Oceanologia No. 53 (3) / 11


Contents


Obituary


Invited Paper


Papers


Invited Paper



A brief analysis of North Sea physics
Oceanologia 2011, 53(3), 663-689
http://dx.doi.org/10.5697/oc.53-3.663

Jürgen Sündermann*, Thomas Pohlmann
Institute of Oceanography, University of Hamburg,
Bundesstr. 53, Hamburg D-20146, Germany;
e-mail: juergen.suendermann@zmaw.de
*corresponding author

keywords: shelf seas, marine physics, dynamical balances, tides, circulation, surges

Received 30 July 2011, revised 22 August 2011, accepted 29 August 2011.

Abstract

The current state of understanding the North Sea's physical system is presented. First, basic phenomena like astronomical tides and general circulation will be described and analysed with respect to their physical nature and respective interactions. There will be special focus on fundamental dynamic balances. Next, some specific topics relevant to the marine ecosystem, the economy and society will be considered: among them, spreading and transport processes, the fresh water budget, the heat budget and storm surges. A separate section is dedicated to the North Sea of Tomorrow, i.e. the prospective variations of the physical environment resulting from global changes in future decades. The statements are based on the long experience of the authors and their groups and include findings that are little known if at all. The review finishes with a list of open questions and the corresponding research demands.

  References ref

Backhaus J.O., 1985, A three-dimensional model for the simulation of shelf sea dynamics, Dt. Hydrogr. Z., 38 (4), 165–187. http://dx.doi.org/10.1007/BF02328975

Backhaus J.O., Pohlmann T., Hainbucher D., 1986, Regional aspects of the circulation on the North European shelf, ICES Hydrogr. Comm., C38, p. 9.

Brettschneider G., 1967, Anwendung des hydrodynamisch-numerischen Verfahrens zur Ermittlung der M2-Mitschwingungsgezeit der Nordsee, Mitt. Inst. Meereskd. Univ. Hamburg, 7, 65 pp.

Charnock H., Dyer K.R., Huthnance J.M., Liss P. S., Simpson J.H., Tett P.B. (eds.), 1994, Understanding the North Sea system, Chapman & Hall, London, 222 pp.

Damm P., 1997, Die saisonale Salzgehalts- und Frischwasserverteilung in der Nordsee und ihre Bilanzierung, Ber. Zentr. Meeres- Klimaforsch. Univ. Hamburg, B(28), 259 pp.

Delhez E. J.M., Damm P., de Goede E., de Kok J.M., Dumas F., Gerritsen H., Jones J.E., Ozer J., Pohlmann T., Rasch P. S., Skogen M., Proctor R., 2004, Variability of shelf-seas hydrodynamic models: lessons from the NOMADS2 Project, J. Marine Syst., 45 (1–2), 39–53. http://dx.doi.org/10.1016/j.jmarsys.2003.09.003

Edwards M., Reid P., 2001, Implications of wider Atlantic influences on regional seas with particular reference to phytoplankton populations and eutrophication, OSPAR Convent. Protect. Mar. Environ. North Atlantic,Eutrophicat. Task Group (ETG), London, 10 pp.

Hewer R., 1980, Untersuchung zur Entwicklung von Extremsturmfluten an der deutschen Nordseeküste auf der Basis hydrodynamisch-numerischer Modelle, Diplomarbeit, Univ. Hamburg.

Jungclaus J., Wagner V., 1988, Meeresspiegelanstieg und seine Auswirkungen auf das Schwingungssystem der Nordsee, Diplomarbeit, Univ. Hamburg, 132 pp.

Kauker F., 1998, Regionalization of climate model results for the North Sea, Dissertation, Univ. Hamburg, 111 pp.

Laane R., van Leussen W., Berlamont J., Sündermann J., van RaaphorstW., Colijn F., 1996, North-West European Shelf Programme (NOWESP): an overview, Dt. Hydrogr. Z., 48 (3–4), 217–230. http://dx.doi.org/10.1007/BF02799372

Langenberg H., Pfitzenmayer A., von Storch H., Sündermann, 1999, Stormrelated sea level variations along the North Sea coast: natural variability and anthropogenic change, Cont. Shelf Res., 19 (6), 821–842. http://dx.doi.org/10.1016/S0278-4343(98)00113-7

Löwe P., Koslowski G., 1993, The western Baltic sea ice season in terms of a massrelated severity index: 1879–1992. Part II: Spectral characteristics and the associations with the NAO, QBO and solar cycle, BSH – Sea Ice Branch Report No. 2, 26 pp.

Lozan J., Rachor E., Reise K., Sündermann J., von Westernhagen H. (eds.), 2003, Warnsignale aus Nordsee und Wattenmeer. Eine aktuelle Umweltbilanz, Wiss. Auswertungen, Hamburg, 447 pp.

Otto L., Zimmermann J.T. F., Furnes G.K., Mork M., Saetre R., Becker G., 1990, Review of the physical oceanography of the North Sea, Neth. J. Sea Res., 26(2–4), 161–238. http://dx.doi.org/10.1016/0077-7579(90)90091-T

Pohlmann T., 1996. Calculating the development of the thermal vertical stratification in the North Sea with a three-dimensional baroclinic circulation model, Cont. Shelf Res., 16 (2), 163–194. http://dx.doi.org/10.1016/0278-4343(95)00018-V

Pohlmann T., 2003, Eine Bewertung der hydro-thermodynamischen Nordseemodellierung, Ber. Zentr. Meeres- Klimaforsch. Univ. Hamburg, B(46), 141 pp.

Pohlmann T., 2006, A meso-scale model of the central and southern North Sea: consequences of an improved resolution, Cont. Shelf Res., 26 (19), 2367–2385. http://dx.doi.org/10.1016/j.csr.2006.06.011

Prandle D. (ed.), 2000, Pre-operational modelling in the shelf seas of Europe. The PROMISE Project, Coast. Eng., 41 (1–3), 359 pp.

Proctor R. (ed.), 1997, NOMADS – North Sea model advection-dispersion study. Final Report, POL Internal Document No. 108, 55 pp.

Ruddick K. (ed.), 1997, Processes in regions of freshwater influence (PROFILE), J. Marine Syst., 12 (1–4), 323 pp.

Sager G., 1959, Gezeiten und Schiffahrt, Fachbuchverlag, Leipzig, 173 pp.

Sarkisyan A. S., Sündermann J., 2009,Modelling ocean climate variability, Springer, 374 pp. http://dx.doi.org/10.1007/978-1-4020-9208-4

Schrum C., Sigismund F., 2001, Modellkonfiguration des Nordsee/Ostsee-Modells. 40-Jahres NCEP Integration, Ber. Zentr. Meeres- Klimaforsch. Univ. Hamburg, B(4), 178 pp.

Sündermann J., 1966, Ein Vergleich zwischen der analytischen und der numerischen Berechnung winderzeugter Strömungen und Wasserstände in einem Modellmeer mit Anwendungen auf die Nordsee, Mitt. Inst. Meereskd. Univ. Hamburg, 4, 100 pp.

Sündermann J. (ed.), 1994, Circulation and contaminant fluxes in the North Sea, Springer, Berlin, 654 pp.

Sündermann J., 2003a, Forschungsbedarf, [in:] Warnsignale aus Nordsee und Wattenmeer, J.E. Lozan, E. Rachor, K. Reise, J. Sündermann & H. von Westernhagen (eds.), Wiss. Auswertungen, Hamburg, 408–412.

Sündermann J., 2003b, The changing North Sea: knowledge, speculation and new challenges, Oceanologia, 45 (2), 247–259.

Sündermann J., Becker G., Damm P., van den Eynde D., Frohse A., Laane R., van Leussen W., Pohlmann T., van Raaphorst W., Radach G., Schultz H., Visser M., 1996, Decadal variability on the Northwest European shelf, Dt. Hydrogr. Z., 48 (3–4), 365–400. http://dx.doi.org/10.1007/BF02799379

Sündermann J., Beddig S., Kröncke I., Radach G., Schlünzen H., 2001, The changing North Sea – knowledge, speculation and new challenges, Ber. Zentr. Meeres- Klimaforsch. Univ. Hamburg, Z (3), 358 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 3.13 MB

Papers



Inherent optical properties of suspended particulate matter in the southern Baltic Sea
Oceanologia 2011, 53(3), 691-729
http://dx.doi.org/10.5697/oc.53-3.691

Sławomir B. Woźniak*, Justyna Meler, Barbara Lednicka, Agnieszka Zdun, Joanna Stoń-Egiert
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: woznjr@iopan.gda.pl
*corresponding author

keywords: suspended particulate matter, inherent optical properties, light absorption, scattering and backscattering coefficients of particles

Received 14 December 2010, revised 16 June 2011, accepted 17 June 2011.

Financial support for this study was provided by research project grant No. N306 2838 33 awarded to S. B. Woźniak by the Polish Ministry of Science and Higher Education and by Statutory Research Programme No. I.1 at the Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland.

Abstract

The inherent optical properties (IOPs) of suspended particulate matter and their relations with the main biogeochemical characteristics of particles have been examined in the surface waters of the southern Baltic Sea. The empirical data were gathered at over 300 stations in open Baltic Sea waters as well as in the coastal waters of the Gulf of Gdańsk. The measurements included IOPs such as the absorption coefficient of particles, absorption coefficient of phytoplankton, scattering and backscattering coefficients of particles, as well as biogeochemical characteristics of suspended matter such as concentrations of suspended particulate matter (SPM), particulate organic matter (POM), particulate organic carbon (POC) and chlorophyll a (Chl a). Our data documented the very extensive variability in the study area of particle concentration measures and IOPs (up to two orders of magnitude). Although most of the particle populations encountered were composed primarily of organic matter (av. POM/SPM = ca 0.8), the different particle concentration ratios suggest that the particle composition varied significantly. The relations between the optical properties and biogeochemical parameters of suspended matter were examined. We found significant variability in the constituent-specific IOPs (coefficients of variation (CVs) of at least 30% to 40%, usually more than 50%). Simple best-fit relations between any given IOP versus any constituent concentration parameter also highlighted the significant statistical errors involved. As a result, we conclude that for southern Baltic samples an easy yet precise quantification of particle IOPs in terms of the concentration of only one of the following parameters - SPM, POM, POC or Chl a - is not achievable. Nevertheless, we present a set of best statistical formulas for a rough estimate of certain seawater constituent concentrations based on relatively easily measurable values of seawater IOPs. These equations can be implemented in practice, but their application will inevitably entail effective statistical errors of estimation of the order of 50% or more.

  References ref

Arst H., 2003, Optical properties and remote sensing of multicomponental water bodies, Springer, Praxis, New York, 231 pp.

Babin M., Morel A., Fournier-Sicre V., Fell F., Stramski D., 2003a, Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration, Limnol. Oceanogr., 48 (2), 843-859. http://dx.doi.org/10.4319/lo.2003.48.2.0843

Babin M., Stramski D., Ferrari G.M., Claustre H., Bricaud A., Obolensky G., Hoepffner N., 2003b, Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res., 108 (C7), 3211, 20 pp. http://dx.doi.org/10.1029/2001JC000882

Bohren C. F., Huffman D.R., 1983, Absorption and scattering of light by small particles, Wiley, New York, 530 pp.

Bricaud A., Morel A., Babin M., Allali K., Claustre H., 1998, Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, J. Geophys. Res., 103 (C13), 31033-31044. http://dx.doi.org/10.1029/98JC02712

Bricaud A., Stramski D., 1990, Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso Sea, Limnol. Oceanogr., 35 (3), 562-582.

Dana D.R., Maffione R.A., 2002, Determining the backward scattering coefficient with fixed-angle backscattering sensors - revisited, Ocean Optics XVI Conf., 18-22 November, Santa Fe, New Mexico, 9 pp.

Dera J., 1992, Marine physics, Elsevier, Amsterdam, 516 pp.

Dera J., 2003, Marine physics, 2nd edn., PWN, Warszawa, 541 pp., (in Polish).

Dera J., Wozniak B., 2010, Solar radiation in the Baltic Sea, Oceanologia, 52 (4), 533-582.

Gallegos C. L., Jordan T.E., Hines A.H., Weller D.E., 2005, Temporal variability of optical properties in a shallow, eutrophic estuary: seasonal and interannual variability, Estuar. Coast. Shelf Sci., 64 (2-3), 156-170. http://dx.doi.org/10.1016/j.ecss.2005.01.013

Gordon H.R., 2002, Inverse methods in hydrologic optics, Oceanologia, 44 (1), 9-58.

