108,
http://dx.doi.org/10.1029/1998JC900023
Gregg M.C., Özsoy E., 1999, Mixing on the Black Sea shelf north of the Bosphorus, Geophys. Res. Lett., 26 (13), 1869.1872,
http://dx.doi.org/10.1029/1999GL900431
Ivanov L. I., Besiktepe S., ÖOzsoy E., 1997, The Black Sea cold intermediate layer, [in:] Sensitivity to change: Black Sea, Baltic Sea and North Sea, E. ÖOzsoy & A. Mikaelyan (eds.), NATO/ASI Ser., Kluwer Acad. Publ., Dordrecht, 253-264.
Konovalov S. K., Luther G. W., Friederich G. E., Nuzzio D. B., Tebo B. M., Murray J. W., Oguz T., Glazer B., Trouwborst R. E., Clement B., Murray K. J., Romanov A. S., 2003, Lateral injection of oxygen via mixing of water masses creates 'fingers'f of oxidizing potential in the Black Sea, Limnol. Oceanogr., 48 (6), 2369.2376,
http://dx.doi.org/10.4319/lo.2003.48.6.2369
Lampert C., Zessner M., Kroiss H., 2004, Danube study on pollution trading and corresponding economic instruments for nutrient reduction, [in:] Appendix 1: nutrient framework, Undp/Gef Danube Regional Project, NiRAS, Vienna Univ. Tech., 47 pp.
LatifM.A., Özsoy E., Oğuz T., Ünlüata Ü., 1991, Observation of the Mediterranean inflow into the Black Sea, Deep-Sea Res. Pt. A, 38 (Suppl. 2), 711-723,
http://dx.doi.org/10.1016/S0198-0149(10)80005-6
Oğuz T., Besiktepe S. T., 1999, Observations of the Rim Current structure, CIW formation and transport in the western Black Sea, Deep-Sea Res. Pt. I, 46 (10), 1733-1753,
http://dx.doi.org/10.1016/S0967-0637(99)00028-X
Oğuz T., Besiktepe S.T., Ivanov L. I., Diakonu V., 1998, On the ADCP derived Rim Current structure, CIW formation and the role of mesoscale eddies on the CIW transport in the Black Sea: results from April 1993 observations, [in:] Ecosystem modeling as a management tool for the Black Sea, Vol. 2, L. Ivanov & T. Oguz (eds.), NATO/ASI Ser., Kluwer Acad. Publ., Dordrecht, 93-118.
Oğuz T., La Violette P. E., Ünlüata U., 1992, The upper layer circulation of the Black Sea: its variability as inferred from hydrographic and satellite observations, J. Geophys. Res., 97 (C8), 12569-12584,
http://dx.doi.org/10.1029/92JC00812
Oğuz T., Özsoy E., Latif M., Sur H. I., Ünlüata Ü., 1990, Modeling of hydraulically controlled exchange flow in the Bosphorus Strait, J. Phys. Oceanogr., 20 (7), 945-965,
http://dx.doi.org/10.1175/1520-0485(1990)020<0945:MOHCEF>2.0.CO;2
Oğuz T., Rozman L., 1991, Characteristics of the Mediterranean underflow in the southwestern Black Sea continental shelf/slope region, Oceanologica Acta, 14, 433-444.
Ovchinnikov I. M., Popov Yu. I., 1987, Evolution of the cold intermediate layer in the Black Sea, Oceanology, 27, 555-560.
Özsoy E., Di Iorio D., Gregg M. C., Backhaus J. O., 2001, Mixing in the Bosphorus Strait and the Black Sea continental shelf: observations and a model of the dense water outflow, J. Marine Syst., 31 (1-3), 99-135,
http://dx.doi.org/10.1016/S0924-7963(01)00049-5
Özsoy E., Latif M.A., Besiktepe S., Çetin N., Gregg N., Belokopytov V., Goryachkin Y., Diaconu V., 1998, The Bosphorus Strait: exchange fluxes, currents and sea-level changes, [in:] Ecosystem modeling as a management tool for the Black Sea, L. I. Ivanov & T. Oguz (eds.), Vol. 1, NATO Sci. Ser. 2, Kluwer Acad. Publ., Dordrecht, 385 pp.
Özsoy E., Top Z., White G., Murray J., 1991, Double diffusive intrusions, mixing and deep sea convection processes in the Black Sea, [in:] The Black Sea oceanography, E. Izdar & J. M. Murray (eds.), NATO/ASI Ser., Kluwer Acad. Publ., Dordrecht, 17-42.
Özsoy E., Ünlüata Ü., Top Z., 1993, The evolution of Mediterranean water in the Black Sea: interior mixing and material transport by double diffusive intrusions, Prog. Oceanogr., 31 (1-3), 275-320,
http://dx.doi.org/10.1016/0079-6611(93)90004-W
Stanev E. V., 1990, On the mechanisms of the Black Sea circulation, Earth-Sci. Rev., 28 (4), 285-319,
http://dx.doi.org/10.1016/0012-8252(90)90052-W
Stanev E. V., Bowman M. J., Peneva E. L., Staneva J. V., 2003, Control of Black Sea intermediate water formation by dynamics and topography: comparisons of numerical simulations, survey and satellite data, J. Mar. Res., 61 (6), 59-99,
http://dx.doi.org/10.1357/002224003321586417
Sur H. I., Ilyin Y. P., 1997, Evolution of satellite derived mesoscale thermal patterns in the Black Sea, Prog. Oceanogr., 39 (2), 109-151,
http://dx.doi.org/10.1016/S0079-6611(97)00009-8
Sur H. I., Özsoy E., Ilyin Y. P., Ünlüata Ü., 1996, Coastal/deep ocean interactions in the Black Sea and their ecological/environmental impacts, J. Marine Syst., 7 (2-4), 293-320,
http://dx.doi.org/10.1016/0924-7963(95)00030-5
Sur H. I., Özsoy E., Ünlüata Ü., 1994, Boundary current instabilities, upwelling, shelf mixing and eutrophication processes in the Black Sea, Prog. Oceanogr., 33 (4), 249-302,
http://dx.doi.org/10.1016/0079-6611(94)90020-5
Tolmazin D., 1985, Changing coastal oceanography of the Black Sea, Progr. I: North-western shelf, Prog. Oceanogr., 15 (4), 217-276,
http://dx.doi.org/10.1016/0079-6611(85)90038-2
Trukhchev D. I., Stanev E. V., Balashov G. D., Miloshev G. D., Rusenov V. M., 1985, Unique features of the mesoscale structure of hydrological fields in the western part of the Black Sea, Oceanology, 25 (4), 443-449.
Tsimplis M. N., Josey S. A., Rixen M., Stanev E. V., 2004, On the forcing of sea level in the Black Sea, J. Geophys. Res., 109, C08015,
http://dx.doi.org/10.1029/2003JC002185
Ünlüata Ü., Oguz T., Latif M. A., Özsoy E., 1990, On the physical oceanography of the Turkish Straits, [in:] The physical oceanography of sea straits, L. J. Pratt (ed.), Kluwer Acad. Publ., Dordrecht, 25-60.
Yüce H., 1990, Investigation of the Mediterranean water in the Strait of Istanbul (Bosphorus) and the Black Sea, Oceanol. Acta, 13, 177-186.
Yüce H., 1996a, Mediterranean water in the Strait of Istanbul (Bosphorus) and the Black Sea exit, Estuar. Coast. Shelf Sci., 43 (5), 597-616,
http://dx.doi.org/10.1006/ecss.1996.0090
Yüce H., 1996b, On the variability of Mediterranean water flow into the Black Sea, Cont. Shelf Res., 16 (11), 1399-1413,
http://dx.doi.org/10.1016/0278-4343(95)00078-X
Phytoplankton size structure and species composition as an indicator of trophic status in transitional ecosystems:
the case study of a Mediterranean fjord-like karstic bay
Oceanologia 2012, 54(2), 255-286
http://dx.doi.org/10.5697/oc.54-2.255
Sunčica Bosak1,*, Tina Šilović2, Zrinka Ljubešić1, Grozdan Kušpilić3, Branka Pestorić4, Sladana Krivokapić5, Damir Viličić1
1Division of Biology, Faculty of Science, University of Zagreb,
Rooseveltov trg 6, Zagreb 10000, Croatia;
e-mail: sbosak@biol.pmf.hr
*corresponding author
2Center for Marine Research, Rudjer Boskovic Institute,
G. Paliage 5, Rovinj 52210, Croatia
3Institute of Oceanography and Fisheries,
Setaliste I. Mestrovica 63, Split 21000, Croatia
4Institute of Marine Biology,
P.O. Box 69, Kotor 85330, Montenegro
5Department of Biology, Faculty of Science, University of Montenegro,
Cetinjski put bb., Podgorica 81000, Montenegro
keywords:
phytoplankton size-fractions, species composition, picophytoplankton, trophic status, carbon biomass, Adriatic Sea
Received 15 November 2012, revised 16 February 2012, accepted 27 February 2012.
This study was funded by the Norwegian Cooperation Programme on Research and Higher Education with countries in the Western
Balkans: "Marine Science and Coastal Management in the Adriatic, Western Balkans. An education and research network (2006-2009)"
and by the Ministry of Science, Education and Sport of the Republic of Croatia (Project Nos. 119-1191189-1228, 098-0982705-2729
and 001-0013077-0845).