Gordon H.R., Brown O.B., Jacobs M.M., 1975, Computed relationships between inherent and apparent optical properties of a flat, homogeneous ocean, Appl. Optics, 14 (2), 417-427. http://dx.doi.org/10.1364/AO.14.000417

Green R.E., Sosik H.M., Olson R. J., 2003, Contributions of phytoplankton and other particles to inherent optical properties in New England continental shelf waters, Limnol. Oceanogr., 48 (6), 2377-2391. http://dx.doi.org/10.4319/lo.2003.48.6.2377

HOBI Labs (Hydro-Optics, Biology, and Instrument. Lab. Inc.), 2008, HydroScat-4 Spectral Backscattering Sensor. USERS MANUAL, Rev. 4., June 15 2008, 65 pp.

Jonasz M., Fournier G.R., 2007, Light scattering by particles in water. Theoretical and experimental foundations, Acad. Press, Amsterdam, 704 pp.

Kaczmarek S., Stramski D., Stramska M., 2003, The new pathlength amplification factor investigation, Abstract Publ., Baltic Sea Sci. Congr., Helsinki, p. 149.

Kirk J.T.O., 1994, Light and photosynthesis in aquatic ecosystems, Cambridge Univ. Press, London, New York, 509 pp.. http://dx.doi.org/10.1017/CBO9780511623370

Maffione R.A., Dana D.R., 1997, Instruments and methods for measuring the backward-scattering coefficient of ocean waters, Appl. Optics, 36 (24), 6057-6067. http://dx.doi.org/10.1364/AO.36.006057

McKee D., Cunningham A., 2006, Identification and characterization of two optical water types in the Irish Sea from in situ inherent optical properties and seawater constituents, Estuar. Coast. Shelf Sci., 68 (1-2), 305-316. http://dx.doi.org/10.1016/j.ecss.2006.02.010

Mitchell B.G., 1990, Algorithm for determining the absorption coefficient of aquatic particulates using the quantitative filter technique, Proc. SPIE, Vol. 1302, 137-148. http://dx.doi.org/10.1117/12.21440

Morel A., 1974, Optical properties of pure water and pure sea water, [in:] Optical aspects of oceanography, M.G. Jerlov & E. S. Nielsen (eds.), Acad. Press, New York, 1-24.

Morel A., Bricaud A., 1981, Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton, Deep-Sea Res., 28 (11), 1375-1393. http://dx.doi.org/10.1016/0198-0149(81)90039-X

Morel A., Maritorena S., 2001, Bio-optical properties of oceanic waters: a reap-praisal, J. Geophys. Res., 106 (C4), 7163-7180. http://dx.doi.org/10.1029/2000JC000319

Morel A., Prieur L., 1977, Analysis of variations in ocean color, Limnol. Oceanogr., 22 (4), 709-722. http://dx.doi.org/10.4319/lo.1977.22.4.0709

Oubelkheir K., Clementson L.A., Webster I.T., Ford P.W., Dekker A.G., Radke L.C., Daniel P., 2006, Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system, J. Geophys. Res., 111, C07021, 15 pp.. http://dx.doi.org/10.1029/2005JC003113

Pearlman S.R., Costa H. S., Jung R.A., McKeown J. J., Pearson H.E., 1995, Solids (section 2540), [in:] Standard methods for the examination of water and wastewater, A.D. Eaton, L. S. Clesceri & A.E. Greenberg (eds.), APHA, Washington, D.C., 253-254.

Pegau W. S., Gray D., Zaneveld J.R.V., 1997, Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity, Appl. Optics, 36 (24), 6035-6046. http://dx.doi.org/10.1364/AO.36.006035

Snyder W.A., Arnone R.A., Davis C.O., Goode W., Gould R.W., Ladner S., Lamela G., Rhea W. J., Stavn R., Sydor M., Weidemann A., 2008, Optical scattering and backscattering by organic and inorganic particulates in U.S. coastal waters, Appl. Opt., 47 (5), 666-677. http://dx.doi.org/10.1364/AO.47.000666

Stavn R.H., Richter S. J., 2008, Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters, Appl. Optics, 47 (14), 2660-2679. http://dx.doi.org/10.1364/AO.47.002660

Stoń-Egiert J., Kosakowska A., 2005, RP-HPLC determination of phytoplankton pigments-comparison of calibration results for two columns, Mar. Biol., 147 (1), 251-260. http://dx.doi.org/10.1007/s00227-004-1551-z

Stoń-Egiert J., Aotocka M., Ostrowska M., Kosakowska A., 2010, The influence of biotic factors on phytoplankton pigment composition and resources in Baltic ecosystems: new analytical results, Oceanologia, 52 (1), 101-125.

Stramska M., Stramski D., Kaczmarek S., Allison D.B., Schwarz J., 2006, Seasonal and regional differentiation of bio-optical properties within the north polar Atlantic, J. Geophys. Res., 111, C08003, 16 pp.. http://dx.doi.org/10.1029/2005JC003293

Tassan S., Ferrari G.M., 1995, An alternative approach to absorption measurements of aquatic particles retained on filters, Limnol. Oceanogr., 40 (8), 1358-1368. http://dx.doi.org/10.4319/lo.1995.40.8.1358

Tassan S., Ferrari G.M., 2002, A sensitivity analysis of the "Transmittance-Reflectance" method for measuring light absorption by aquatic particles, J. Plankton Res., 24 (8), 757-774. http://dx.doi.org/10.1093/plankt/24.8.757

Trenberth K.E. (ed.), 1992, Climate system modeling, Cambridge Univ. Press, London-New York, 788 pp.

Vantrepotte V., Brunet C., Mériaux X., Lécuyer E., Vellucci V., Santer R., 2007, Bio-optical properties of coastal waters in the Eastern English Channel, Estuar. Coast. Shelf Sci., 72 (1-2), 201-212. http://dx.doi.org/10.1016/j.ecss.2006.10.016

Woźniak B., Dera J., Ficek D., Majchrowski R., Kaczmarek S., Ostrowska M., Koblentz-Mishke O. I., 1999, Modeling the influence of acclimation on the absorption properties of marine phytoplankton, Oceanologia, 41 (2), 187-210.

Woźniak S.B., Stramski D., Stramska M. Reynolds R.A., Wright V.M., Miksic E.Y., Cichocka M., Cieplak A.M., 2010, Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California, J. Geophys. Res., 115, C08027, 19 pp.. http://dx.doi.org/10.1029/2009JC005554

Zaneveld J.R.V., Kitchen J.C., Moore C., 1994, The scattering error correction of reflecting-tube absorption meters, Proc. SPIE Int. Soc. Opt. Eng., 2258, 44-55.



full, complete article (PDF - compatibile with Acrobat 4.0), 2.32 MB


Temporal and spatial changes in the bio-optical properties of seawater in the Nordic Seas - AREX'2003 and 2006
Oceanologia 2011, 53(3), 731-743
http://dx.doi.org/10.5697/oc.53-3.731

Violetta Drozdowska1, Larisa Poryvkina2
1Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: drozdowska@iopan.gda.pl
2Laser Diagnostic Instruments (LDI) Ltd.,
Tallinn, Estonia;
e-mail: larisa@ldi.ee

keywords: chlorophylls, phytoplankton, Nordic Seas

Received 23 March 2011, revised 16 May 2011, accepted 17 June 2011.

Abstract

For many years the Nordic Seas have been the subject of research into ocean circulation carried out by the Institute of Oceanology PAS, especially the inflow of Atlantic water and the intensive turbulent mixing of these waters with Arctic and shelf waters. Ocean currents affect various biological processes, among them the supply of organic matter and oxygen, which constitute the foundation for the unique flora and fauna of the Svalbard islands. Spectrophotometric examinations of surface waters using an M32 B spectrofluorophotometer (LDI Ltd.) were carried out repeatedly during Arctic cruises on board r/v "Oceania". The results presented in this paper come from the AREX campaigns of 2003 and 2006. Analysis of the chlorophyll a fluorescence excitation spectra recorded shows an increase in phytoplankton abundance and the changes in the spatial distribution of the phytoplankton species characteristic of Atlantic, Arctic and shelf waters. The spatial patterns of the phytoplankton pigments and their abundance were compared with the physical characteristics of water masses. The analysis confirmed that phytoplankton species move together with the Atlantic water as this flows into northern latitudes.

  References ref

Archibald J.M., Keeling P. J., 2002, Recycled plastids: a "green movement" in eukaryotic evolution, Trends Genet., 18 (11), 577–583. http://dx.doi.org/10.1016/S0168-9525(02)02777-4

Cisek M., Colao F., Demetrio E., Di Cicco A., Drozdowska V., Fiorani L., Goszczko I., Lazic V., Okladnikov I.G., Palucci A., Piechura J., Poggi C., Sighicelli M., Walczowski W., Wieczorek P., 2010, Remote and local monitoring of dissolved and suspended fluorescent organic matter off Svalbard, J. Optoelectron. Adv. M., 12 (7), 1604–1618.

Drozdowska V., 2007, Seasonal and spatial variability of surface seawater fluorescence properties in the Baltic and Nordic Seas: results of lidar experiments, Oceanologia, 49 (1), 59–69.

Howe C. J., Barbrook A.C., Nisbet R.E.R., Lockhart P. J., Larkum A.W.D., 2008, The origin of plastids, Philos. Trans. R. Soc. B, 363 (1504), 2675–2685. http://dx.doi.org/10.1098/rstb.2008.0050

Kostianoy A.G., Nihoul J.C. J., 2009, Frontal zones in the Norwegian, Greenland, Barents and Bering Seas, [in:] Influence of climate change on the changing Arctic and sub-Arctic conditions, J.C. J. Nihoul & A.G. Kostianoy (eds.), Springer, Dordrecht, 171–189.

Liu H., Probert I., Uitz J., Claustre H., Aris-Brosou S., Frada M., Not F., de Vargas C., 2009, Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans, PNAS, 106 (31), 12803–12808. http://dx.doi.org/10.1073/pnas.0905841106

Piechura J., Walczowski W., 1995, The Arctic Front: structure and dynamics, Oceanologia, 37 (1), 47–73.

Piechura J., Walczowski W., 2009, Warming of the West Spitsbergen Current and sea ice north of Svalbard, Oceanologia, 51 (2), 147–164.

Poryvkina L., Babichenko S., Leeben A., 2000, Analysis of phytoplankton pigments by excitation spectra of fluorescence, Proc. EARSeL-SIG-Worksh. 16–17 June 2000, Dresden/FRG, 9 pp.

Svendsen H., Beszczynska-Møller A., Hagen J.O., Lefauconnier B., Tverberg V., Gerland S., Ørbøk J.B., Bischof K., Papucci C., Zajączkowski M., Azzolini R., Bruland O., Wiencke C., Winther J.-G., Dallmann W., 2002, The physical environment of Kongsfiorden-Krossfjorden: an Arctic fjord system in Svalbard, Polar Res. http://dx.doi.org/10.1111/j.1751-8369.2002.tb00072.x

Walczowski W., Piechura J., 2007, Pathways of the Greenland Sea warming, Geophys. Res. Lett., 34, L10608. http://dx.doi.org/10.1029/2007GL029974

full, complete article (PDF - compatibile with Acrobat 4.0), 1.11 MB


Processes regulating pCO2 in the surface waters of the central eastern Gotland Sea: a model study
Oceanologia 2011, 53(3), 745-770
http://dx.doi.org/10.5697/oc.53-3.745

Ivan Kuznetsov1,*, Thomas Neumann1, Bernd Schneider1, Evgeniy Yakushev2
1Leibniz Institute for Baltic Sea Research,
Seestrasse 15, Rostock-Warnemünde 18119, Germany;
e-mail: ivan.kuznetsov@smhi.se
*corresponding author
2Norwegian Institute for Water Research,
PO Box 333, Blindern, Oslo 3, Norway

keywords: biogeochemical modelling, Baltic Sea, Non-Redfield stoichiometry, nitrogen fixation

Received 22 March 2011, revised 18 July 2011, accepted 2 August 2011.

The German section of the Baltic Monitoring Programme (COMBINE) in the Baltic Sea is conducted by the IOW on behalf of the Bundesamt für Seeschifffahrt and Hydrographie (BSH), financed by the Bundesministerium für Verkehr, Bau- und Wohnungswesen (BMCBW). This work was funded by DFG grant: NE G17/3-1 and the European Community's Seventh Framework Programme (FP/2007-2013) under grant agreement 217246 made with the joint Baltic Sea research and development programme BONUS (ECOSUPPORT).

Abstract

This work presents a one-dimensional simulation of the seasonal changes in CO2 partial pressure (pCO2). The results of the model were constrained using data from observations, which improved the model's ability to estimate nitrogen fixation in the central Baltic Sea and allowed the impact of nitrogen fixation on the ecological state of the Baltic Sea to be studied. The model used here is the public domain water-column model GOTM (General Ocean Turbulence Model), which in this study was coupled with a modifed Baltic Sea ecosystem model, ERGOM (The Baltic Sea Research Institute's ecosystem model). To estimate nitrogen fixation rates in the Gotland Sea, the ERGOM model was modified by including an additional cyanobacteria group able to fix nitrogen from March to June. Furthermore, the model was extended by a simple CO2 cycle. Variable C:P and N:P ratios, controlled by phosphate concentrations in ambient water, were used to represent cyanobacteria, detritus and sediment detritus. This approach improved the model's ability to reproduce sea-surface phosphate and pCO2 dynamics. The resulting nitrogen fixation rates in 2005 for the two simulations, with and without the additional cyanobacteria group, were 259 and 278 mmol N m-2 year-1respectively.

  References ref

BACC Author Team, 2008, Annexes, [in:] Assessment of climate change for the Baltic Sea Basin, Springer, New York, 379–398.

Burchard H., 2002, Applied turbulence modelling in marine waters, Lect. Notes Earth Sci., Vol. 100, Springer, Berlin, Heidelberg, New York, 215 pp.

Burchard H., Bolding K., Kühn W., Meister A., Neumann T., Umlauf L., 2006, Description of a flexible and extendable physical–biogeochemical model system for the water column, J. Marine Syst., 61 (3–4), 180–211.

Degerholm J., Gundersen K., Bergman B., Söderbäck E., 2006, Phosphoruslimited growth dynamics in two Baltic Sea cyanobacteria, Nodularia sp. and Aphanizomenon sp., FEMS Microbiol. Ecol., 58 (3), 323–332. http://dx.doi.org/10.1111/j.1574-6941.2006.00180.x

Dickson A., Millero F. J., 1987, A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep-Sea Res., 34 (10), 1733–1743. http://dx.doi.org/10.1016/0198-0149(87)90021-5

DOE, 1994, Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2.0, A.G. Dickson & C. Goyet (eds.), ORNL/CDIAC-74.

Fennel W., Neumann T., 1996, The mesoscale variability of nutrients and plankton as seen in a coupled model, Ger. J. Hydrogr., 48 (1), 49–71. http://dx.doi.org/10.1007/BF02794052

HELCOM, 2003, The Baltic marine environment 1999–2002, Baltic Sea Environ. Proc., 87, 47 pp.

Hjalmarsson S., Wesslander K., Anderson L.G., Omstedt A., Perttilä M., Mintrop L., 2008, Distribution, long-term development and mass balance calculation of total alkalinity in the baltic sea, Cont. Shelf Res., 28 (4–5), 593–601. http://dx.doi.org/10.1016/j.csr.2007.11.010

Howarth R., Marino R., Lane J., Cole J., 1988, Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Biogeochemical controls, Limnol. Oceanogr., 33 (4 pt. 2), 669–687. http://dx.doi.org/10.4319/lo.1988.33.4_part_2.0669

ICES, 2009, ICES dataset on ocean hydrography, The International Council for the Exploration of the Sea, Copenhagen.

Janssen F., Neumann T., Schmidt M., 2004, Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions, Mar. Ecol.-Prog. Ser., 275, 59–68. http://dx.doi.org/10.3354/meps275059

Kahru M., Savchuk O., Elmgren R., 2007, Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability, Mar. Ecol.-Prog. Ser., 343, 15–23. http://dx.doi.org/10.3354/meps06943

Kuznetsov I., Neumann T., Burchard H., 2008, Model study on the ecosystem impact of a variable C:N:P ratio for cyanobacteria in the Baltic Proper, Ecol. Model., 219 (1–2), 107–114. http://dx.doi.org/10.1016/j.ecolmodel.2008.08.002

Larsson U., Hajdu S., Walve J., Elgren R., 2001, Baltic Sea nitrogen fixation estimated from the summer increase in upper mixed layer total nitrogen, Limnol. Oceanogr., 46 (4), 811–820. http://dx.doi.org/10.4319/lo.2001.46.4.0811

Leinweber A., 2002, Saisonaler Kohlenstoffkreislauf im Oberflächenwasser der zentralen Ostsee: numerische Prozessstudien zur Simulation des CO2- Partialdrucks, Ph.D. thesis, Rostock Univ.

Liss P., Merlivat L., 1986, Air-sea gas exchange rates: introduction and synthesis, [in:] The role of air-sea exchange in geochemical cycling, P. Buat-Ménard, NATO ASI Ser., Vol. 185, Reidel, Dordrecht, 113–127.

Muller-Navarra D.C., Brett M.T., Liston A.M., Goldman C.R., 2000, A highly unsaturated fatty acid carbon transfer between primary producers and consumers, Nature, 403 (6765), 74–76, 10.1038/47469.

Nausch M., Nausch G., Wasmund N., 2004, Phosphorus dynamics during the transition from nitrogen to phosphate limitation in the central Baltic Sea, Mar. Ecol.-Prog. Ser., 266, 15–25. http://dx.doi.org/10.3354/meps266015

Neumann T., Fennel W., Kremp C., 2002, Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment, Global Biogeochem. Cy., 16 (3), 450. http://dx.doi.org/10.1029/2001GB001450

Neumann T., Schernewski G., 2005, An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea, J. Marine Syst., 56 (1–2), 195–206. http://dx.doi.org/10.1016/j.jmarsys.2004.10.002

Neumann T., Schernewski G., 2008, Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model, J. Marine Syst., 74 (1–2), 592–602. http://dx.doi.org/10.1016/j.jmarsys.2008.05.003

Omstedt A., Gustafsson E., Wesslander K., 2009, Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water, Cont. Shelf Res., 29 (7), 870–885. http://dx.doi.org/10.1016/j.csr.2009.01.006

Persson A., Grazzini F., 2005, User guide to ECMWF forecast products, Meteorol. Bull., M3.2, 153 pp.

Rahm L., Jonsson A., Wulff F., 2000, Nitrogen fixation in the Baltic Proper: an empirical study, J. Marine Syst., 25 (3–4), 239–248. http://dx.doi.org/10.1016/S0924-7963(00)00018-X

Savchuk O., Wulff F., 1999, Modelling regional and large-scale response of Baltic Sea ecosystems to nutrient load reductions, Hydrobiologia, 393 (0), 35–43. http://dx.doi.org/10.1023/A:1003529531198

Schernewski G., Neumann T., 2005, The trophic state of the Baltic Sea a century ago: a model simulation study, J. Marine Syst., 53 (1–4), 109–124. http://dx.doi.org/10.1016/j.jmarsys.2004.03.007

Schneider B., 2011, The CO2 system of the Baltic Sea: Biogeochemical control and impact of anthropogenic CO2, [in:] Global change and baltic coastal zones, G. Schernewski, J. Hofstede & T. Neumann, (eds.), Coastal Res. Lib., Vol. 1, Springer, Dordrecht, 33–50.

Schneider B., Kaitala S., Maunula P., 2006, Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements on a cargo ship, J.Marine Syst., 59 (3–4), 238–248. http://dx.doi.org/10.1016/j.jmarsys.2005.11.003

Schneider B., Kaitala S., Raateoja M., Sadkowiak B., 2009a, A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data, Cont. Shelf Res., 29 (11–12), 1535–1540. http://dx.doi.org/10.1016/j.csr.2009.04.001

Schneider B., Nausch G., Nagel K., Wasmund N., 2003, The surface water CO2 budget for the Baltic Proper: a new way to determine nitrogen fixation, J. Marine Syst., 42 (1–2), 53–64. http://dx.doi.org/10.1016/S0924-7963(03)00064-2

Schneider B., Nausch G., Pohl C., 2009b, Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water, Deep-Sea Res., (in press).

Stigebrandt A., Wulff F., 1987, A model for the dynamics of nutrients and oxygen in the Baltic Proper, J. Mar. Res., 45 (3), 729–759. http://dx.doi.org/10.1357/002224087788326812

Tyrrell T., Schneider B., Charalampopoulou A., Riebesell U., 2008, Coccolithophores and calcite saturation state in the Baltic and Black Seas, Biogeosciences, 5 (2), 485–494. http://dx.doi.org/10.5194/bg-5-485-2008

Umlauf L., Burchard H., 2003, A generic length-scale equation for geophysical turbulence models, J. Mar. Res., 61 (2), 235–265. http://dx.doi.org/10.1357/002224003322005087

Umlauf L., Burchard H., 2005, Second-order turbulence closure models for geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25 (7–8), 795–827. http://dx.doi.org/10.1016/j.csr.2004.08.004

Wasmund N., 1997, Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions, Int. Rev. Ges. Hydrobio., 82 (2), 169–184. http://dx.doi.org/10.1002/iroh.19970820205

Wasmund N., Voss M., Lochte K., 2001, Evidence of nitrogen fixation by nonheterocystous cyanobacteria in the Baltic Sea and re-calculation of a budget of nitrogen fixation, Mar. Ecol.-Prog. Ser., 214, 1–14. http://dx.doi.org/10.3354/meps214001

Weiss R., 1974, Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2 (3), 203–215. http://dx.doi.org/10.1016/0304-4203(74)90015-2

full, complete article (PDF - compatibile with Acrobat 4.0), 460 KB


On the possibility of convective overturning in the Słupsk Furrow overflow of the Baltic Sea
Oceanologia 2011, 53(3), 771-791
http://dx.doi.org/10.5697/oc.53-3.771

Victor Zhurbas1,2, Jüri Elken2, Vadim Paka3, Jan Piechura4,*, Irina Chubarenko3, Germo Väli2, Nikolay Golenko3, Sergey Shchuka1
1P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences,
Nakhimovsky Prospect 36, Moscow 117997, Russia
2Marine Systems Institute, Tallinn University of Technology,
Akadeemia tee 21, Tallinn 12118, Estonia
3Atlantic Branch of the P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences,
Prospect Mira 1, Kaliningrad 236000, Russia
4Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: piechura@iopan.gda.pl
*corresponding author

keywords: Baltic Sea, dense water overflows, gravity currents, convective overturns

Received 29 April 2011, revised 11 July 2011, accepted 2 August 2011.

The work was sponsored by the Russian Foundation for Basic Research (grant No. 09-05-00479) and the Estonian Science Foundation (grant No. 7328).

Abstract

Closely spaced CTD transects across the Słupsk Furrow displayed a "downward-bending" of salinity contours below the salinity interface on the southern flank due to a transverse circulation in the saline water overflow. Numerical simulation of a gravity current in an idealized channel with geometry, dimensions and initial density stratification all much the same as in the Słupsk Furrow was applied to verify whether the downward-bending could be transformed into an inverted density stratification. Some arguments in favour of the possibility of convective overturning due to the differential transverse advection beneath the gravity current, brought on by the numerical simulations, are discussed.

  References ref

Arneborg L., Fiekas V., Umlauf L., Burchard H., 2007, Gravity current dynamics and entrainment – a process study based on observations in the Arkona Basin, J. Phys. Oceanogr., 37 (8), 094–2113. http://dx.doi.org/10.1175/JPO3110.1

Baringer M., Price J.F., 1997, Mixing and spreading of the Mediterranean outflow, J. Phys. Oceanogr., 27 (8), 1654–1677. http://dx.doi.org/10.1175/1520-0485(1997)027<1654:MASOTM>2.0.CO;2

Blumberg A. F., Mellor G. L., 1987, A description of a coastal ocean circulation model, [in:] Three dimensional ocean models, N. S. Heaps (ed.), American Geophys. Union, Washington, D.C., 1–16.

Borenäs K., Hietala R., Laanearu J., Lundberg P., 2007, Some estimates of the Baltic deep water transport through the Stolpe trench, Tellus A, 59 (2), 238–248. http://dx.doi.org/10.1111/j.1600-0870.2006.00221.x

Borenäs K.M., Lundberg P.A., 1988, On the deep-water flow through the Faroe Bank Channel, J. Geophys. Res., 93 (C2), 1281–1292. http://dx.doi.org/10.1029/JC093iC02p01281

Burchard H., Janssen F., Bolding K., Umlauf L., Rennau H., 2009, Model simulations of dense bottom currents in the Western Baltic Sea, Cont. Shelf Res., 29 (1), 205–220. http://dx.doi.org/10.1016/j.csr.2007.09.010

Cenedese C., Adduce C., 2010, A new parameterization for entrainment in overflows, J. Phys. Oceanogr., 40 (8), 1835–1850. http://dx.doi.org/10.1175/2010JPO4374.1

Cenedese C., Whitehead J.A., Ascarelli T.A., Ohiwa M., 2004, A dense current flowing down a sloping bottom in a rotating fluid, J. Phys. Oceanogr., 34 (1), 188–203. http://dx.doi.org/10.1175/1520-0485(2004)034<0188:ADCFDA>2.0.CO;2

Cossu R., Wells M.G., Wåhlin A.K., 2010, Influence of the Coriolis force on the velocity structure of gravity currents in straight submarine channel systems, J. Geophys. Res., 115, C11016. http://dx.doi.org/10.1029/2010JC006208

Cushman-Roisin B., 1994, Introduction to geophysical fluid dynamics, Prentice-Hall, Upper Saddle River, N. J., 320 pp.