Abstract
The species composition and size-structure of the phytoplankton community in the Boka Kotorska Bay (SE Adriatic Sea) were analysed with respect to abundance and carbon biomass, together with the physico-chemical parameters, with the aim of evaluating the predefined oligo-mesotrophic
status of this transitional water ecosystem. Three stations located in the inner part of the Bay were sampled with seasonal frequency
in 2008/2009. Picophytoplankton cells were counted using flow cytometry; nanophytoplankton and microphytoplankton were identified
and counted by light microscopy. The relative importance of the picoplankton in the Bay, in terms of both abundance and biomass,
during all the investigated seasons emphasized their significance in the phytoplankton community. Picocyanobacteria (Synechococcus)
constituted a significant part of the summer assemblages with regard to both abundance (up to 3.38 × 108 cells L-1)
and carbon biomass (up to 73% of total phytoplankton carbon).
The contribution of the nanophytoplankton was found to be generally low (< 20% of the total phytoplankton carbon) in all seasons,
and was dominated by autotrophic/mixotrophic flagellates. Species with a preference towards nutrient-enriched conditions, like
the diatom Skeletonema marinoi, dominated the microphytoplankton fraction. S. marinoi was the most abundant in spring/winter
(up to 2.86 × 106 cells L-1) above the halocline (making a 96% contribution to the microphytoplankton). The potentially toxin-producing diatom Pseudo-nitzschia pseudodelicatissima was recorded at abundances greater than 105
cells L-1, together with Thalassionema frauenfeldii, as well as the dinoflagellates Prorocentrum micans and the potentially harmful P. minimum.The higher values of phytoplankton biomass and the dominance of phytoplankton species or groups with preferences for nutrient-enriched conditions appear to be consistent with the oligo-mesotrophic status of this specific ecosystem.
References
Balzano S., Sarno D., Kooistra W. H. C. F., 2011, Effects of salinity on the growth rate and morphology of ten Skeletonema strains, J. Plankton Res., 33 (6), 937-945,
http://dx.doi.org/10.1093/plankt/fbq150
Barlow R. G., Cummings D. G., Gibb S. W., 1997, Improved resolution of monoand divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC, Mar. Ecol.-Prog. Ser., 161, 303-307,
http://dx.doi.org/10.3354/meps161303
Bec B., Collos Y., Souchu P., Vaquer A., Lautier J., Fiandrino A., Benau L., Orsoni V., Laugier T., 2011, Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons, Aquat. Microb. Ecol., 63 (1), 29-45,
http://dx.doi.org/10.3354/ame01480
Bérard-Therriault L., Poulin M., Bossé L., 1999, Guide d'identification du phytoplancton marin de l'estuarie et du golfe du Saint-Laurent incluant également certains protozoaires, [Guide to the identifying marine
phytoplankton of the estuary and gulf of St. Lawrence including certain protozoans], Publ. Spéc. Canad. Sci. Halieut. Aquatiq., Ottawa, 387 pp.
Bernardi Aubry F., Acri F., Bastianini M., Pugnetti A., Socal G., 2006, Picophytoplankton contribution to phytoplankton community structure in the Gulf of Venice (NW Adriatic Sea), Int. Rev. Hydrobiol., 91 (1), 51-70,
http://dx.doi.org/10.1002/iroh.200410787
Blanc F., Leveau M., Bonin M. C., 1975, Planktonic ecosystems. The effects of dystrophic conditions on structure and function in the Gulf of Fos, Int. Rev. Ges. Hydrobio., 60 (3), 359-378,
http://dx.doi.org/10.1002/iroh.19750600306
Bosak S., Burić Z., Djakovac T., Vilicic D., 2009, Seasonal distribution of plankton diatoms in Lim Bay, northeastern Adriatic Sea, Acta Bot. Croat., 68 (2), 351-365.
Bosak S., Horvat L., Pestorić B., Krivokapić S., 2010, Observations on Pseudonitzschia species in the Bay of Kotor, SE Adriatic Sea, Rapp. Comm. Int. Mer Médit., 39, 721.
Burić Z., Cetinić I., Viličić D., Caput-Mihalić K., Carić M., Olujić G., 2007, Spatial and temporal distribution of phytoplankton in a highly stratified estuary (Zrmanja, Adriatic Sea), Mar. Ecol., 28 (S1), 169-177,
http://dx.doi.org/10.1111/j.1439-0485.2007.00180.x
Burić Z., Viličić D., Caput Mihalić K., Carić M., Kralj K., Ljubešić N., 2008, Pseudo-nitzschia blooms in the Zrmanja River estuary (Eastern Adriatic Sea), Diatom Res., 23(1), 51-63,
http://dx.doi.org/10.1080/0269249X.2008.9705736
Campanelli A., Bulatovic A., Cabrini M., Grilli F., Kljajic Z., Mosetti R., Paschini E., Penna P. Marini M., 2009, Spatial distribution of physical, chemical and biological oceanographic properties, phytoplankton, nutrients and coloured dissolved organic matter (CDOM) in the Boka Kotorska Bay (Adriatic Sea), Geofizika, 26 (2), 215-228.
Caroppo C., 2000, The contribution of picophytoplankton to community structure in a Mediterranean brackish environment, J. Plankton Res., 22 (2), 381-397,
http://dx.doi.org/10.1093/plankt/22.2.381
Caroppo C., Congestri R., Bracchini L., Albertano P., 2005, On the presence of Pseudo-nitzschia calliantha Lundholm, Moestrup et Hasle andPseudo-nitzschia delicatissima (Cleve) Heiden in the Southern Adriatic Sea (Mediterranean Sea, Italy), J. Plankton Res., 27 (8), 763-774,
http://dx.doi.org/10.1093/plankt/fbi050
Carstensen J., Henriksen P., Heiskanen A. S., 2007, Summer algal blooms in shallow estuaries: Definition, mechanisms, and link to eutrophication, Limnol. Oceanogr., 52 (1), 370-384,
http://dx.doi.org/10.4319/lo.2007.52.1.0370
Cerino F., Bernardi Aubry F., Coppola J., La Ferla R., Maimone G., Socal G., Totti C., Spatial and temporal variability of pico-, nano- and microphytoplankton in the offshore waters of the southern Adriatic Sea (Mediterranean Sea), Cont.
Shelf Res., (in press).
Cetinić I., Viličić D., Burić Z., Olujić G., 2006, Phytoplankton seasonality in a highly stratified karstic estuary (Krka, Adriatic Sea), Hydrobiol., 555 (1), 31-40,
http://dx.doi.org/10.1007/s10750-005-1103-7
Charpy L., Blanchot J., 1998, Photosynthetic picoplankton in French Polynesian
atoll lagoons: Estimation of taxa contribution to biomass and production by flow cytometry, Mar. Ecol.-Prog. Ser., 162, 57-70,
http://dx.doi.org/10.3354/meps162057
Clarke K.R., Gorley R.N., 2006, PRIMER v6: User manual/tutorial, PRIMER-E, Plymouth, 192 pp.
Cloern J. E., 1999, The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to
nutrient enrichment, Aquat. Ecol., 33 (1), 3-16,
http://dx.doi.org/10.1023/A:1009952125558
Cohen-Fernandez E. J., Meave Del Castillo E., Salgado Ugarte I. H., Pedroche F. F., 2006, Contribution of external morphology in solving a species complex: The case of Prorocentrum micans, Prorocentrum gracile and Prorocentrum sigmoides (Dinoflagellata) from the Mexican Pacific Coast, Phycol. Res., 54 (4), 330-340,
http://dx.doi.org/10.1111/j.1440-1835.2006.00440.x
FAO, 2011, National aquaculture sector overview, [in:] FAO fisheries and aquaculture department, M. Sljivancanin, Montenegro Ntl. Aquacult. Sect. Overv. Fact Sheet., http://www.fao.org/fishery/countrysector/naso_montenegro/en, accessed 20 July 2011.
Gomez F., Gorsky G., 2003, Annual microplankton cycles in Villefranche Bay, Ligurian Sea, NW Mediterranean, J. Plankton Res., 25 (4), 323-339,
http://dx.doi.org/10.1093/plankt/25.4.323
Grasshoff K., 1976, Methods of seawater analysis, Verlag Chemie, Weinheim, 307 pp.
Hasle G. R., Lange C. B., Syvertsen E. E., 1996, A review of Pseudo-nitzschia, with special reference to the Skagerrak, North Atlantic, and adjacent waters, Helgolander Meeresun., 50 (2), 131-175,
http://dx.doi.org/10.1007/BF02367149
Hasle G. R., Syvertsen E. E., 1997, Marine diatoms, [in:] Identifying marine phytoplankton, C.R. Tomas (ed.), Acad. Press, San Diego, 5-385.
Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U., Zohary T., 1999, Biovolume calculation for pelagic and benthic microalgae, J. Phycol., 35 (2), 403-424,
http://dx.doi.org/10.1046/j.1529-8817.1999.3520403.x
Hoppenrath M., Elbrächter M., Drebes G., 2009, Marine phytoplankton. Selected microphytoplankton from the North Sea around Helgoland and Sylt, E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 264 pp.
Jaanus A., Toming K., Hallfors S., Kaljurand K., Lips I., 2009, Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period, Hydrobiologia, 629 (1), 157-168,
http://dx.doi.org/10.1007/s10750-009-9768-y
Kraberg A., Baumann B., Dürselen C.-D., 2010, Coastal phytoplankton: photo guide for Northern European seas, Pfeil Verlag, München, 204 pp.
Krivokapić S., Pestorić B., Bosak S., Kuspilić G., Wexels-Riser C., 2011, Trophic state of Boka Kotorska Bay (South-Eastern Adriatic Sea), Fresen. Environ. Bull., 20 (8), 1960-1969.
Krivokapić S., Stanković Z., Vuksanović N., 2009, Seasonal variations of phytoplankton biomass and environmental conditions in the inner Boka Kotorska Bay (Eastern Adriatic sea), Acta Bot. Croat., 68 (1), 45-55.
Legendre L., Rassoulzadegan F., 1995, Plankton and nutrient dynamics in marine waters, Ophelia, 41, 153-172.