Darelius E., Wåhlin A., 2007, Downward flow of dense water leaning on a submarine ridge, Deep-Sea Res. Pt. I, 54 (7), 1173–1188. http://dx.doi.org/10.1016/j.dsr.2007.04.007

Ezer T., 2006, Topographic influence on overflow dynamics: idealized numerical simulations and the Faroe Bank Channel overflow, J. Geophys. Res., 111, C02002. http://dx.doi.org/10.1029/2005JC003195

Garrett C., MacCready P., Rhines P., 1993, Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping bottom, Annu. Rev. Fluid Mech., 25, 291–323. http://dx.doi.org/10.1146/annurev.fl.25.010193.001451

Hogg N.G., 1983, Hydraulic control and flow separation in a multi-layered fluid with applications to the Vema Channel, J. Phys. Oceanogr., 13 (4), 695–708. http://dx.doi.org/10.1175/1520-0485(1983)013<0695:HCAFSI>2.0.CO;2

Hogg N.G., Zenk W., 1997, Long-period changes in the bottom water flowing through Vema Channel, J. Geophys. Res., 102 (C7), 15636–15646. http://dx.doi.org/10.1029/97JC00591

Johnson G.C., Sanford T.B., 1992, Secondary circulation in the Faroe Bank channel outflow, J. Phys. Oceanogr., 22 (8), 927–933. http://dx.doi.org/10.1175/1520-0485(1992)022<0927:SCITFB>2.0.CO;2

Johnson G.C., Sanford T.B., Baringer M.O., 1994, Stress on the Mediterranean outflow plume. Part I: Velocity and water property measurements, J. Phys. Oceanogr., 24 (10), 2072–2083. http://dx.doi.org/10.1175/1520-0485(1994)024<2072:SOTMOP>2.0.CO;2

Krauss W., Brügge B., 1991, Wind-produced water exchange between the deep basins of the Baltic Sea, J. Phys. Oceanogr., 21 (3), 373–394. http://dx.doi.org/10.1175/1520-0485(1991)021<0373:WPWEBT>2.0.CO;2

Mauritzen C., Price J., Sanford T., Torres D., 2005, Circulation and mixing in the Faroese channels, Deep-Sea Res. Pt. I, 52 (6), 883–913. http://dx.doi.org/10.1016/j.dsr.2004.11.018

Mellor G. L., Yamada T., 1982, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20 (4), 851–875. http://dx.doi.org/10.1029/RG020i004p00851

Moum J.N., Perlin A., Klymak J.M., Levine M.D., Boyd T., Kosro P.M., 2004, Convectively-driven mixing in the bottom boundary layer over the continental shelf during downwelling, J. Phys. Oceanogr., 34 (10), 2189–2202. http://dx.doi.org/10.1175/1520-0485(2004)034<2189:CDMITB>2.0.CO;2

Paka V., 1996, Thermohaline structure of the waters over the cross-sections in the Słupsk Channel of the Baltic Sea in spring, 1993, Oceanology, 36 (2), 188–198.

Paka V., Golenko N., Korzh A., 2006, Distinctive features of water exchange across the Słupsk Sill (a full-scale experiment), Oceanologia, 48 (S), 37–54.

Paka V., Zhurbas V., Golenko N., Stefantsev L., 1998, Effect of the Ekman transport on the overflow of saline waters through the Słupsk Furrow in the Baltic Sea, Izv. Atmos. Oceanic Phys., 34 (5), 641–648.

Perlin A., Moum J.N., Klymak J.M, Levine M.D., Boyd T., Kosro P.M., 2007, Organization of stratification, turbulence, and veering in bottom Ekman layers, J. Geophys. Res., 112, C05S90, 12 pp.. http://dx.doi.org/10.1029/2004JC002641

Peters H., Johns W. E., Bower A. S., Fratantoni D.M., 2005, Mixing and entrainment in the Red Sea outflow plume. Part I: Plume structure, J. Phys. Oceanogr., 35 (5), 569–583. http://dx.doi.org/10.1175/JPO2689.1

Petrén O., Walin G., 1976, Some observations of the deep flow in the Bornholm strait during the period June 1973–December 1974, Tellus, 28 (1), 74–87. http://dx.doi.org/10.1111/j.2153-3490.1976.tb00653.X

Piechura J., Beszczyńska-Möller A., 2003, Inflow waters in the deep regions of the southern Baltic Sea – transport and transformations, Oceanologia, 45 (4), 593–621.

Smagorinsky J., 1963, General circulation experiment with the primitive equations. I. The basic experiment, Mon.Weather Rev., 91 (3), 99–164. http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

Umlauf L., Arneborg L., 2009a, Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure, J. Phys. Oceanogr., 39 (10), 2385–2401. http://dx.doi.org/10.1175/2009JPO4159.1

Umlauf L., Arneborg L., 2009b, Dynamics of rotating shallow gravity currents passing through a channel. Part II: Analysis, J. Phys. Oceanogr., 39 (10), 2402–2416. http://dx.doi.org/10.1175/2009JPO4164.1

Umlauf L., Arneborg L., Hofmeister R., Burchard H., 2010, Entrainment in shallow rotating gravity currents: a modeling study, J. Phys. Oceanogr., 40 (8), 1819–1834. http://dx.doi.org/10.1175/2010JPO4367.1

Wåhlin A.K., 2002, Topographic steering of dense currents with application to submarine canyons, Deep-Sea Res. Pt. I, 49 (2), 305–320. http://dx.doi.org/10.1016/S0967-0637(01)00058-9

Wåhlin A.K., 2004, Downward channelling of dense water in topographic corrugations, Deep-Sea Res. Pt. I, 51 (4), 577–590. http://dx.doi.org/10.1016/j.dsr.2003.11.002

full, complete article (PDF - compatibile with Acrobat 4.0), 1.28 MB


Effect of cadmium and glutathione on malic enzyme activity in brown shrimps (Crangon crangon) from the Gulf of Gdańsk
Oceanologia 2011, 53(3), 793-805
http://dx.doi.org/10.5697/oc.53-3.793

Natalia Niedźwiecka1, Adriana Mika1,2, Anna Białk-Bielińska2, Piotr Stepnowski2, Edward F. Skorkowski1,*
1Laboratory of Ecotoxicology, Gdańsk University Biological Station,
Ornitologów 26, Gdańsk-Sobieszewo 80-680, Poland;
e-mail: skorkows@biotech.ug.gda.pl
*corresponding author
2Department of Environmental Analysis, University of Gdańsk,
Sobieskiego 18/19, Gdańsk 80-952, Poland

keywords: Gulf of Gdańsk, shrimp, Crangon crangon, abdomen muscle, malic enzyme, cadmium, glutathione

Received 29 April 2011, revised 20 July 2011, accepted 12 August 2011.

This study was supported by the Polish Ministry of Science and Higher Education within the framework of project No. 538-L102-0787-1.

Abstract

The high level of cadmium in the abdominal muscle of the brown shrimp Crangon crangon is due to the serious pollution of the water in the Gulf of Gdańsk. The inhibition of malic enzyme (ME) activity by cadmium, and in consequence the reduced formation of NADPH, could interfere with cellular mechanisms for detoxifying the organism and reducing oxidative stress. The reduced glutathione (GSH) concentration in the abdominal muscle of C. crangon was calculated to be 5.8 mM. The objective of this study was to evaluate the part played by GSH in the effect of cadmium on the activity of NADP-dependent malic enzyme from abdominal muscles of brown shrimps. This enzyme is activated by certain divalent cations (Mg, Mn). The results demonstrate that cadmium inhibits ME activity from shrimp muscle, and that GSH and albumin can reduce this cadmium-inhibited NADP-dependent malic enzyme activity.

  References ref

Biegniewska A., Skorkowski E. F., 1983, Isolation and some properties of malic enzyme from the shrimp abdomen muscle, Comp. Biochem. Phys. B, 74 (3), 627–632. http://dx.doi.org/10.1016/0305-0491(83)90240-7

Biegniewska A., Thebault M.T., Ziętara M., Skorkowski E. F., 1993, Antagonism between cadmium chloride and divalent metal cations in the activation of malic enzyme, Comp. Biochem. Phys. C, 104 (1), 155–158. http://dx.doi.org/10.1016/0742-8413(93)90127-7

Canesi L., Viarengo A., 1997, Age-related differences in glutathione metabolism in mussel tissues (Mytilus edulis L.), Comp. Biochem. Phys. B, 116 (2), 217–221. http://dx.doi.org/10.1016/S0305-0491(96)00223-4

Castro-Gonzalez M. I., Mendez-Armenta M., 2008, Heavy metals: Implications associated to fish consumption, Environ. Toxicol. Phar., 26 (3), 263–271. http://dx.doi.org/10.1016/j.etap.2008.06.001

Gil F., Pla A., 2001, Biomarkers as biological indicators of xenobiotic exposure, J. Appl. Toxicol., 21 (4), 245–255. http://dx.doi.org/10.1002/jat.769

Griffith O.W., 1999, Biologic and pharmacologic regulation of mammalian glutathione synthesis, Free Radical Bio. Med., 27 (9–10), 922–935. http://dx.doi.org/10.1016/S0891-5849(99)00176-8

Kehrer J.P., Lund L.G., 1994, Cellular reducing equivalents and oxidative stress, Free Radical Bio. Med., 17 (1), 65–75. http://dx.doi.org/10.1016/0891-5849(94)90008-6

Lange A., Ausseil O., Segner H., 2002, Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc, Comp. Biochem. Phys. C, 131 (3), 231–243. http://dx.doi.org/10.1016/S1532-0456(02)00010-8

Liu Y., Liu J., Iszard M.B., Andrews G.K., Palmiter R.D., Klaassen C.D., 1995, Transgenic mice that overexpress metallothionein-I are protected from cadmium lethality and hepatotoxicity, Toxicol. Appl. Pharm., 135 (2), 222–228. http://dx.doi.org/10.1006/taap.1995.1227

Mommsen T.P., French C. J., Hochachka P.W., 1980, Sites and patterns of protein and amino acid utilization during the spawning migration of salmon, Can. J. Zool., 58 (10), 1785–1799. http://dx.doi.org/10.1139/z80-246

Mommsen T.P., 2004, Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work, Comp. Biochem. Phys. B, 139 (3), 383–400. http://dx.doi.org/10.1016/j.cbpc.2004.09.018

Napierska D., Thebault M.T., Pempkowiak J., Skorkowski E. F., 1997, Comparison of short-term cadmium poisoning in the shrimp Crangon crangon from the Baltic Sea and the shrimp Palaemon serratus from Atlantic Ocean with cadmium bioaccumulation and malic enzyme activity in abdomen muscle, Oceanologia, 39 (2), 137–146.

Napierska D., Radłowska M., 1998, Stress proteins induced by cadmium in the abdominal muscle of the shrimp Crangon crangon, Oceanologia, 40 (2), 157–162.

Skorkowski E.F., Biegniewska A., Aleksandrowicz Z., Świerczyński J., 1980, Comparative studies on NADP-linked dehydrogenases in some tissues of fish and crustaceans, Comp. Biochem. Phys. B, 65 (3), 559–562. http://dx.doi.org/10.1016/0305-0491(80)90312-0

Skorkowski E. F., Storey K.B., 1987, Affinity chromatography on 2′,5′-ADP- Sepharose 4B for purification of malic enzyme from crustacean muscle, J. Chromatogr., 389, 427–432. http://dx.doi.org/10.1016/S0021-9673(01)94454-1

Skorkowski E.F., 1988, Mitochondrial malic enzyme from crustacean and fish muscle, Comp. Biochem. Phys. B, 90 (1), 19–24. http://dx.doi.org/10.1016/0305-0491(88)90031-4

Spector T., 1978, Refinement of the Coomassie Blue method of protein quantitation. A simple and linear spectrophotometric assay for 0.5 to 50 μg of protein, Anal. Biochem., 86 (1), 142–146. http://dx.doi.org/10.1016/0003-2697(78)90327-5

Viarengo A., Canesi L., Pertica M., Livingstone D.R., 1991, Seasonal variations in the antioxidant defense systems and lipid peroxidation in the digestive gland of mussels, Comp. Biochem. Phys. C, 100 (1–2), 187–190. http://dx.doi.org/10.1016/0742-8413(91)90151-I

Waalkes M.P., 2000, Cadmium carcinogenesis in review, J. Inorg. Biochem., 79 (1–4), 241–244. http://dx.doi.org/10.1016/S0162-0134(00)00009-X

Waisberg M., Joseph P., Hale B., Beyersmann D., 2003, Molecular and cellular mechanisms of cadmium carcinogenesis, Toxicology, 192 (2–3), 95–117. http://dx.doi.org/10.1016/S0300-483X(03)00305-6

full, complete article (PDF - compatibile with Acrobat 4.0), 236 KB


Effect of mangrove forest structures on wave attenuation in coastal Vietnam
Oceanologia 2011, 53(3), 807-818
http://dx.doi.org/10.5697/oc.53-3.807

Tran Quang Bao
Vietnam Forestry University,
Xuan Mai, Chuong My, Ha Noi, Vietnam;
e-mail: baofuv@yahoo.com

keywords: mangrove forest, wave attenuation, mangrove band width, forest structures

Received 5 November 2011, revised 11 July 2011, accepted 2 August 2011.

Abstract

This paper analyses wave attenuation in coastal mangrove forests in Vietnam. Data from 32 mangrove plots of six species located in 2 coastal regions are used for this study. In each plot, mangrove forest structures and wave height at different cross-shore distances are measured. Wave height closely relates to cross-shore distances. 92 exponential regression equations are highly significant with R2 > 0.95 and P val. < 0.001. Wave height reduction depends on initial wave height, cross-shore distances, and mangrove forest structures. This relationship is used to define minimum mangrove band width for coastal protection from waves in Vietnam.

  References ref

Alongi D.M., 2008, Mangrove forests: resilience, protection from tsunamis, and responses to global climate change, Estuar. Coast. Shelf Sci., 76 (1), 1–13. http://dx.doi.org/10.1016/j.ecss.2007.08.024

Hong P.N., San H.T., 1993, Mangroves of Vietnam, IUCN, Bangkok, 158 pp.

Kathiresan K., Rajendran N., 2005, Coastal mangrove forests mitigated tsunami, Estuar. Coast. Shelf Sci., 65 (3), 601–606. http://dx.doi.org/10.1016/j.ecss.2005.06.022

Kobayashi N., Raichle A.W., Asano T., 1993, Wave attenuation by vegetation, J. Waterw. Port C. Div., 119 (1), 30–48. http://dx.doi.org/10.1061/(ASCE)0733-950X(1993)119:1(30)

Massel S.R., Furukawa K., Brinkman R.M., 1999, Surface wave propagation in mangrove forests, Fluid Dyn. Res., 24 (4), 219–249. http://dx.doi.org/10.1016/S0169-5983(98)00024-0

Mathers S., Zalasiewicz J., 1999, Holocene sedimentary architecture of the Red River Delta, Vietnam, J. Coastal Res., 15 (2), 314–325.

Mazda Y., MagiM., KogoM., Hong P.N., 1997a, Mangroves as a coastal protection from waves in the Tong King delta, Vietnam, Mangr. Salt Marsh., 1 (2), 127–135. http://dx.doi.org/10.1023/A:1009928003700

Mazda Y., Wolanski E., King B., Sase A., Ohtsuka D., Magi M., 1997b, Drag force due to vegetation in mangrove swamps, Mangr. Salt Marsh., 1 (3), 193–199. http://dx.doi.org/10.1023/A:1009949411068

Quartel S., Kroon A., Augustinus P.G.E.F., Van Santen P., Tri N.H., 2007, Wave attenuation in coastal mangroves in the Red River delta, Vietnam, J. Asian Earth Sci., 29 (4), 576–584. http://dx.doi.org/10.1016/j.jseaes.2006.05.008

Sterling J.E., Hurley M.M., Minh D. L., 2006, Vietnam: a natural history, Yale Univ. Press, 1–21 and 91–92.

Thompson C., Thompson T., 2008, First contact in the Greater Mekong: new species discoveries, WWF, Hanoi, 40 pp.

VEPA (Vietnam Environment Protection Agency), 2005, Overview of wetlands status in Vietnam following 15 years of Ramsar Convention implementation, VEPA, Hanoi, 72 pp.

Vo-Luong H.P., Massel S.R., 2006, Experiments on wave motion and suspended sediment concentration at Nang Hai, Can Gio mangrove forest, Southern Vietnam, Oceanologia, 48 (1), 23–40.

Vo-Luong H.P., Massel S.R., 2008, Energy dissipation in non-uniform mangrove forests of arbitrary depth, J. Marine Syst., 74 (2), 603–622. http://dx.doi.org/10.1016/j.jmarsys.2008.05.004

Wu Y., Falconer R.A., Struve J., 2001, Mathematical modelling of tidal currents in mangrove forests, Environ. Modell. Softw., 16 (1), 19–29. http://dx.doi.org/10.1016/S1364-8152(00)00059-1

full, complete article (PDF - compatibile with Acrobat 4.0), 301 KB


Phytoplankton and environmental variables as a water quality indicator for the beaches at Matrouh, south-eastern Mediterranean Sea, Egypt: an assessment
Oceanologia 2011, 53(3), 819-836
http://dx.doi.org/10.5697/oc.53-3.819

Samiha M. Gharib*, Zeinab M. El-Sherif, Ahmed M. Abdel-Halim, Ahmed A. Radwan
National Institute of Oceanography and Fisheries (NIOF),
Alexandria, Egypt;
e-mail: gharibsamiha@hotmail.com
*corresponding author

keywords: phytoplankton, environmental variables, diversity index, water quality, Matrouh beaches

Received 20 June 2011, revised 1 July 2011, accepted 2 August 2011.

Abstract

This study was carried out to determine the water quality of the beaches at Matrouh, south-eastern Mediterranean Sea, Egypt, by studying environmental variables as well as phytoplankton abundance and community structure. Surface water samples were monitored from a series of beach sites over a period of five seasons during 2009-2010. A total of 203 phytoplankton species were identified from seven algal divisions. Seasonal differences in the quantitative and qualitative composition of the phytoplankton communities in the different sites were marked. Nutrient concentrations and phytoplankton abundances were found to be poorer than those of many other areas along Egyptian coast. The Shannon-Wiener Diversity Index classified Matrouh water as being between clean and moderately polluted, whereas the WQI demonstrated that it was between good and excellent. It can be concluded that the index based on WQI is currently more suitable than the phytoplankton species index for assessing the quality of the water of the Matrouh beaches.

  References ref

Abdel-Aziz N.E., Gharib S.M., Dorgham M.M., 2006, The interaction between phytoplankton and zooplankton in a Lake-Sea connection, Alexandria, Egypt, Int. J. Oceans Oceanogr. Res. India Publ., 1 (1), 151–165.

APHA – American Publication Health Association, 1989, Standard methods for the examination of water and wastewater, 17th edn., APHA, Washington, D.C.

Azov Y., 1991, The Eastern Mediterranean – a marine desert?, Mar. Pollut. Bull., 23, 225–232. http://dx.doi.org/10.1016/0025-326X(91)90679-M

Bethoux J.P., Morin C., 1992, Phosphorus and nitrogen behavior in the Mediterranean Sea, Deep Sea Res., Pt. A, 39 (9), 1641–1654. http://dx.doi.org/10.1016/0198-0149(92)90053-V

DelgadoM., 1990, Phytoplankton distribution along the Spanish coast of the Alboran Sea, Sci. Mar., 54 (2), 169–178.

Dorgham M.M., 1997, Phytoplankton dynamics and ecology in a polluted area on the Alexandria Mediterranean coast, Proc. 3rd Int. Conf. "Mediterranean Coastal Environment", 11–14 November 1997, Qawra, Malta., Vol. 1, 151–160.

Dorgham M.M., Abdel-Aziz N.E., Okbah, M.A., 2004, Eutrophication problems in the Western Harbour of Alexandria, Egypt, Oceanologia, 46 (1), 25–44.

Dorgham M.M., EL-Samra M. I., Moustafa Th., 1987, Phytoplankton in an area of multi-polluting factors, west of Alexandria, Egypt, Qatar Univ. Sci. Bull., 7, 393–419.

Dowidar N.M., 1988, Productivity of the South eastern Mediterranean, [in:] Natural and man-made hazards, M. I. El-Sabh & T. S. Murty (eds.), Proc. Int. Symp., 3–9 August 1986, Rimouski Univ., Quebeck, D. Reidel Pub. Co., Dordrecht, 477–498.

El-Sherif Z., Mikhail S.K., 2003, Phytoplankton dynamics in the southwestern part of Abu Qir Bay, Alexandria, Egypt, Egypt. J. Aquat. Biol. Fish., 7 (1), 219–239.

El-Sherif Z.M., Gharib S.M., 1994, Phytoplankton production and composition in Abu-Qir Bay (Egypt), Proc. 4th Int. Conf. "Environmental Protection is a Must", 10–12 May 1994, Alexandria, Nat. Inst. Oceanogr. Fish., A.R.E., 291–306.

Fahmy M.A., Beltagi A. I., Abbas M.M., 1999, Nutrient salts and chlorophyll-a in the Egyptian Mediterranean Coastal Waters, MEDCOAST 99–EMECS 99 Joint Conf. "Land-Ocean Interactions: Managing Coastal Ecosystems", 9–13 November 1999, Antalya, Turkey.

Gharib S.M., 2006, Effect of freshwater flow on the succession and abundance of phytoplankton in Rosetta Estuary, Egypt, Int. J. Ocean Oceanogr., 1 (2), 207–225.

Gharib S.M., Dorgham M.M., 2006, Eutrophication stress on phytoplankton community in the Western Harbour of Alexandria, Egypt, Int. J. Ocean Oceanogr., 1 (1), 261–273.

Ignatiades L., 1969, Annual cycle, species diversity and succession of phytoplankton in lower Saronicus Bay, Aegean Sea, Mar. Biol., 3 (3), 196–200.

Irwin A. J., Finkel Z.V., Schofield O.M.E., 2006, Scaling-up from nutrient physiology to the size-structure of phytoplankton communities, J. Plankton Res., 28 (5), 459–471.

Ismael A.A., Dorgham M.M., 2003, Ecological indices as a tool for assessing pollution in El-Dekhaila Harbour (Alexandria, Egypt), Oceanologia, 45 (1), 121–131.

Kideys A. E., Unsal M., Bingel F., 1989, Seasonal changes in net phytoplankton off Erdemli, Northeastern Mediterranean, Doga, Turk. J. Botany, 13, 45–54.

Knoppers B., 1994, Aquatic primary production in coastal lagoons, Coastal Lagoon Processes No. 60, B. Kjefve (ed.), Elsevier Oceanogr. Ser., Amsterdam, 243–286.

Krom M.D., Kress N., Brenner S., 1991, Phosphorus limitation of primary productivity in the eastern Mediterranean Sea, Limnol. Oceanogr., 36 (3), 424–432.

Labib W., 1994, Ecological study of spring-early summer phytoplankton blooms in a semi-enclosed estuary, Chem. Ecol., 9 (2), 75–85.

Lyons K.G., Brigham C.A., Traut B.H., 2005, Rare species and ecosystem functioning, Conserv. Biol., 19 (4), 1019–1024. http://dx.doi.org/10.1111/j.1523-1739.2005.00106.x

Margalaf D.R., 1978, Life forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta, 1 (4), 493–509.

Mikhail S.K., 2001, Phytoplankton variability in the Eastern Harbour of Alexandria during 2000, Bull. Natl. Oceanogr. Fish., A.R.E., 27, 32–52.

Naz M., Turkmen M., 2005, Phytoplankton biomass and species composition of Lake Gülba¸sı (Hatay-Turkey) , Turk. J. Biol., 29, 49–56.

Nixon S.W., 1982, Nutrient dynamics, primary production and fisheries yields of lagoons, Oceanol. Acta, 4 (Suppl.), 357–371.

Pielou E.C., 1975, Ecological diversity, Wiley-Intersci., New York, 165 pp.

Polat S., PinerM.P., 2002, Nutrients and phytoplankton in the Babadillimani Bight, northeastern Mediterranean coast of Turky, Indian J. Mar. Sci., 31 (3), 188–194.

Redfield B.C., 1958, The biology control of chemical factors in the environment, Am. Sci., 46, 205–221.

Reynolds C. S., 1984, The ecology of freshwater phytoplankton, Cambridge Univ. Press, Cambridge, New York, 384 pp.

Sanchez E., Colmenarejo M. F., Vicente J., Rubio A., Garcia G., Travieso L., Borja R., 2007, Use of the Water Quality Index and dissolved oxygen deficit as simple indicators of watershed pollution, ecological indicators, Ecol. Indic., 7 (1), 315–328.

Sargaonkar A., Deshpande V., 2003, Development of an Overall Index of Pollution for surface water based on a general classification scheme in the Indian context, Environ. Monit. Assess., 89 (1), 43–67.