Levin L. A., Boesch D. F., Covich A., Dahm C., Erséus C., Ewel K. C., Kneib R. T., Moldenke A., Palmer M. A., Snelgrove P., Strayer D., Weslawski J. M., 2001, The function of marine critical transition zones and the importance
of sediment biodiversity, Ecosystems, 4 (5), 430-451,
http://dx.doi.org/10.1007/s10021-001-0021-4
Lund J. W. G., Kipling C., Cren E. D. L., 1958, The inverted microscope method of estimating algal numbers, and the statistical basis of estimation by counting, Hydrobiologia, 11 (2), 143-170,
http://dx.doi.org/10.1007/BF00007865
Magaš D., 2002, Natural-geographic characteristics of the Boka Kotorska area as the basis of development, Geoadria, 7 (1), 51-81.
Mangoni O., Margiotta F., Saggiomo M., Santarpia I., Budillon G., Saggiomo V., 2010, Trophic characterization of the pelagic ecosystem in Vlora Bay (Albania), J. Coastal Res., 58 (Sp. Iss.), 67-79.
McKenrie C.H., Deibel D., Paranjape M.A., Thompson R. J., 1995, The marine mixotroph Dinobryon balticum (Crysophyceae): phagotrophy and survival in the cold ocean, J. Phycol., 31 (1), 19-24,
http://dx.doi.org/10.1111/j.0022-3646.1995.00019.x
Menden-Deuer S., Lessard E. J., 2000, Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45 (3), 569-579,
http://dx.doi.org/10.4319/lo.2000.45.3.0569
Milanović S., 2007, Hydrogeological characteristics of some deep siphonal springs in Serbia and Montenegro karst, Environ. Geol., 51 (5), 755-759.
Monti M., Stoecker D. K., Cataletto B., Talarico L., 2010, Morphology of the flagellar pore complex in Prorocentrum minimum (Dinophyceae) from the Adriatic and Baltic Seas, Bot. Mar., 53 (4), 357-365,
http://dx.doi.org/10.1515/BOT.2010.038
Morozova T.V., Orlova T.Y., 2005, Monitoring of phytoplanktonin the area of a sea farm in Vostok Bay (Sea of Japan), Rus. J. Mar. Biol., 31 (1), 1-6,
http://dx.doi.org/10.1007/s11179-005-0036-3
Moscatello S., Caroppo C., Hajderi E., Belmonte G., 2010, Space distribution of phyto- and microzooplankton in the Vlora Bay (Southern Albania, Mediterranean Sea), J. Coast. Res., 58 (Sp. Iss.), 80-94.
Moschandreou K. K., Papaefthimiou D., Katikou P., Kalopesa E., Panou A., Nikolaidis G., 2010, Morphology, phylogeny and toxin analysis of Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae) isolated from the Thermaikos Gulf, Greece, Phycologia, 49 (3), 260-273.
Paoli A., Celussi M., Valeri A., Larato C., Bussani A., Umani S. F., Vadrucci M.R., Mazziotti C., Del Negro P., 2007, Picocyanobacteria in Adriatic transitional environments, Est. Coast. Shelf Sci., 75 (1-2), 13-20,
http://dx.doi.org/10.1016/j.ecss.2007.02.026
Polimene L., Pinardi N., Zavatarelli M., Colella S., 2007, The Adriatic Sea ecosystem seasonal cycle: Validation of a three-dimensional numerical model, J. Geophys. Res., 112 (3), 20 pp.,
http://dx.doi.org/10.1029/2005JC003260
Pucher-Petković T., Marasović I., 1980, Developement des populations phytoplanctoniques caractéristiques pour un milieu eutrophisé (Baie de Kaštela), Acta Adriatica, 21 (2), 79-93.
Pugnetti A., Bazzoni A. M., Beran A., Bernardi Aubry F., Camatti E., CelussiM., Coppola J., Crevatin E., Del Negro P., Paoli A., 2008, Changes in biomass structure and trophic status of the plankton communities in a highly dynamic ecosystem (Gulf of Venice, Northern Adriatic Sea), Mar. Ecol., 29 (3), 367-374,
http://dx.doi.org/10.1111/j.1439-0485.2008.00237.x
Revelante N., Gilmartin M., 1976, Temporal succession of phytoplankton in the Northern Adriatic, Neth. J. Sea Res., 10 (3), 377-396,
http://dx.doi.org/10.1016/0077-7579(76)90012-0
Revelante N., Gilmartin M., 1980, Microplankton diversity indices as indicators of eutrophication in the northern Adriatic Sea, Hydrobiologia, 70 (3), 277-286,
http://dx.doi.org/10.1007/BF00016772
Riegman R., Kuipers B. R., Noordeloos A. A. M., Witte H. J., 1993, Size-differential control of phytoplankton and the structure of plankton communities, Neth. J. Sea Res., 31 (3), 255-265,
http://dx.doi.org/10.1016/0077-7579(93)90026-O
Rubino F., Saracino O.D., Moscatello S., Belmonte G., 2009, An integrated water/sediment approach to study plankton (a case study in the southern Adriatic Sea), J. Marine Syst., 78 (4), 536-546,
http://dx.doi.org/10.1016/j.jmarsys.2008.12.023
Sabetta L., Vadrucci M. R., Fiocca A., Stanca E., Mazziotti C., Ferrari C., Cabrini M., Kongjka E., Basset A., 2008, Phytoplankton size structure in transitional water ecosystems: A comparative analysis of descriptive tools, Aquat. Conserv., 18 (Suppl. 1), S76-S87,
http://dx.doi.org/10.1002/aqc.954
Saracino O. D., Rubino F., 2006, Phytoplankton composition and distribution along the Albanian coast, South Adriatic Sea, Nova Hedwiga, 83 (1-2), 253-266,
http://dx.doi.org/10.1127/0029-5035/2006/0083-0253
Saravanan V., Godhe A., 2010, Genetic heterogeneity and physiological variation among seasonally separated clones of Skeletonema marinoi (Bacillariophyceae) in the Gullmar Fjord, Sweden, Eur. J. Phycol., 45 (2), 177-190,
http://dx.doi.org/10.1127/0029-5035/2006/0083-0253
Sarno D., Kooistra W.C.H. F., Medlin L. K., Percopo I., Zingone A., 2005, Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species, with the description of fournew species, J. Phycol., 41 (1), 151-176,
http://dx.doi.org/10.1111/j.1529-8817.2005.04067.x
Sarno D., Zingone A., Saggiomo V., Carrada G.C., 1993, Phytoplankton biomass and species composition in a Mediterranean coastal lagoon, Hydrobiologia,271 (1), 27-40,
http://dx.doi.org/10.1007/BF00005692
Sieburth J.N., Smetacek V., Lenz J., 1978, Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to size fractions, Limnol. Oceanogr., 23 (6), 1256-1263,
http://dx.doi.org/10.4319/lo.1978.23.6.1256
Siokou-Frangou I., Christaki U., Mazzocchi M. G., Montresor M., Ribera D'Alcala M., Vaque D., Zingone A., 2009, Plankton in the open Mediterranean Sea: A review, Biogeosciences D., 6 (6), 11 187-11 293,
http://dx.doi.org/10.5194/bgd-6-11187-2009
Smayda T. J., 1998, Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea, Limnol. Oceanogr., 42 (5 pt. 2), 1137-1153.
Socal G., Boldrin A., Bianchi F., Civitarese G., De Lazzari A., Rabitti S., Totti C., Turchetto M.M., 1999, Nutrient, particulate matter and phytoplankton variability in the photic layer of the Otranto strait, J. Mar. Sys., 20 (1-4), 381-398,
http://dx.doi.org/10.1016/S0924-7963(98)00075-X
Spies A., Parsons T.R., 1985, Estuarine microplankton: An experimental approach in combination with field studies, J. Exp. Mar. Biol. Ecol., 92 (1), 63-81,
http://dx.doi.org/10.1016/0022-0981(85)90022-X
Šilović T., Ljubešić Z., Mihanović H., Olujić G., Terzić S., Jakšić Ž., Viličić D., 2011, Picoplankton composition related to thermohaline circulation: The Albanian boundary zone (southern Adriatic) in late spring, Est. Coast. ShelfSci., 91 (4), 519-525,
http://dx.doi.org/10.1016/j.ecss.2010.12.012
Šolić M., Krstulović N., Kušpilić G., Ninčević Gladan Ž., Bojanić N., Šestanović S., Šantić D., Ordulj M., 2010, Changes in microbial food web structure in response to changed environmental trophic status: A case study of the Vranjic Basin (Adriatic Sea), Mar. Environ. Res., 70 (2), 239-249,
http://dx.doi.org/10.1016/j.marenvres.2010.05.007
Thompson G. B., Ho J., 1981, Some effects of sewage discharge upon phytoplankton in Hong Kong, Mar. Pollut. Bull., 12 (5), 168-173,
http://dx.doi.org/10.1016/0025-326X(81)90229-0
Toming K., Jaanus A., 2007, Selecting potential summer phytoplankton eutrophication indicator species for the northern Baltic Sea, Proc. Estonian Acad. Sci.: Biol. Ecol., 56 (4), 297-311.
Totti C., Cangini M., Ferrari C., Kraus R., Pompei M., Pugnetti A., RomagnoliT., Vanucci S., Socal G., 2005, Phytoplankton size-distribution and community
structure in relation to mucilage occurrence in the northern Adriatic Sea,Sci. Total Environ., 353 (1-3), 204-217,
http://dx.doi.org/10.1016/j.scitotenv.2005.09.028
Ujević I., Ninćević-GladanŽ., Roje R., Skejić S., Arapov J., Marasović I., 2010, Domoic acid . a new toxin in the Croatian Adriatic shellfish toxin profile, Molecules, 15 (10), 6835-6849.
Utermöhl H., 1958, Zur Vervollkommnung der quantitativen Phytoplankton-Methodik aus der Hydrobiologischen Anstalt der Max-Plank-Gesellschaft, Pl Non in Holstein, Mitt. Int. Verein. Theor. Angew. Limnol., 9, 1-38.
Vanucci S., Pomar M. L. C. A., Maugeri T. L., 1994, Seasonal pattern of phototrophic picoplankton in the eutrophic coastal waters of the northern Adriatic Sea, Bot. Mar., 37 (1), 57-66,
http://dx.doi.org/10.1515/botm.1994.37.1.57
Viličić D., 1989, Phytoplankton population density and volume as indicators of eutrophication in the eastern part of the Adriatic Sea, Hydrobiologia, 174 (2), 117-132,
http://dx.doi.org/10.1007/BF00014060
Viličić D., Djakovac T., Buri. Z., Bosak S., 2009, Composition and annual cycle of phytoplankton assemblages in the northeastern Adriatic Sea, Bot. Mar., 52 (4), 291-305,
http://dx.doi.org/10.1515/BOT.2009.004
Viličić D., Leder N., Gržeti. Z., Jasprica N., 1995, Microphytoplankton in the Strait of Otranto (eastern Mediterranean), Mar. Biol., 123 (3), 619-630,
http://dx.doi.org/10.1007/BF00349240
Viličić D., Legović T., Žutić V., 1989, Vertical distribution of phytoplankton in a stratified estuary, Aquat. Sci., 51 (1), 31-46,
http://dx.doi.org/10.1007/BF00877779
Zingone A., Sarno D., Siano R., Marino D., 2011, The importance and distinctiveness of small-sized phytoplankton in the Magellan Straits, Polar Biol., 34 (9), 1269-1284,
http://dx.doi.org/10.1007/s00300-010-0937-2
http://dx.doi.org/10.1007/s00300-010-0937-2
Zubkov M. V., Sleigh M. A., Tarran G. A., Burkill P. H., Leakey R. J. G., 1998, Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S, Deep Sea Res. Pt. I, 45 (8), 1339-1355,
http://dx.doi.org/10.1016/S0967-0637(98)00015-6
The link between shrimp farm runoff and blooms of toxic Heterosigma akashiwo in Red Sea coastal waters
Oceanologia 2012, 54(2), 287-309
http://dx.doi.org/10.5697/oc.54-2.287
Zakaria A. Mohamed1,2,*, Abdulrahman M. Al-Shehri2
1Department of Botany, Faculty of Science, Sohag University,
Sohag 82524, Egypt
2Department of Biology, College of Science, King Khalid University,
Abha 9019, Saudi Arabia;
e-mail: mzakaria_99@yahoo.com
*corresponding author
keywords:
haemolytic activity, ichthyotoxic algae, outbreak-forming algae, raphidophytes, Red Sea
Received 29 September 2011, revised 16 January 2012, accepted 13 February 2012.
Abstract
In May 2010 a copious bloom of the raphidophyte Heterosigma akashiwo
was observed for the first time in Red Sea waters off the coasts of Saudi Arabia.
This bloom was confined to an area where water and phytoplankton flow freely between the sea and a shrimp farm. The phytoplankton density
and physico-chemical characteristics of the sea water were therefore investigated weekly at bloom and non-bloom sites in order to gain insight
into the environmental factors prevailing at the bloom site and their link with the shrimp farm runoff. The bloom site showed higher nutrient
concentrations than the non-bloom site, indicating the possible role of the shrimp farm in flushing nutrients into this site. The bloom appeared
on 27 May, coinciding with a decrease in salinity (< 30 per mille) and an increase in temperature (> 19°C). The results of toxicological assays showed
that both bloom samples and batch cultures of H. akashiwo were toxic to Artemia salina and exhibited haemolytic activity with respect
to rabbit erythrocytes.
Bloom samples showed a higher toxicity (LC50 = 8.9 × 104 cells ml-1) and haemolytic activity (EC50 = 3.64 × 104 cells ml-1) than the batch cultures (LC50 = 11.6 × 104 cells ml-1, EC50 = 5.1 × 104 cells ml-1).In the light of the results of this study, the link between H. akashiwo blooms and shrimp farm runoff should be considered during the monitoring of Red Sea coastal waters for the presence of harmful algal blooms.
References
Almeda R., Messmer A. M., Sampedro N., Gosselin L. A., 2011, Feeding rates and abundance ofm arine invertebrate planktonic larvae under harmful algal bloom conditions off Vancouver Island, Harmful Algae, 10 (2), 194-206.
http://dx.doi.org/10.1016/j.hal.2010.09.007
Anderson D. M. 1997, Turning back the harmful red tide, Nature, 388, 513-14.
http://dx.doi.org/10.1038/41415
Anderson D. M., Burkholder J.M., Cochlan W.P., Glibert P.M., Gobler C. J., Heil C.A., Kudela R., Parsons M.L., Rensel J.E., Townsend D.W., Trainer V. L., Vargo G.A., 2008, Harmful algal blooms and eutrophication: examples ofl inkages from selected coastal regions of the United States, Harmful Algae, 8 (1), 39-53.
http://dx.doi.org/10.1016/j.hal.2008.08.017
Anderson D. M., Kulis D. M., Sullivan J. J., Hall S., 1990, Toxin composition variations in one isolate oft he dinoflagellate Alexandrium fundyense, Toxicon, 28 (8), 885-893.
http://dx.doi.org/10.1016/0041-0101(90)90018-3
APHA - American Public Health Association, 1995, Standard methods for the examination ofwat er and wastewater, 19th edn., APHA, Washington, DC.
Band-Schmidt C. J., Morquecho L., Hernandez-Becerril D.U., Reyes-Salinas A., Bravo-Sierra E., 2004, Raphidophyceans on the coasts ofMex ico, Hydrobiologia, 515 (1-3), 79-89.
http://dx.doi.org/10.1023/B:HYDR.0000027320.00977.8b
Bruyant F., Ryan C. M., Normandeau C., Dacanay A., Burke S. M., Rafuse C. M., Cembella A. D., Cullen J. J., 2005, Changes in the haemolytic properties ofH eterosigma akashiwo (Raphidophyceae) during phosphate starvation, Abstract, ASLO Summer Meeting 2005: A Pilgrimage Through Global Aquatic Sciences, Santiago de Compostela.
de Boer M. K., Tyl M. R., Fu M., Kulk G., Liebezeit G., Tomas C.R., Lenzi A., Naar J., Vrieling E.G., van Rijssel M., 2009, Haemolytic activity within the species Fibrocapsa japonica (Raphidophyceae), Harmful Algae, 8 (5), 699-705.
de Boer M. K., Tyl M.R., Vrieling E.G., van Rijssel M., 2004, Effects ofs alinity and nutrient conditions on growth and haemolytic activity of Fibrocapsa japonica (Raphidophyceae), Aquat. Microb. Ecol., 37 (2), 171-181,
Demir E., Coyne K. J., Doblin M. A., Handy S. M., Hutchins D. A., 2008, Microzooplankton grazing rates on Heterosigma akashiwo in the Delaware Inland Bays: a species-specific approach combining quantitative real-time PCR (qPCR) and dilution methods, Microbial. Ecol., 55 (4), 583-594.
http://dx.doi.org/10.1007/s00248-007-9263-9
Eschbach E., Scharsack J. P., John U., Medlin L. K., 2001, Improved erythrocyte lysis assay in microtitre plates for sensitive detection and efficient measurement ofhaem olytic compounds from ichthyotoxic algae, J. Appl. Toxicol., 21, 513-519, http://dx.doi.org/10.1002/jat.797.
http://dx.doi.org/10.1002/jat.797
Finney D. J., 1963, Probit analysis, 2nd edn., Cambridge Univ. Press, London.
Fu M., Koulman A., van Rijssel M., Lutzen A., de Boer M.K., Tyl M.R., Liebezeit G., 2004, Chemical characterization oft hree haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae), Toxicon, 43 (4), 355-363.
http://dx.doi.org/10.1016/j.toxicon.2003.09.012
Guillard R. R. L., 1975, Culture of phytoplankton for feeding marine invertebrates, [in:] Culture of marine invertebrate animals, W. L. Smith & M.H. Chaney (eds.), Plenum Press, New York, 29-60.
Hallegraeff G. M., Hara Y., 1995, Taxonomy ofhar mful marine raphidophytes, [in:] Manual ofhar mful marine microalgae, IOC Manuals and Guides No. 33, G. M. Hallegraeff, D.M. Anderson & A.D. Cembella (eds.), UNESCO, Paris, 365-371.
Handy S. M., Demir E., Hutchins D. A., Portune K. J., Whereat E. B., Hare C. E., Rose J. M., Warner M., Farestad M., Cary S. C., Coyne K. J., 2008, Using quantitative real-time PCR to study competition and community dynamics among Delaware Inland Bays harmful algae in field and laboratory studies, Harmful Algae, 7 (5), 599-613.
http://dx.doi.org/10.1016/j.hal.2007.12.018
Haque S.M., Onoue Y., 2002, Effects ofs alinity on growth and toxin production of a noxious phytoflagellate, Heterosigma akashiwo (Raphidophyceae), Bot. Mar., 45 (4), 356-363.
http://dx.doi.org/10.1515/BOT.2002.036
Hara Y., Chihara M., 1987, Morphology, ultrastructure and taxonomy oft he raphidophycean alga Heterosigma akashiwo, J. Plant. Sci., 100 (2), 151-163.
Hasle G. R., Syvertsen E. E., 1997, Marine diatoms, [in:] Identifying marine phytoplankton, C. R. Tomas (ed.), Acad. Press, 5-385.