Shams El Din N., Abdel Halim A.M., 2008, Changes in phytoplankton community structure at three touristic sites at western Alexandria Beach, Egypt. J. Aquat. Biol. Fish., 12 (4), 85–118.

Shams El Din N., Dorgham M.M., 2007, Phytoplankton community in Abu-Qir Bay as a hot spot of the southeastern Mediterranean coast, Egypt. J. Aquat. Res., 33 (1), 163–182.

Shannon C.E., Wiener, 1963, The mathematical theory of communications, Univ. Illinois, Urbana, 117 pp.

Shashi Shekhar T.R., Kiran B.R., Puttaiah E.T., Shivaraj Y., Mahadevan K.M., 2008, Phytoplankton as index of water quality with reference to industrial pollution, J. Environ. Biol., 29 (2), 233–236.

Simpson E.H., 1949, Measurement of diversity, Nature, 163, 688–688. http://dx.doi.org/10.1038/163688a0

Totti C., Civitarese G., Acri F., Barletta D., Candelari G., Paschini E., Solazzi A., 2000, Seasonal variability of phytoplankton populations in the middle Adriatic sub-basin, J. Plankton Res., 22 (9), 1735–1756.

Turkoglu M., 2010a, Temporal variations of surface phytoplankton, nutrients and chlorophyll a in the Dardanelles (Turkish Straits System): a coastal station sample in weekly time intervals, Turk. J. Biol., 34 (3), 319–333.

Turkoglu M., 2010b, Winter bloom and ecological behaviors of coccolithophore Emiliania huxleyi (Lohmann) Hay & Mohler, 1967 in the Dardanelles (Turkish Straits System), Hydrol. Res., 41 (2), 104–114.

Turkoglu M., Erdogan Y., 2010, Diurnal variations of summer phytoplankton and interactions with some physicochemical characteristics under eutrophication of surface water in the Dardanelles (C¸anakkale Strait, Turkey), Turk. J. Biol., 34 (2), 211–225.

Turkoglu M., Koray T., 2000, Ecological and geographical distributions of the planktonic protista in the southern part of the Black Sea (neritic waters of Sinop Peninsula, Turkey), Ege. Univ. J. Fish. Aquat. Sci., 17 (1–2), 161–178.

Turkoglu M., Koray T., 2002, Phytoplankton species succession and nutrients in the southern Black Sea (Bay of Sinop), Turk. J. Bot., 26 (4), 235–252.

Turkoglu M., Oner C., 2010, Short time variations of winter phytoplankton, nutrient and chlorophyll a of Kepez Harbor in the Dardanelles (C¸anakkale Strait, Turkey), Turk. J. Fish. Aquat. Sci. (TrJFAS), 10 (4), 537–548.

Utermöhl H., 1958, Zur Vervollkommnung der quantitativen Phytoplankton-Methodik, Mitt. Int. Ver. Theor. Angew. Limnol., 9 (1), 1–38.

Wilhm J. L., 1975, Biological indicators of pollution, [in:] River ecology, B.A. Whitton (ed.), Studies in Ecology, Vol. 2, Blackwell Sci. Publ., London, 375–402.

full, complete article (PDF - compatibile with Acrobat 4.0), 182 KB


Seasonal composition and population density of zooplankton in Lake Timsah, Suez Canal, Egypt
Oceanologia 2011, 53(3), 837-859
http://dx.doi.org/10.5697/oc.53-3.837

Mohsen M. El-Sherbiny1,2,*, Ali M. Al-Aidaroos1, Ali Gab-Alla3
1Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University,
P.O. Box 80207, Jeddah 21589, Kingdom of Saudi Arabia;
e-mail: mohsen.sherbiny@yahoo.com
*corresponding author

2Department of Marine Science, Faculty of Science,
Suez Canal University, Ismailia-41522, Egypt

3Department of Biological Science, Faculty of Applied Sciences,
Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia

keywords: zooplankton, diversity, population, Lake Timsah, Suez Canal

Received 11 January 2011, revised 8 July 2011, accepted 2 August 2011.

Abstract

Zooplankton composition and abundance were investigated seasonally at ten sites in Lake Timsah and the adjacent, connected western lagoon in relation to the physico-chemical conditions. A total of 42 taxa (including larval stages) were identified, among them 21 species of copepods, 6 rotifers, 5 cladocerans, 1 chaetognath and 1 urochordate. Copepods represented the predominant component (77.7% of the total community), followed by rotifers, molluscs, cladocerans and (9.2, 4.7 and 3.9% respectively), while other groups collectively formed about 4.5% of the total zooplankton population. Summer was the most productive season with an average count of 40 864 individuals m-3. The dominant copepod species were Paracalanus crassirostris and Oithona nana representing 28.3 and 24.3% of the total zooplankton respectively. The total zooplankton count, including copepods, and its dominant species showed significant positive correlations with temperature, pH and total phytoplankton density. However, negative correlations were detected between densities of rotifers, and salinity and dissolved oxygen.

  References ref

Abdel-Aziz N.E., 2004, The changes of zooplankton communities in a chronic eutrophic bay on Alexandria coast, Bull. Fac. Sci. Alex. Univ., 43, 203–220.

Abdel-Aziz N.E., Aboul-Ezz S.H., 2004, The structure of zooplankton community in Lake Maryout, Alexandria, Egypt, Egypt. J. Aquat. Res., 30 (A), 160–170.

Abdel-Aziz N.E., Dorgham M.M., 2002, Response of copepods to variable environmental conditions in Egyptian Mediterranean near shore waters, Egypt. J. Aquat. Biol. Fish., 6, 283–300.

Abdel-Aziz N.E., El-Ghobashi A.E., Dorgham M.M., El-Tohami W. S., 2007, Qualitative and quantitative study of copepods in Damiatta harbor, Egypt, Egypt. J. Aquat. Res., 33 (1), 144–162.

Abdel-Rahman N. S., 1993, Ecological studies on the distribution of zooplankton communities in the northern part of the Suez Gulf Suez Bay, M. Sc. thesis, Fac. Sci. Suez Canal Univ., 316 pp.

Aboul-Ezz S.M., 1995, Zooplankton of Lake Buroullus, Bull. Nat. Inst. Oceanogr. Fish. Egypt, 2 (11), 233–261.

Aboul-Ezz S.M., Soliman A.M., 2000, Zooplankton community in Lake Edku, Bull. Nat. Inst. Oceanogr. Fish. Egypt, 26, 71–99.

Abou-Zeid G.M., 1990, Distribution of zooplankton in Lake Timsah with special reference to Copepoda, M. Sc. thesis, Fac. Sci. Suez Canal Univ., 96 pp.

Ahmed A. I., 2005, The by-catches of shrimp beach seine in Lake Timsah, Suez Canal, Egypt. J. Aquat. Biol. Fish., 9 (4), 45–61.

Bautista B., Harris R.P., 1992, Copepod gut contents, ingestion rates and grazing impact on phytoplankton in relation to size structure of zooplankton and phytoplankton during a spring bloom, Mar. Ecol.-Prog. Ser., 82, 41–50. http://dx.doi.org/10.3354/meps082041

Bradford-Grieve J.M., Boyd P.W., Chang F.H., Chiswell S., Hadfield M., Hall J.A., James M.R., Nodder S.D., Shushkina E.A., 1999, Pelagic ecosystem structure and functioning in the Subtropical Front region east of New Zealand in austral winter and spring 1993, J. Plankt. Res., 21 (3), 405–428. http://dx.doi.org/10.1093/plankt/21.3.405

Breitburg D. L., Sanders J.G., Gilmour C.C., Hatfield C.A., Osman R.W., Riedel G. F., Seitzinger S.P., Sellner K.G., 1999, Variability in responses to nutrients and trace elements, and transmission of stressor effects through an estuarine food web, Limnol. Oceanogr., 44 (3 pt. 2), 837–863. http://dx.doi.org/10.4319/lo.1999.44.3_part_2.0837

Browne E.T., 1926, V. Report on the medusae, [in:] Cambridge expedition to the Suez Canal, 1924, T. Zool. Soc. Lond., 22 (1), 105–115. http://dx.doi.org/10.1111/j.1096-3642.1926.tb00325.x

Burfield S.T., 1927, Report on the Chaetognatha, [in:] Cambridge expedition to the Suez Canal, 1924, T. Zool. Soc. Lond., 22 (3), 355–357. http://dx.doi.org/10.1111/j.1096-3642.1927.tb00382.x

Dorgham M.M., Hussein M.M., 1997, Seasonal dynamics of zooplankton assemblages in Doha Harbor, a neritic region in the Arabian Gulf, Arab Gulf J. Sci. Res., 15, 415–435.

Dowidar N.M., 1965, Distribution and ecology of marine plankton in the region of Alexandria, Ph. D. thesis, Fac. Sci. Alexandria Univ., 344 pp.

Dowidar N.M., 1988, Productivity of the south eastern Mediterranean, [in:] Natural and man-made hazards, M. I. El-Sabh & T. S. Murty (eds.), D. Riedel Publ. Co., 477–498.

Dowidar N.M., EI-Maghraby A.M., 1970, Consideration of the total zooplankton community, Bull. Inst. Oceanogr. Fish., 1, 275–303.

Edmondson W.T., Ward H.B., Whipple G.C., 1959, Freshwater biology, 2nd edn., John Wiley & Sons, New York, 1248 pp.

El-Moselhy K.M., El-Samra M. I., Abd El-Azim H., 2005, Concentration of nine heavy metals in Suez Canal waters, Egypt, Egypt. J. Aquat. Res., 31 (2), 145–165.

El-Serehy H., Aboul-Ezz S., Samaan A., Abdel-Rahman N., 2000, Zooplankton communities, their distribution and relationship to environmental variables in the Suez Canal ecosystem, J. Egypt. Ger. Soc. Zool., 32 (D), 85–101.

El-Serehy H., Aboul-Ezz S., Samaan A., Saber N., 2001, On the ecological role of Copepoda in the Suez Canal marine ecosystem, Egypt. J. Biol., 3, 116–123.

El-Serhey H., Shalaby I.M., 1994, Seasonal distribution and numerical abundance of zooplankton along Suez Canal, J. Egypt. Ger. Soc. Zool., 14 (D), 379–395.

El-Sherif Z.M., Aboul-Ezz S.M., El-Komi M.M., 1994, Effect of pollution on the productivity in Lake Manzalah, Egypt, Int. Conf. "Future Aquatic Resources in Arab Region", 159–169.

Emara A.M., Belal A.A., 2004, Marine fouling in Suez Canal, Egypt. J. Aquat. Res., 30 (A), 189–206.

ETPS, 1995, Environmental testing of pollution status in Lake Timsah, Ismailia, Egypt, Sustain. Ismailia Proj., Abu-Attwa Water Reuse Ctr. Train., 356 pp.

Fouda M.M., 1993, Life history strategies on small size fishes in the Suez Canal, Egypt, Fisher. Soc. British Isl. Ann. Symp. "Factors Affecting the Distribution of Fish", 5–9 July 1993, Conway, Wales.

Ghazzawi F.M., 1938, Plankton of the Egyptian waters. A study of the Suez Canal plankton. A – The phytoplankton, Fish. Res. Dir., Notes Mem. No. 24, 1–83.

Ghobashy A. F.A., El-Komi M.M., 1980, Fouling in Lake Timsah Egypt, Aquat. Ecol., 14 (3), 169–178. http://dx.doi.org/10.1007/BF02260118

Ghobashy A. F.A., Mohammed S. Z., Gabr H.R., Brand A.R., 1992, Community structure and seasonal variation of Mollusca in Lake Timsah Suez Canal, J. Egypt. Ger. Soc. Zool., 7 (B), 145–160.

Ghobashy A. F.A., Mohammed S. Z., Sharaf G.M., El-Komi M.M., 1992, Zooplankton of Lake Timsah Suez Canal, 2 – Copepoda, J. Egypt. Ger. Soc. Zool., 7 (B), 207–222.

Giesbrecht W., 1892, Systematik und Faunistik der pelagischen Copepoden des Golfs von Neapel und der Angrenzenden Meeres-Abschnitte, R. Friedländer & Sohn, Berlin, 831 pp.

Giesbrecht W., 1896, über pelagische Copepoden des Rothen Meeres, Zool. Jb. Syst., 9, 315–328.

Goldman C.R., Horne A. J., 1983, Limnology, 1st edn., Mc Graw-Hill, New York, 464 pp.

Gonzalez J.G., Bowman T.E., 1965, Planktonic Copepods from Bahia phosphorescent, Puerto Rico and adjacent waters, Proc. US Natl. Mus., 117, 241–303.