Heisler J., Glibert P.M., Burkholder J. M., Anderson D. M., Cochlan W., Dennison W. C., Dortch Q., Goble C. J., Heil C. A., Humphries E., Lewitus A., Magnien R., Marshall H.G., Sellner K., Stockwell D. A., Stoecker D.K., Suddleson M., 2008, Eutrophication and harmful algal blooms: a scientific consensus, Harmful Algae, 8 (1), 3-13.
http://dx.doi.org/10.1016/j.hal.2008.08.006
Hershberger P. K., Rensel J. E., Postel J. R., Taub F. B., 1997, Heterosigma bloom and associated fish kill, Harmful Algae News, 16, 1-4.
Honjo T., 2004, Red-tide species and the environmental conditions, [in:] Red tides, T. Okaichi (ed.), Terra Sci. Publ. Comp., Tokyo, 333-344.
Imai I., Itakura S., 1999, Importance of cysts in the population dynamics of the red tide flagellate Heterosigma akashiwo (Raphidophyceae), Mar. Biol., 133 (4), 755-762.
http://dx.doi.org/10.1007/s002270050517
Jin Jeong H., Kim J. S., Yoo Y. D., Kim S. T., Kim T. H., Park M.G., Lee C. H., Seong K. A., Kang N. S., Shim J. H., 2003, Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers, J. Eukaryot. Microbiol., 50 (4), 274-282.
http://dx.doi.org/10.1111/j.1550-7408.2003.tb00134.x
Johansson N., Granéli E., 1999a, Influence ofd ifferent nutrient conditions on cell density, chemical composition and toxicity ofPr ymnesium parvum (Haptophyta) in semi-continuous cultures, J. Exp. Mar. Biol. Ecol., 239 (2), 243-258.
http://dx.doi.org/10.1016/S0022-0981(99)00048-9
Johansson N., Granéli E., 1999b, Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios, Mar. Biol., 135 (2), 209-217.
http://dx.doi.org/10.1007/s002270050618
Kempton J., Keppler C. J., Lewitus A., Schuler A., Wilde S., 2008, A novel Heterosigma akashiwo (Raphidophyceae) bloom extending from a South Carolina bay to offshore waters, Harmful Algae, 7 (2), 235-240.
http://dx.doi.org/10.1016/j.hal.2007.08.003
Khan S., Arakawa O., Onoue Y., 1997, Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan, Aquac. Res., 28 (1), 9-14.
Kuroda A., Nakashima T., Yamaguchi K., Oda T., 2005, Isolation and characterization of light-dependent hemolytic cytotoxin from harmful red tide phytoplankton Chattonella marina, Comp. Biochem. Phys. C, 141 (3), 297-305.
Landsberg J .H., 2002, The effects ofhar mful algal blooms on aquatic organisms, Rev. Fish. Sci., 10 (2), 113-390.
http://dx.doi.org/10.1080/20026491051695
Lawrence J. E., Chan A. M., Suttle C. A., 2002, Viruses causing lysis of the toxic bloom forming alga Heterosigma akashiwo (Raphidophyceae) are widespread in coastal sediments ofBr itish Columbia, Can. Limnol. Oceanogr., 47 (2), 545-550.
http://dx.doi.org/10.4319/lo.2002.47.2.0545
Lee C. K., Lee O. H., Lee S. G., 2005, Impacts oft emperature, salinity and irradiance on the growth of ten harmful algal bloom-forming microalgae isolated in Korean coastal waters, J. Korean Soc. Oceanogr., 10 (1), 79-91, (in Korean).
Lee M. -O., Kim J.-K., 2008, Characteristics ofalgal blooms in the southern coastal waters ofKor ea, Mar. Environ. Res., 65 (2), 128-147.
http://dx.doi.org/10.1016/j.marenvres.2007.09.006
Lichtenthaler H. K., Wellburn A. R., 1983, Determinations oft otal carotenoids and chlorophylls a and b in leafex tracts in different solvents, Biochem. Soc. Trans., 11, 591-592,
http//dx.doi.org/10.1042/bst0110591
Ling C., Trick C.G., 2010, Expression and standardized measurement ofhem olytic activity in Heterosigma akashiwo, Harmful Algae, 9 (5), 522-529.
http://dx.doi.org/10.1016/j.hal.2010.04.004
Livingston R. J., 2007, Phytoplankton bloom effects on a gulfest uary: water quality changes and biological response, Ecol. Appl., 17 (5), S110-S128.
http://dx.doi.org/10.1890/05-0769.1
Marshall J .-A., de Salas M., Oda T., Hallegraeff G., 2005, Superoxide production by marine microalgae. I. Survey of37 species from 6 classes, Mar. Biol., 147 (2), 533-540.
http://dx.doi.org/10.1007/s00227-005-1596-7
Marshall J. -A., Nichols P. D., Hamilton B., Lewis R. J., Hallegraeff G. M., 2003, Ichthyotoxicity ofChat tonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role ofr eactive oxygen species and free fatty acids, Harmful Algae, 2 (4) , 273-281.
http://dx.doi.org/10.1016/S1568-9883(03)00046-5
Martinez R., Orive E., Laza-Martinez A., Seoane S., 2010, Growth response of six strains of Heterosigma akashiwo to varying temperature, salinity and irradiance conditions, J. Plankton Res., 32 (4), 529-538.
http://dx.doi.org/10.1093/plankt/fbp135
Oda T., Nakamura A., Shikayama M., Kawano I., Ishimatsu A., Muramatsu T., 1997, Generation ofr eactive oxygen species by raphidophycean phytoplankton, Biosci. Biotech. Bioch., 61 (10), 1658-1662.
http://dx.doi.org/10.1271/bbb.61.1658
Peperzak L., 2002, Life cycles in Raphidophytes, Report of the Workshop on LifeHAB: Life Histories of Microalgal Species Causing Harmful Blooms, E. Garces, A. Zingone, M. Montresor, B. Reguera & B. Dale (eds.), EUR 20361, Research in Enclosed Sea Ser. No. 12, Brussels, 80-84.
Pezzolesi L., Cucchiari E., Guerrini F., Pasteris A., Galletti P., Tagliavini E., Totti C., Pistocchi R., 2010, Toxicity evaluation ofFibr ocapsa japonica from the Northern Adriatic Sea through a chemical and toxicological approach, Harmful Algae, 9 (5), 504-551.
http://dx.doi.org/10.1016/j.hal.2010.03.006
Rensel J. E. J., Haigh N., Tynan T. J., 2010, Fraser river sockeye salmon marine survival decline and harmful blooms of Heterosigma akashiwo, Harmful Algae, 10 (1), 98-115.
http://dx.doi.org/10.1016/j.hal.2010.07.005
Shikata T., Nagasoe S., Matsubara T., Yoshikawa S., Yamasaki Y., Shimasaki Y., Jenkinson I. R., Honjo T., 2008, Factors influencing the initiation of blossoms of the raphidophyte Heterosigma akashiwo and the diatom Skeletonema costatum in a port in Japan, Limnol. Oceanogr., 53 (6), 2503-2518.
http://dx.doi.org/10.4319/lo.2008.53.6.2503
Shukla S. P., Singh S. K., Mishra A. K., 1997, Energetics of alkaline phosphatase (monoesterase) activity in Antarctic and tropical isolates ofcyan obacterium, Anabaena, Cytobios, 92 (368), 29-33.
Simonsen S., Müller B. L., Larsen J., Ravn H., 1995, Haemolytic activity of Alexandrium tamarense cells, [in:] Harmful marine algal blooms, P. Lassus, G. Arzul, E. Erard, P. Gentien, Marcaillou-Le & C. Baut (eds.), Lavoisier, Intercept, Paris, 513-517.
Smayda T. J., 1998, Ecophysiology and bloom dynamics ofH eterosigma akashiwo (Raphidophyceae), [in:] Physiological ecology ofhar mful algal blooms, NATO ASI Ser., Vol. G41, D. M. Anderson, A.D. Cembella & G.M. Hallegraeff (eds.), Springer, New York, 113-131.
Smayda T., 2007, Reflections on the ballast water dispersal-harmful algal bloom paradigm, Harmful Algae, 6 (4), 601-622.
http://dx.doi.org/10.1016/j.hal.2007.02.003
Steidinger K.A., Tangen K., 1997, Dinoflagellates, [in:] Identifying marine phytoplankton, C.R. Tomas (ed.), Acad. Press, St. Petersburg, FL, 387-584.
Stewart J.E., 1997, Environmental impacts ofaqu aculture, World Aquac., 28(1), 47-52.
Taylor F. J. R., Haigh R., 1993, The ecology of fish-killing blooms oft he chloromonad flagellate Heterosigma in the Strait ofGe orgia and adjacent waters, [in:] Toxic phytoplankton blooms in the Sea, T.J. Smayda & Y. Shimizu (eds.), Elsevier, Amsterdam, 705-710.
Throndsen J., 1997, The planktonic marine flagellates, [in:] Identifying marine phytoplankton, C. R. Tomas (ed.), Acad. Press, San Diego, 591-729.
Tiffany M.A., Barlow S.B., Matey V.E., Hulbert S.H., 2001, Chattonella marina (Raphidophyceae), a potentially toxic alga in the Salton Sea, California, Hydrobiologia, 466 (8), 187-194.
http://dx.doi.org/10.1023/A:1014503920898
Tomaru Y., Tarutani K., Yamaguchi M., Nagasaki K., 2004, Quantitative and qualitative impacts ofvir al infection on a Heterosigma akashiwo (Raphidophyceae) bloom in Hiroshima Bay, Japan, Aquat. Microb. Ecol., 34 (3), 227-238.
Tomas C.R., Quick M.G., Smith M.D., 2001, Fibrocapsa japonica Toriumi et Takano, [in:] Marine phytoplankton identification series, North Carolina Sea Grant, UNC-SG-02-04.
Twiner M. J., Trick C. G., 2000, Possible physiological mechanisms for production ofhydr ogen peroxide by the ichthyotoxic flagellate Heterosigma akashiwo, J. Plankton Res., 22 (10), 1961-1975.
http://dx.doi.org/10.1093/plankt/22.10.1961
Utermöhl H., 1958, Zur Vervollkommnung der quantitativen Phytoplankton-Methodik aus der Hydrobiologischen Anstalt der Max-Plank-Gesellschaft, Plön in Holstein, Mitt. Int. Verein. Theor. Angew. Limnol., 9, 1-38.
Wang L., Yan, T., Zhou M., 2006, Impacts ofH AB species Heterosigma akashiwo on early development oft he scallop Argopecten irradians Lamarck, Aquaculture, 255 (1-4), 374-383.
http://dx.doi.org/10.1016/j.aquaculture.2005.11.057
Xie Z., Xiao H., Tang X., Lu K., Cai H., 2008, Interactions between red tide microalgae and herbivorous zooplankton: effects oft wo bloom-forming species on the rotifer Brachionus plicatilis (O. F. Muller), Hydrobiologia, 600 (1), 237-245.
http://dx.doi.org/10.1007/s10750-007-9237-4
Yamasaki Y., Nagasoe S., Matsubara T., Shikata T., Shimasaki Y., Oshima Y., Honjo T., 2007, Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo, Mar. Ecol.-Prog. Ser., 339, 83-92.
http://dx.doi.org/10.3354/meps339083
Yamatogi T., Sakaguchi M., Iwataki M., Matsuoka K., 2006, Effects ofte mperature and salinity on the growth of four harmful red tide flagellates occurring in Isahaya Bay in Ariake Sound, Japan, Nippon Suisan Gakkaishi No. 72, 160-168.
http://dx.doi.org/10.2331/suisan.72.160
Yamasaki Y., Shikata T., Nukata A., Ichiki S., Nagasoe S., Matsubara T., Shimasaki Y., Nakao M., Yamaguchi K., Oshima Y., Oda T., Ito M., Jenkinson I.R., Asakawa M., Honjo T., 2009, Extracellular polysaccharideprotein complexes o fa harmful alga mediate the allelopathic control it exerts within the phytoplankton community, ISME J., 3 (7), 808-817.
http://dx.doi.org/10.1038/ismej.2009.24
Yamochi S., Abe T., 1984, Mechanisms to initiate a Heterosigma akashiwo red tide in Osaka Bay, Mar. Biol., 83 (3), 255-261.
http://dx.doi.org/10.1007/BF00397457
Yan T., Zhou M. J., Fu M., Wang Y., Yu F., Li R.C., 2004, The toxicity study on Heterosigma akashiwo using an Artemia bioassay, [in:] Harmful algae management and mitigation, S. Hall, S. Etheridge, D. Anderson, J. Kleindienst, M. Zhu & Y. Zou (eds.), APEC Publ. No. 204-MR-04.2, 220-225.
Yan T., Zhou M., Fu M., Yu R., Wang Y., Li J., Tan Z., 2003, The preliminary study on toxicity ofH eterosigma akashiwo and the toxicity source, Oceanol. Limnol. Sin.-Haiyang Yu Huzhao, 34 (1), 50-55.
Yang C. Z., Albright L. J., Yousif A.N., 1995, Oxygen radical-mediated effects oft he toxic phytoplankton Heterosigma carterae on juvenile rainbow trout Oncorhynchus mykiss, Dis. Aquat. Organ., 23 (2), 101-108.
http://dx.doi.org/10.3354/dao023101
Yu J., Yang G., Tian J., 2010, The effects oft he harmful alga Heterosigma akashiwo on cultures ofS chmackeria inopinus (Copepoda, Calanoida), J. Sea Res., 64 (3), 287-294.
http://dx.doi.org/10.1016/j.seares.2010.04.002
Zhang Y., Fei-Xue F., Whereat E., Coyne K. J., Hutchins D.A., 2006, Bottomup controls on a mixed-species HAB assemblage: A comparison ofsymp atric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA, Harmful Algae, 5 (3), 310-320.
http://dx.doi.org/10.1016/j.hal.2005.09.001
Tracing the signature of various frontal systems in stable isotopes (oxygen and carbon) of the planktonic foraminiferal species Globigerinabulloides in the Southern Ocean (Indian Sector)
Oceanologia 2012, 54(2), 311-323
http://dx.doi.org/10.5697/oc.54-2.311
Neloy Khare1, Subodh Kumar Chaturvedi2
1Ministry of Earth Sciences,
Block No. 12, CGO Complex, Lodhi Road, New Delhi 110 003, India;
e-mail: nkhare45@gmail.com
2School of Civil Engineering, SASTRA University,
Thanjavur 613 401, India;
e-mail: chaturvedi@carism.sastra.edu
keywords:
foraminifera, Globigerina bulloides, stable isotopes, Southern Ocean, frontal systems
Received 21 June 2010, revised 20 September 2011, accepted 27 February 2012.
Abstract
Twenty-five surficial sediment samples, collected on board ORV Sagar Kanyaduring her 199th and 200th cruises along a north-south transect between
latitudes 9.69°N and 55.01°S, and longitudes 80°E and 40°E were studied for isotopic variations (values of δ18O andδ13C) of the indicator planktonic species Globigerina bulloides. The results indicate that from latitudes 9.69°N to 15°S both these isotopes (δ18O and δ13C) fluctuated significantly. Between latitudes from around 15°S to 30-35°Sδ18O values steadily increased, whereas δ13C showed a decreasing trend. However, to the south of latitudes 30-35°S, both isotope values showeda similar response with a gradual increase up to latitude 50°S, beyond which δ18O continued to increase while δ13C
declined. The characteristic patterns of the values of both isotopes indicates that the signatures of different water masses are associated with various
frontal systems and/or water masses across the transect.The signature of the Polar Front at around latitude 50°S shows the specific response
of the isotopic values (δ18O andδ13C) of G. bulloides. Such a response beyond 50°S latitude is
ascribable to the general decrease in the ambient temperature, resulting in a continuous increase inδ18O values, whileδ13C values decrease as a result of reduced photosynthesis in regions approaching higher latitudes owing to low light penetration. To further corroborate our results,
those of many such transects from geographically distinct regions need to be studied for isotopic variations in the calcareous shells of planktonic
foraminiferal species. The results have the potential to be used as a proxy to assess the movement of frontal systems in southern high latitude regions.
References
Abreu V. S., Anderson J. B., 1998, Glacial eustasy during the Cenozoic: sequence stratigraphic implications, AAPG Bull., 82 (7), 1385-1400.
Anilkumar N., Dash M. K., Luis A. J., Ramesh Babu V., Somayajulu Y. K., Sudhakar M., Pandey P. C., 2005, Oceanic front along 45. east across Antarctic Circumpolar Current during austral summer 2004, Curr. Sci. India, 88 (10), 1669-1673.
Ariztegui D., Chondrogianni C., Wolff G., Asioli A., Teranes J., Bernasconi S. M., McKenzie J. A., 1996, Paleotemperature and paleosalinity history of the Meso Adriatic Depression (MAD) during the Late Quaternary: a stable isotopes and alkenones study, [in:] Palaeoenvironmental analysis of Italian Crater Lake and Adriatic sediments (PALICLAS), P. Guilizzoni & F. Oldfield (eds.), Memoire. Inst. Ital. Idrobiol., 55, 219-230.
Banakar V. K., Parthiban G., Pattan J. N., Jauhari P., 1998, Chemistry of surface sediment along a north-south transect across the equator in the Central Indian Basin: an assessment of biogenic and detrital influences on elemental
burial of the sea floor, Chem. Geol., 147 (3-4), 217-232,
http://dx.doi.org/10.1016/S0009-2541(98)00015-1
BLee A. W. H., Tolderlund D. S., 1971, Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, [in:] The micropaleontology of oceans, B.M. Funnel & W. R. Riedel (eds.), Cambridge Univ. Press, Cambridge, 105-149.
Boyd P. W., Strzepek R., Takeda S., Jackson G., Wong C. S., McKay M. R., Law C., Kiyosawa H., Saito H., Sherry N., Johnson K., Gower J., Ramaiah N., 2005, The evolution and termination of an iron-induced mesoscale bloom in the northeast subarctic Pacific, Limnol. Oceanogr., 50 (6), 1872-1886.
Broecker W. S., Peng T. H., 1982, Tracers in the sea, Eldigio Press, New York, 690 pp.
Clifford M. A., 1983, A descriptive study of the zonation of the Antarctic Circumpolar Current and its relation to wind stress and ice cover, Unpublished M.S. thesis, Texas A&M Univ., 93 pp.
Curry W. B., Duplessy J. C., Labeyrie L. D., Shackleton N. J., 1988, Changes in the distribution of δ
13C of deep water ΔCO
2 between the last glaciation and the Holocene, Paleoceanography, 3 (3), 317-341,
http://dx.doi.org/10.1029/PA003i003p00317
Deacon G. E. R., 1933, A general account of the hydrology of the Southern Atlantic Ocean, Discovery Rep., 7, 171-238.