Grice G.C., 1960, Copepoda of the genus Oithona from the Gulf of Mexico, Bull. Mar. Sci., 10 (4), 485–490.

Guerguess S.K., 1992, Planktonic rotifers as indicators of pollution in Mediterranean coastal lagoons of Egypt, Rapp. Comm. Int. Mer. Medit., Vol. 33, 95 pp.

Gurney R., 1927a, VIII. Report on the Crustacea: Copepda and Cladocera of the plankton, [in:] Cambridge expedition to the Suez Canal, 1924, T. Zool. Soc. Lond., 22 (2), 139–172. http://dx.doi.org/10.1111/j.1096-3642.1927.tb00328.x

Gurney R., 1927b, XV. Report on the larvae of the Crustacea Decapoda, [in:] Cambridge expedition to the Suez Canal, 1924, T. Zool. Soc. Lond., 22 (2), 231–286. http://dx.doi.org/10.1111/j.1096-3642.1927.tb00335.x

Hanafy M.H., Dorgham M.M., El-Sherbiny M.M., 1998, Zooplankton community in the Mangal ecosystem in Sharm El-Sheikh coast, Red Sea, J. Aquat. Biol. Fish., 2 (4), 465–482.

Hansen B.W., Hygum B.H., Brozek M., Jensen F., Rey C., 2000, Food web interaction in a Calanus finmarchicus dominated pelagic ecosystem – a mesocosm study, J. Plankton Res., 22, 569–588. http://dx.doi.org/10.1093/plankt/22.3.569

Harant H., 1927, Rapport sur les Tuniciers, T. Zool. Soc. Lond., 22 (3), 139–172. http://dx.doi.org/10.1111/j.1096-3642.1927.tb00385.x

Heron-Allen E., Earland A., 1926, II. Report on the Foraminifera, Copepoda and Cladocera of the plankton, [in:] Cambridge expedition to the Suez Canal, 1924, T. Zool. Soc. Lond., 22 (1), 65–70. http://dx.doi.org/10.1111/j.1096-3642.1926.tb00321.x

Hussein M.M., 1977, A study of the zooplankton in the Mediterranean waters off the Egyptian coast during 1970–1971 with special reference to copepods, M. Sc. thesis, Fac. Sci. Alexandria Univ., 269 pp.

Hussein M.M., Abdel-Aziz N.E., 1997, Biometrics method for biomass determination of the dominant copepods in the neritic zone of Alexandria, Bull. Nat. Inst. Oceanogr. Fish., 23, 83–101.

Kaiser M. F., Amin A. S., Aboulela H.A., 2009, Environmental hazards in the El-Temsah Lake, Suez Canal District, Egypt, [in:] Advances in geoscience and remote sensing, G. Jedlovec (ed.), InTech, Vukovar, 57–70.

Kandeel K.E., 1992, Biological studies on the reproduction of some bivalves in Lake Timsah, M. Sc. thesis, Suez Canal Univ.

Karabin A., 1985, Pelagic zooplankton (Rotatoria+Crustacea) variation in process of lake eutrophication. I. Structural and quantitative features, Ekol. Pol., 33, 567–616.

Kilham S. S., Kilham P., 1984, The importance of resource supply rates in determining phytoplankton community structure, [in:] Trophic interactions within aquatic ecosystems, D.G. Meyers & J.R. Strickler (eds.), AAAS Select. Symp. Ser., 85, 7–28.

Kimor B., 1972, The Suez Canal as a link and a barrier in the migration of planktonic organisms, Israel J. Zool., 21, 391–403.

Ludsin S.A., Kershner M.W., Blocksom K.A., Knight R. L., Stein R.A., 2001, Life after death in Lake Erie, Nutrient controls drive fish species richness, rehabilitation, Ecol. Appl., 11 (3), 731–746. http://dx.doi.org/10.1890/1051-0761(2001)011[0731:LADILE]2.0.CO;2

MacDonald R., 1933, An examination of plankton hauls made in the Suez Canal during the year 1928, Fish. Res. Dir., Notes Mem. No. 3, 1–11.

Madkour F. F., Aamer M., El-Sherbiny M.M., 2006, Assessment of eutrophication in Lake Timsah, Suez Canal, Egypt, Egypt. J. Aquat. Res., 32, 259–272.

Marcus N., 2004, An overview of the impacts of eutrophication and chemical pollutants on copepods of the coastal zone, Zool. Stud., 43 (2), 211–217.

McKinnon A.D., Klumpp D.W., 1998, Mangrove zooplankton of North Queensland, Australia, I. Plankton community structure and environment, Hydrobiologia, 362 (1–3), 127–143. http://dx.doi.org/10.1023/A:1003186601878

McKinnon A.D., Thorrold S.R., 1993, Zooplankton community structure and copepod egg production in coastal waters of the central Great Barrier Reef lagoon, J. Plankton Res., 15 (12), 1387–1411. http://dx.doi.org/10.1093/plankt/15.12.1387

Michel H.B., Behbehani M., Herring D., Arar M., Shoushani M., Brakoniecki T., 1986, Zooplankton diversity, distribution and abundance in Kuwait waters, Kuwait Bull. Mar. Sci., 8, 37–105.

Nejstgaard J.C., Bamstedt U., Bageoien E., Solberg P.T., 1995, Algal constraints on copepod grazing. Growth state, toxicity, cell size, and season as regulating factors, ICES J. Mar. Sci., 52 (3–4), 347–357. http://dx.doi.org/10.1016/1054-3139(95)80050-6

Nishida S., 1985, Taxonomy and distribution of the family Oithonidae (Copepods, Cyclopoida) in the Pacific and Indian Oceans, Vol. 20, Ocean. Res. Inst., Univ. Tokyo, 167 pp.

Nour El-Din N.M.N., 1987, Ecology and distribution of pelagic copepods in the Mediterranean waters of Egypt, M. Sc. thesis, Fac. Sci. Alexandria Univ.

Paffenhöfer G.A., 1993, On the ecology of marine cyclopoid copepods (Crustacea, Copepoda), J. Plankton Res., 15 (1), 37–55. http://dx.doi.org/10.1093/plankt/15.1.37

Paleolog A., Radwan S., Kowalik W., Kowalczyk C., Stryjecki R., Zwolski W., 1997, Water invertebrates in Janowski forests landscape park, [in:] Environment of Janowski forests landscape park, UMCS Publ., Lublin, 117–133.

Park G. S., Marshall H.G., 2000, Estuarine relationships between zooplankton community structure and trophic gradients, J. Plankton Res., 22 (1), 121–136. http://dx.doi.org/10.1093/plankt/22.1.121

Pielou E.C., 1966, Shannon’s formula as a measure of specific diversity. Its use and misuse, Am. Natur., 100 (914), 463–465. http://dx.doi.org/10.1086/282439

Prepas E.E., Charette T., 2003, Worldwide eutrophication of water bodies, causes, concerns, controls, Treat. Geochem., 9, 311–331. http://dx.doi.org/10.1016/B0-08-043751-6/09169-6

Rodriguez V., Guerrero F., Bautista B., 1995, Egg production of individual copepods of Acartia grani Sars from coastal waters, seasonal and diel variability, J. Plankton Res., 17 (12), 2233–2250. http://dx.doi.org/10.1093/plankt/17.12.2233

Rose M., 1933, Copépodes pélagiques, [in:] Faune de France, Le Chevalier, Paris, 374 pp.

Sautour B., Artigas F., Herbland A., Laborde P., 1996, Zooplankton grazing impact in the plume of dilution of the Gironde estuary (France) prior to the spring bloom, J. Plankton Res., 18 (5), 835–853. http://dx.doi.org/10.1093/plankt/18.5.835

Tan Y., Huang L., Chen Q., Huang X., 2004, Seasonal variation in zooplankton composition and grazing impact on phytoplankton standing stock in the Pearl River Estuary, China, Cont. Shelf Res., 24 (16), 1949–1968. http://dx.doi.org/10.1016/j.csr.2004.06.018

Thompson I.C., Scott A., 1903, Report on the Copepoda collected by Professor Herdman, at Ceylon, in 1902, Ceylon Pearl Oysters Fisher. Suppl. Rep. No. 7, Roy. Soc. Lond., 227–307.

Tregouboff G., Rose M., 1957, Manual de planktonic Mediterraneenne, [Manual of the Mediterranean plankton], C.N.R.S., Paris, Pt. 1 – text, 587 pp., Pt. 2 – Figs., 207 pp.

Uye S., 1986, Impact of copepod grazing on the red-tide flagellate Chattonella antique, Mar. Biol., 92 (1), 35–43. http://dx.doi.org/10.1007/BF00392743

Vieira L., Azeiteiro U., Ré P., Pastorinho R., Marque J.C., Morgado F., 2003, Zooplankton distribution in a temperate estuary Mondego estuary southern arm, (Western Portugal), Acta Oecol., 24 (Suppl. 1), 163–173. http://dx.doi.org/10.1016/S1146-609X(03)00038-9

Yamazi R., 1974, Analysis of the data on temperature, salinity and chemical properties of the surface water and the zooplankton communities in the Arabian Gulf in December, Trans. Tokyo Univ. Fisher., 1, 26–51.

Zar J.H., 1984, Biostatistical analysis, Prentice-Hall, Inc., New Jersey, 718 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 262 KB


Relationships between coastal processes and properties of the nearshore sea bed dynamic layer
Oceanologia 2011, 53(3), 861-880
http://dx.doi.org/10.5697/oc.53-3.861

Rafał Ostrowski*, Zbigniew Pruszak
Institute of Hydro-Engineering, Polish Academy of Sciences (IBW PAN),
Kościerska 7, Gdańsk 80-328, Poland;
e-mail: rafal.o@ibwpan.gda.pl
*corresponding author

keywords: dynamic layer, sandy sediments, multi-bar shore, southern Baltic coast

Received 31 May 2011, revised 29 July 2011, accepted 25 August 2011.

The study was sponsored by the Ministry of Science and Higher Education, Poland, under the IBW PAN statutory programme No. 2, which is hereby gratefully acknowledged.

Abstract

The paper discusses the notion of a layer of sandy sediments overlying a substratum of cohesive deposits in the coastal zone. This layer of sand is generally more mobile and is therefore conventionally referred to as the dynamic layer. Its parameters are important to coastal lithodynamic and morphodynamic processes caused by waves and currents. On the other hand, the dynamic layer is formed by nearshore hydrodynamic impact. The variability of the features of the dynamic layer on the southern Baltic dune and cliff shores in Poland is analysed on the basis of selected geological data supported by local seismo-acoustic field investigations. It appears that the conventional notion of the dynamic layer makes sense only in specific geomorphologic conditions. In such cases, mostly related to cliff shores, theoretical modelling of sediment transport should take the properties of the dynamic layer into account.

  References ref

Boldyrev W. L., 1991, Morphological and lithologic indicators of development regions of longshore sandy sediment fluxes, Inż. Mor. Geotech., 2, 50–53, (in Polish).

Ciavola P., Tarborda R., Ferreira O., Dias J., 1997, Field observations of sand-mixing depths on steep beaches, Mar. Geol., 141 (1–4), 147–156. http://dx.doi.org/10.1016/S0025-3227(97)00054-6

Frankowski Z., Graniczny M., Juszkiewicz-Bednarczyk B., Kramarska R., Pruszak Z., Przezdziecki P., Szmytkiewicz M., Werno M., Zachowicz J., 2009, Principles of documentation of geological-engineering foundation conditions for marine structures and coastal protection measures, Polish Geol. Inst., Warsaw, 201 pp., (in Polish).

Kaczmarek L.M., 1999, Moveable sea bed boundary layer and mechanics of sediment transport, IBW PAN, Gdańsk, 209 pp.

Kraus N.C., 1985, Field experiments on vertical mixing of sand in the surf zone, J. Sediment. Petrol., 55 (1), 3–14.

Mielczarski A., 2006, Remarks on notional models of sediment motion in the underwater part of the coastal zone, Inż. Mor. Geotech., 1, 13–22, (in Polish).

Mojski J.E., 1979, Detailed geological map of Poland on 1:50 000 scale, Sheet – Gdańsk, Wyd. Geol., Warsaw, (in Polish).

Myrhaug D., Holmedal L.E., 2007, Mobile layer thickness in sheet flow beneath random waves, Coast. Eng., 54 (8), 577–585. http://dx.doi.org/10.1016/j.coastaleng.2006.11.005

Ostrowski R., 2004, Morphodynamics of a multi-bar coastal zone, IBW PAN, Gdańsk, 163 pp.

Pruszak Z., 1998, Dynamics of beach and seabed, IBW PAN, Gdańsk, 463 pp., (in Polish).

Pruszak Z., 2003, Marine basins. Outline of physical processes and environmental engineering, IBW PAN, Gdańsk, 272 pp., (in Polish).