Deacon G. E. R., 1937, The hydrology of the Southern Ocean, Discovery Rep., 15, 1-24,
http://dx.doi.org/10.1016/0198-0149(82)90058-9
Deacon G. E. R., 1982, Physical and biological zonation of the Southern Ocean, Deep-Sea Res., 29 (1), 1-15,
http://dx.doi.org/10.1175/JPO2973.1
Dong S. F., Sprintall J., Gille S. T., 2006, Location of the Antarctic Polar Front from AMSR-E satellite sea surface temperature measurements, J. Phys. Oceanogr., 36 (11), 2075-2089,
http://dx.doi.org/10.1175/JPO2973.1
Epstein S., Buchsbaum R., Lowenstam H. A., Urey H.C., 1953, Revised carbonatewater isotopic temperature scale, Geol. Soc. Am. Bull., 64 (11), 1315-1325,
http://dx.doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
Gordon A. L., 1985, Indian-Atlantic transfer of thermocline water at the Agulhas retroflection, Science, 227 (4690), 1030-1033.
Hofmann E. E., 1985, The large-scale horizontal structure of the Antarctic circumpolar current from FGGE drifters, J. Geophys. Res.-Oceans, 90 (C4), 7087-7097,
http://dx.doi.org/10.1029/JC090iC04p07087
Jasmine P., Muraleedharan K. R., Madhu N. V., Asha Devi C. R., Alagarsamy R., Achuthankutty C. T., Jayan Z., Sanjeevan V.N., Sahayak S., 2009, Hydrographic and productivity characteristics along 45.E longitude in the southwestern Indian Ocean and Southern Ocean during austral summer 2004, Mar. Ecol. Prog. Ser., 389, 97-116.
Jones E. P., Nelson D. M., Treguer P., 1990, Chemical oceanography, [in:] Polar oceanography. Part B: chemistry, biology and geology, W. O. Smith Jr. (ed.), Acad. Press, San Diego, 407-476.
Khare N., Chaturvedi S. K., 2006, Size variations of planktonic foraminiferal population in Indian Ocean sector of Southern Ocean, Indian J. Mar. Sci.,
35 (3), 221-226.
Kostianoy A. G., Ginzburg A. I., Frankignoulle M., Delille B., 2004, Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperature data, J. Marine Syst., 45 (1.2), 55-73,
http://dx.doi.org/10.1016/j.jmarsys.2003.09.004
Kostianoy A. G., Ginzburg A. I., Lebedev S. A., Frankignoulle M., Delille B., 2003, Fronts and mesoscale variability in the southern Indian Ocean as inferred from the TOPEX/POSEIDON and ERS-2 altimetry data, Oceanology, 43 (5), 632-642.
Lali C. M., Parsons T. R., 1997, Biological oceanography: an introduction, 2nd edn., Open Univ., Butterworth-Heinemann, Oxford, 314 pp.
Lassey K.R., Enting D. J., Trudinger C.M., 1996, The earth's radiocarbon budget - a consistent model of the global carbon and radiocarbon cycles, Tellus B, 48 (4), 487-501,
http://dx.doi.org/10.1034/j.1600-0889.1996.t01-2-00007.x
Levitus S., Burgett R., Boyer T., 1994, World ocean atlas 1994, NOAA Atlas NESDIS 3 and 4, U.S. Dept. Commerce, Washington DC.
Loubere P., Bennett S., 2008, Southern Ocean biogeochemical impact on the tropical ocean: stable isotope records from the Pacific for the past 25,000 years, Global Planet. Change, 63, 333-340,
http://dx.doi.org/10.1016/j.gloplacha.2008.08.001
McCrea J. M., 1950, On the isotopic chemistry of carbonates and a paleotemperature scale, J. Chem. Phys., 18 (6), 849-857,
http://dx.doi.org/10.1063/1.1747785
Miller K. G., Mountain G. S., Browning J. V., Kominz M., Sugarman P. J., Christie-Blick N., Katz M. E., Wright J.D., 1998, Cenozoic global sea-level, sequences, and the New Jersey Transect: results from coastal plain and continental slope drilling, Rev. Geophys., 36 (4), 569-601,
http://dx.doi.org/10.1029/98RG01624
Moore J. K., Abbott M. R., 2002, Surface chlorophyll concentrations in relation to the Antarctic Polar Front: seasonal and spatial patterns from satellite
observations, J. Marine Syst., 37 (1-3), 69-86,
http://dx.doi.org/10.1016/S0924-7963(02)00196-3
Nowlin Jr. W. D., Whitworth III T., Pillsbury R. D., 1977, Structure and transport of the Antarctic Circumpolar Current at Drake Passage from
short-term measurements, J. Phys. Oceanogr., 7, 788-802,
http://dx.doi.org/10.1175/1520-0485(1977)007<0788:SATOTA>2.0.CO;2
Orsi A. H., Whitworth III T., Nowlin Jr. W. D., 1995, On the meriodinal extent and fronts of the Antarctic Circumpolar Current, Deep-Sea Res., 42 (5), 641-673,
http://10.1016/0967-0637(95)00021-W
Pollard R.T., Lucas M. I., Read J. F., 2002, Physical controls on biogeochemical zonation in the Southern Ocean, Deep-Sea Res. Pt. II, 49 (16), 3289-3305,
http://10.1016/S0967-0645(02)00084-X
Shackleton N. J., 2000, The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity, Science, 289, 1897-1902,
Shackleton N. J., Hall M. A., 1997, The late Miocene stable isotope record, site 906, [in:] Proceedings of the Ocean Drilling Program. Scientific results, Vol. 154, College Station, TX (Ocean Drilling Program), N. J. Schackleton, W. B. Curry, C. Richter & T. J. Bralower (eds.), 367-374.
Shackleton N. J., Hall M. A., Pate D., 1995, Pliocene stable isotope stratigraphy of site 8461 [in:] Proceedings of the Ocean Drilling Program. Scientific results, Vol. 138, College Station, TX (Ocean Drilling Program), N.G. Pisias, L. A. Mayer, T. R. Janecek, A. Palmer-Julson & T.H. Andel (eds.), 337-356.
Shaffer G., 1993, Effects of the marine carbon biota on global carbon cycling, [in:] The global carbon cycle, M. Heimann (ed.), Springer-Verlag, Berlin, 431-455.
Siegenthaler U., Joos F., 1992, Use of a simple-model for studying oceanic tracer distributions and the global carbon-cycle, Tellus B, 44 (3), 186-207,
http://dx.doi.org/10.1034/j.1600-0889.1992.t01-2-00003.x
Spero H. J., Bijma J., Lea D. W., Bemis B. E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes, Nature, 390, 497-500,
http://dx.doi.org/10.1038/37333
Spezzaferri S., McKenzie J.A., Isern A., 2002, Linking the oxygen isotope record of Late Neogene eustasy to sequence stratigraphic patterns along the Bahamas margin: results from a paleoceanographic study of ODP Leg 166, Site 1006 sediments, Mar. Geol., 185 (1-2), 95-120,
http://dx.doi.org/10.1175/1520-0485(1992)022<0421:TSIOC>2.0.CO;2
Stramma L., 1992, The south Indian Ocean current, J. Phys. Oceanogr., 22 (4), 325-347,
http://dx.doi.org/10.1175/1520-0485(1992)022<0421:TSIOC>2.0.CO;2
Trenberth K. E., Large W., Olson J. G., 1990, The mean annual cycle in global ocean wind stress, J. Phys. Oceanogr., 20 (11), 1742-1760,
http://dx.doi.org/10.1175/1520-0485(1990)020<1742:TMACIG>2.0.CO;2
Whiteworth T., 1980, Zonation and geostrophic flow of the Antarctic Circumpolar Current at Drake Passage, Deep-Sea Res., A(27), 497-507,
http://dx.doi.org/10.1016/j.marmicro.2005.11.005
Wilke I., Bickert T., Peeters F. J.C., 2006, The influence of seawater carbonate ion concentration [CO
23- ] on the stable carbon isotope composition of the planktic foraminifera species Globorotalia inflate, Mar. Micropaleontol., 58 (4), 243-258,
http://dx.doi.org/10.1016/j.marmicro.2005.11.005
Woodruff F., Savin S. M., Abel L., 1990, Miocene benthic foraminifer oxygen and carbon isotopes, site 709, Indian Ocean, [in:] Proceedings of the Ocean Drilling Program. Scientific results, Vol. 115, College Station, TX (Ocean Drilling Program), R. A. Duncan, J. Backman, L. C Peterson et al. (eds.), 519-528,
http://dx.doi.org/10.2973/odp.proc.sr.115.147.1990
Wyrtki K., 1971, Oceanographic atlas of the international Indian Ocean Expedition, National Sci. Found., Washington D. C., 531 pp.
Wyrtki K., 1973, An equatorial jet in the Indian Ocean, Science, 181 (4096), 262-264,
http://dx.doi.org/10.1126/science.181.4096.262
A huge biocatalytic filter in the centre ofBarents Sea shelf?
Oceanologia 2012, 54(2), 325-335
http://dx.doi.org/10.5697/oc.54-2.325
Jan Marcin Węsławski1,*, Monika Kędra1, Joanna Przytarska1, Lech Kotwicki1, Ingrid Ellingsen2, Jofrid Skardhamar3, Paul Renaud4, Ilona Goszczko1
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: weslaw@iopan.gda.pl
*corresponding author
2SINTEF, Fisheries and Aquaculture,
Brattørkaia 17B, Trondheim 7465, Norway
3Institue of Marine Research,
P.O. Box 6404, Tromsø 9294, Norway
4Akvaplan-NIVA, Fram Centre for Climate and the Environment,
Tromsø 9296, Norway
keywords:
permeable sediments, pelago-benthic coupling, Svalbard, European Arctic
Received 18 October 2011, revised 6 February 2012, accepted 27 March 2012.
The present paper was based on the BANKMOD bilateral Norwegian - Polish projects (NFR 184719) and
was completed thanks to additional financial support from the Polish Ministry of Science and Higher Education (384/W-Bankmod/2009/0 and 382/W-Akvaplan-niva/2009/0).
Abstract
A primary production model for the Barents Sea shows a hot spot of organic carbon settlement to the sea bed over
100 km long, a shallow pile of highly permeable sediments (mainly large Balanus, Mya and Pecten shell fragments over
1 cm in size) of glacial origin. Hydrodynamic flow models suggest an intensive, deep flow of near-bottom waters into the sediment. Depending
on wave height, water in shallow (30 m depth) places may percolate more than 5 m into the sediment. During 10 days of stormy weather as much
as 4 to 8 kg wet weight pelagic biomass can be processed per square metre through this extremely permeable
sediment. Analogous processes known in coastal waters lead to intense biocatalytic phenomena and metabolism of organic carbon
within the seabed, estimated here as more intense than surface consumption. Spitsbergenbanken may be acting as a huge sink for
organic carbon and an important source of nutrients in one of the most productive areas of the North Atlantic.
References
Adlandsvik B., Hansen R., 1998, Numerical simulation of the circulation in the Svalbardbanken area in the Barents Sea, Cont. Shelf. Res., 18 (2-4), 341-355,
http://dx.doi.org/10.1016/S0278-4343(97)00063-0
Bjorlykke K., Bue B., Elverhoi A., 1978, Quaternary sediments in the northwestern part of the Barents Sea and their relation to the underlying Mesozoic bedrock, Sedimentology, 25 (2), 227-246,
http://dx.doi.org/10.1111/j.1365-3091.1978.tb00310.x
Ehrenhauss S., Witte U., Buhring S. I., Huettel M., 2004, Effect of advective pore water transport on distribution and degradation of diatoms in permeable North Sea sediments, Mar. Ecol.-Prog. Ser., 271, 99-111,
http://dx.doi.org/10.3354/meps271099
Elverhøi A., Solheim A., 1983, The physical environment - western Barents Sea, 1:1500000, Sheet A: Surface sediment distribution, Norsk Polarinst. Skrift., 179A, 23 pp. + map.
Franco M. A., Soetaert K., Van Oevelen D., Van Gansbeke D., Costa M. J., Vincx M., Vanaverbeke J., 2008, Density, vertical distribution and trophic responses of metazoan meiobenthos to phytoplankton deposition in contrasting sediment types, Mar. Ecol.-Prog. Ser., 358, 51-62,
http://dx.doi.org/10.3354/meps07361
Franco M. D., Vanaverbeke J., Van Oevelen D., Soetaert K., Costa M. J., Vincx M., Moens T., 2010, Respiration partitioning in contrasting subtidal sediments: seasonality and response to a spring phytoplankton deposition, Mar. Ecol.,
31 (2), 276-290,
http://dx.doi.org/10.1111/j.1439-0485.2009.00319.x
Freiwald A., 1998, Modern nearshore cold-temperate calcareous sediments in the Troms district, Northern Norway, J. Sediment. Res., 68 (5), 763-776.
Gibbes B., Robinson C., Li L., Lockington D., Li H., 2008, Tidally driven pore water exchange within offshore intertidal sandbanks: Part II numerical simulations, Estuar. Coast. Shelf Sci., 80 (4), 472-482,
http://dx.doi.org/10.1016/j.ecss.2008.08.021
Gihring T. M., Humphrys M., Mills H. J., Huettel M., Kostka J. E., 2009, Identification of phytodetritus-degrading microbial communities in sublittoral Gulf of Mexico sands, Limnol. Oceanogr., 54 (4), 1073-1083,
http://dx.doi.org/10.4319/lo.2009.54.4.1073
Huettel M., Ziebis W., Forster S., 1996, Flow-induced uptake of particulate matter in permeable sediments, Limnol. Oceanog., 41 (2), 309-322,
http://dx.doi.org/10.4319/lo.1996.41.2.0309
Idelson M. S., 1930, A preliminary quantitative evaluation of the bottom fauna of Spitsbergen Bank, Trudy Morsk. Nauchn. Inst., 4, 26-46, (in Russian).
Jahnke R., Richards M., Nelson J., Robertson C., Rao A., Jahnke D., 2005, Organic matter remineralization and porewater exchange rates in permeable South Atlantic Bight continental shelf sediments, Cont. Shelf Res., 25 (12-13), 1433-1452,
http://dx.doi.org/10.1016/j.csr.2005.04.002
King J. N., Mehta A. J., Dean R. G., 2009, Generalized analytical model for benthic water flux forced by surface gravity waves, J. Geophys. Res., 114, C04004,
http://dx.doi.org/10.1029/2008JC005116
Kluke A., Dirksen C., 1986, Hydraulic conductivity and diffusivity: laboratorymethods, [in:] Methods of soil analysis, Part 1. Physical and mineralogical methods, Agron. Monogr., 9, 2nd edn., American Soc. Agron., 687-734.
Kowalik Z., Proshutinsky Y. A., 1995, Topographic enhancement of tidal motion in the western Barents Sea, J. Geophys. Res., 100 (C2), 2613-2637,
http://dx.doi.org/10.1029/94JC02838
Massel S. R., 1999, Fluid mechanics for marine ecologists, Springer, Heidelberg, 566 pp.,
http://dx.doi.org/10.1007/978-3-642-60209-2
Massel S. R., Przyborska A., Przyborski M., 2004, Attenuation of wave-induced groundwater pressure in shallow water. Part 1, Oceanologia, 46 (3), 383-404.
Massel S. R., Przyborska A., Przyborski M., 2005, Attenuation of wave-induced groundwater pressure in shallow water. Part 2. Theory, Oceanologia, 47 (3), 281-323.
Opaliński K. W., Maciejewska K., Urban-Malinga B., Węsławski J. M., 2010, The oxygen fluxes of sandy littoral areas: Quantifying primary and secondary producers in the Baltic Sea, Mar. Pollut. Bull., 61 (4-6), 211-214,
http://dx.doi.org/10.1016/j.marpolbul.2010.02.016
Piepenburg D., Blackburn T. H., von Dorien C. F., Gutt J., Hall P. O. J., Hulth A., Kendall M. A., Opaliński K. W., Rachor E., Schmid M. K., 1995, Partitioning of benthic communities respiration in the Arctic NW Barents Sea, Mar. Ecol.-Prog. Ser., 118, 199-213,
http://dx.doi.org/10.3354/meps118199
Piwosz K., Walkusz W., Hapter R., Wieczorek P., Hop H., Wiktor J., 2009, Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002, Polar Biol., 32 (4), 549-559,
http://dx.doi.org/10.1007/s00300-008-0549-2
Rao A. M. F., McCarthy M. J., Gardner W. S., Jahnke R. A., 2008, Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: N2 :Ar and isotope pairing measurements in sediment column experiments, Cont. Shelf Res., 28 (4-5), 602-613,
http://dx.doi.org/10.1016/j.csr.2007.11.007
Reidenbach M. A., Limm M., Hondzo M., Stacey M. T., 2010, Effects of bed roughness on boundary layer mixing and mass flux across the sediment-water interface, Water Res., 46, W07530,
http://dx.doi.org/10.1029/2009WR008248
Reimers C. E., Stecher H. A., Taghon G. L., Fuller C. M., Huettel M., Rusch A., Ryckelynck N., Wild C., 2004, In situ measurements of advective solute transport in permeable shelf sands, Cont. Shelf Res., 24 (2), 183-201,
http://dx.doi.org/10.1016/j.csr.2003.10.005
Renaud P. E., Morata N., Ambrose W. G. Jr., Bowie J. J., Chiuchiolo A., 2007, Carbon cycling by seafloor communities on the eastern Beaufort Sea shelf, J. Exp. Mar. Biol. Ecol., 349 (2), 248-260,
http://dx.doi.org/10.1016/j.jembe.2007.05.021
Rocha C., 2008, Sandy sediments as active biogeochemical reactors: compound cycling in the fast lane, Aquat. Microb. Ecol., 53 (1), 119-127,
http://dx.doi.org/10.3354/ame01221
Rusch A., Huettel M., Reimers C.E., Taghon G. L., Fuller C.M., 2003, Activity and distribution of bacterial populations in Middle Atlantic Bight shelf sands, FEMS Microbiol. Ecol., 44 (1), 89-100,
http://dx.doi.org/10.1111/j.1574-6941.2003.tb01093.x
Rusch A., Huettel M., Wild Ch., Reimers C. E., 2006, Benthic oxygen consumption and organic matter turnover in organic poor permeable shelf sands, Aquat.
Geochem., 12 (1), 1-19,
http://dx.doi.org/10.1007/s10498-005-0784-x
Sakshaug E., 1997, Biomass and productivity distributions and their variability in the Barents Sea, ICES J. Marine Sci., 54 (3), 341-350,
http://dx.doi.org/10.1006/jmsc.1996.0170
Sakshaug E., Slagstad D., 1991, Light and productivity of phytoplankton in polar marine ecosystems: a physiological view, Polar Res., 10 (1), 69-85,
http://dx.doi.org/10.1111/j.1751-8369.1991.tb00636.x
Sakshaug E., Slagstad D., 1992, Sea ice and wind: Effects on primary productivity in the Barents Sea, Atmos.-Ocean, 30 (4), 579-591,
http://dx.doi.org/10.1080/07055900.1992.9649456
Slagstad D., McClimans T., 2005, Modelling the ecosystem dynamics of the Barents Sea including the marginal ice zone: I. Physical and chemical oceanography, J. Marine Syst., 58 (1-2), 1-18,
http://dx.doi.org/10.1016/j.jmarsys.2005.05.005
Wassmann P., Slagstad D., Ellingsen I., 2010, Primary production and climatic variability in the European sector of the Arctic Ocean prior to 2007: preliminary results, Polar Biol., 33 (12), 1641-1650,
http://dx.doi.org/10.1007/s00300-010-0839-3