Pruszak Z., Różyński G., Szmytkiewicz M., Skaja M., 1999, Quasi seasonal morphological shore evolution response to variable wave climate, Proc. 4th Int. Symp. Coast. Eng. Sci. Coast. Sediment, ASCE, 1081–1093.

Pruszak Z., Zeidler R.B., 1995, Sediment transport in various time scales, Proc. 24th Int. Conf. Coast. Eng., Vol. 1, ASCE, 2513–2526.

Racinowski R., Baraniecki J., 1990, Usefullness of lithologic indicators in description of the longshore sediment flux on the Polish Baltic shore, Rozpr. Hydrotech., 51, 159–210, (in Polish).

Saini S., Jackson N., Nordstrom H., 2009, Depth of activation on a mixed sediment beach, Coast. Eng., 56 (7), 788–791. http://dx.doi.org/10.1016/j.coastaleng.2009.02.002

Sherman D., Nordstrom K. F., Jackson N., Allen J., 1994, Sediment mixing depth on low energy reflective beach, J. Coastal Res., 10, 297–305.

Subotowicz W., 1996, A need of new look at classification of the coastal zone, Inż. Mor. Geotech., 5, 332–335, (in Polish).

Subotowicz W., 2005, Lithodynamic determinants of shore protection in Poland, Inż. Mor. Geotech., 3, 190–194.

Sunamura T., Kraus N.C., 1985, Prediction of wave average mixing depth in the surf zone, Mar. Geol., 62 (1), 1–12. http://dx.doi.org/10.1016/0025-3227(84)90051-3

Uścinowicz Sz., Zachowicz J., Przezdziecki P., Zaleszkiewicz L., 2007, Geodynamic map of the Polish south Baltic coastal zone, Sheet – Lubiatowo, No. 34, Marine Geol. Dept., Polish Geol. Inst., Gdańsk, (in Polish).

full, complete article (PDF - compatibile with Acrobat 4.0), 1.01 MB


The trophic state of the Vistula Lagoon: an assessment based on selected biotic and abiotic parameters according to the Water Framework Directive
Oceanologia 2011, 53(3), 881-894
http://dx.doi.org/10.5697/oc.53-3.881

Lidia Nawrocka1, Justyna Kobos2,*
1Institute of Technology, The State School of Higher Professional Education in Elbląg,
Wojska Polskiego 1, Elbląg 82-300, Poland
2Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, Gdynia 81-378, Poland;
e-mail: ocejl@univ.gda.pl
*corresponding author

keywords: trophic state indices, phytoplankton functional groups, Vistula Lagoon, Water Framework Directive

Received 28 April 2011, revised 4 August 2011, accepted 22 August 2011.

This work was supported by the Norway grants PNRF 82 AI.

Abstract

The aim of the study was to determine the trophic state of the Vistula Lagoon in 2007-2009. The analysis of various trophic state indices, abiotic parameters and different water classifications indicated the eutrophy and even advanced hypereutrophy of the lagoon waters. The composition, abundance and biomass of phytoplankton likewise reflect the eutrophic nature of this water body. For this lagoon, Reynold's functional groups of phytoplankton wereused as an indicator of eutrophication for the first time. The dominant phytoplankton organisms in the surface waters belong to 8 functional groups: S1, X1, F, J, K, H1, LO, M. Some key concepts of the EU Water Framework Directive were implemented in this study.

  References ref

Albertano P., Di Somma D., Capucci E., 1997, Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image – analyzed fluorescence microscopy, J. Plankton Res., 19 (11), 1405–1416. http://dx.doi.org/10.1093/plankt/19.10.1405

Bielecka A., Lewandowski A., 2004, Transboundary cooperation experiences in the Vistula Lagoon basin gained during MANTRA-East research project, [in:] Integrated water management of transboundary catchments: a contribution from transact, Proc. Conf., 24–26 March 2004, Palazzo Zorzi, Venice, Italy, p. 9, [http://www.feem-web.it/transcat\ conf/conf\ papers/Bielecka.pdf].

Browarczyk G., Pliński M., 2006, Toxic cyanobacterial blooms in the Vistula Lagoon, [in:] Algae and their changes over time, L. Burchardt (ed.), Proc. 25th Int. Conf. Polish Phycological Society, Poznań–Łagów–Słubice, p. 17.

Browarczyk G., Pliński M., 2007, The dynamics of cyanobacterial blooms in the Vistula Lagoon in 2006, [in:] Algae in ecological quality of water assessment, Proc. 26th Int. Conf. Polish Phycological Society, Lublin–Nałęczów, 55 pp.

Carlson R.E., 1977, A trophic state index for lakes, Limnol. Oceanogr., 22 (2), 361–369. http://dx.doi.org/10.4319/lo.1977.22.2.0361

Chapra S.C., Dobson H. F.H., 1981, Quantification of the lake trophic typologies of Naumann (surface quality) and Thienemann (oxygen) with special reference to the Great Lakes, J. Great Lakes Res., 7 (2), 182–193. http://dx.doi.org/10.1016/S0380-1330(81)72044-6

Chubarenko B., Chubarenko I., 1998, The field study of the frontal area between the coastal zone and the Vistula Lagoon (South-Eastern Baltic), Oceanic Fronts and Related Phenomena (Konstantin Fedorov Mem. Symp.), Pushkin, Intergov. Oceanogr. Commiss., Workshop Rep. No. 159, 71–76.

Czaban S., 2008, Classification of surface water quality in Poland, Infrastructure and Ecology of Rural Areas No. 9, PAN, Kraków, 259–269, (in Polish with English summary).

Czoch K., Kulesza K., 2006, Specific reference conditions for surfaces water body (rivers) types in Poland as a base of works on assessment of ecological status of rivers, Infrastructure and Ecology of Rural Areas No. 4 (3), PAN, Kraków, 25–36, (in Polish with English summary).

Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. European Commission PE-CONS 3639/1/00 REV 1, Luxemburg 2000.

Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC.

Golterman H. L., 1969, Methods for chemical analysis of freshwaters, Blackwell Sci.Publ., Oxford–Edinburgh, 172 pp.

Heinonen P., 1980, Quantity and composition of phytoplankton in Finnish inland waters, Nat. Board Waters, Publ. Water Res. Inst., Helsinki, 91 pp.

HELCOM, Manual for Marine Monitoring in the COMBINE Programme, Part C, Annex C-6, Balt. Mar. Environ. Prot. Commiss., Helsinki. [http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/en\ GB/annexes/].

Hillbricht-Ilkowska A., Kajak Z., 1986, Parameters and indices useful in controlling functional and structural changes in lake ecosystems subject to progressing eutrophication of waters, [in:] Monitoring of lakes’ ecosystem, A. Hillbricht-Ilkowska (ed.), Ossolineum, Wrocław, 23–45, (in Polish).

Järnefelt H., 1952, Plankton als Indicator der Trophiegruppen der Seen, Ann. Akad. Sci. Fenn. Biol., 18, 1–29.

Kajak Z., 1983, Ecological characteristics of lakes in North-Eastern Poland vs. their trophic gradient. XII. Dependence of chosen indices of structure and functioning of ecosystems of different trophic status and mictic type for 42 lakes, Ekol. Pol., 31, 495–530.

Karabin A., 1985, Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. Vol. 1. Structural and quantitative features, Ekol. Pol., 33 (4), 567–616.

Kawecka B., Eloranta P.V., 1994, An outline of alga ecology in freshwater and terrestrial environments, PWN, Warszawa, 256 pp., (in Polish).

Kobos J., 2007, Characteristics of toxic and potentially toxic cyanobacteria occurring in the Gulf of Gdańsk and selected lakes from the Radunia River drainage basin, Ph.D. thesis, Univ. Gdańsk, Gdynia, 174 pp., (in Polish with English summary).

Kobos J., Nawrocka L., 2010, Seasonality of phytoplankton in the Vistula Lagoon, [in:] Taxonomy – the queen of science; the beauty of algae, Proc. 29th Int. Conf. Polish Phycological Society, Kraków–Niedzica, p. 108.

Komárková J., 2002, Do cyanobacterial pikoplankton exist in eutrophic reservoirs?, Verh. Int. Verein. Limnol., 28, 497–500.

Kratzer C.R., Brezonik P. L., 1981, A Carlson-type trophic state index for nitrogen in Florida lakes, Water Res. Bull., 17 (4), 713–715.

Kulesza K., Walczykiewicz T., 2006, Methodological basis and tools for hydromorphological monitoring in rivers, Infrastructure and Ecology of Rural Areas No. 4 (1), PAN, Kraków, 185–196, (in Polish with English summary).

Lampert W., Sommer U., 2001, Ecology of inland waters, PWN,Warszawa, 416 pp., (in Polish).

Lepistö L., Rosenström U., 1998, The most typical phytoplankton taxa in four types of boreal lakes, Hydrobiologia, 369/370, 89–97. http://dx.doi.org/10.1023/A:1017014330045

Łomniewski K., 1958, The Vistula Lagoon, Inst. Geogr. PAN, Pr. Geogr. Nr 15, 160 pp., (in Polish).

Margoński P., Horbowa K., 2003a, Trophic and ecological status of the Vistula Lagoon, MANTRA-East Deliverable D3eVL, 47 pp.

Margoński P., Horbowa K., 2003b, Are there any trends in water quality, chlorophyll a and zooplankton of the Vistula Lagoon (southern Baltic Sea) as a result of changes in nutrient loads?, Diffuse Pollution Conf. Dublin, ECSA 9 Nutrients, 6, 162–169.

Mischke U., Riedmüller U., Hoehn E., Schönfelder I., Nixdorf B., 2008, Description of the German system for phytoplankton-based assessment of lakes for implementation of the EU Water Framework Directive (WFD), Gewässerrep. Nr. 10, BTUC-AR 2, 117–146.

Nawrocka L., Kobos J., Pliński M., Kruk M., 2009, Population dynamics of phytoplankton in relation to environmental factors in the Vistula Lagoon, [in:] Algal biodiversity in ecosystems of protected areas, Proc. 28th Int. Conf. Polish Phycological Society, Szczecin–Cieszyno Drawskie, 89–90 pp.

Nygaard G., 1949, Hydrobiological studies on some Danish ponds and lakes. Part II. The quotient hypothesis and some little known plankton organisms, K. Dansk. Vidensk. Selsk. Biol. Skr. 7 (1), 1–293.

OECD, 1982, Eutrophication of waters. Monitoring assessment and control, Tech. Rep. Environ. Directorate, OECD, Paris.

Padisák J., Borics G., Grigorszky I., Soróczki-Pinter E., 2006, Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index, Hydrobiologia, 553 (1), 1–14. http://dx.doi.org/10.1007/s10750-005-1393-9

Padisák J., Crossetti L.O., Naselli-Flores L., 2009, Use and misuse in the application of the phytoplankton functional classification: a critical review with updates, Hydrobiologia, 621, 1–19. Picińska-Fałtynowicz J., Błachuta J., Kotowicz J., Mazurek M., Rawa W., 2006, Selection of homogenous types of river water elements to assess ecological condition on the basis of phytoplankton, including the recommendation on sampling and testing method, Chief Inspectorate of Environmental Protection, Wrocław, 30 pp., (in Polish).

PlińskiM., 2005, The hydrobiological characteristics of the Polish part of the Vistula Lagoon: a review, Ocean. Hydrobiol. Stud., 34 (Suppl. 3), 287–294.

Report for Vistula River Basin on the implementation of Art. 5 and 6, Annex 2, 3, 4 of the Water Framework Directive 2000/60/EC, 2005, The Ministry of the Environment, The Republic of Poland, Warsaw, 389 pp., (in Polish).

Reynolds C. S., 1980, Phytoplankton assemblages and their periodicity in stratifying lake systems, Holarctic Ecol., 3 (3), 141–159.

Reynolds C. S., Huszar V., Kruk C., Naselli-Flores L., Melo S., 2002, Towards a functional classification of the freshwater phytoplankton, J. Plankton Res., 24 (5), 417–428. http://dx.doi.org/10.1093/plankt/24.5.417

Rybicka D., 2005, Potentially toxic blue-green algae (Cyanoprocaryota) in the Vistula Lagoon, Oceanol. Hydrobiol. Stud., 33 (Suppl. 3), 161–176.

Standard methods for the examination of water and waste water, 1960, Am. Publ. Health Assoc. Inc., New York, 626 pp.

Szeląg-Wasilewska E., 2007, Trophic state assessment based on late summer phytoplankton community structure: a case study for epilimnetic lake water, Ocean. Hydrobiol. Stud., 36 (3), 53–63. http://dx.doi.org/10.2478/v10009-007-0018-1

Thunmark S., 1945, Zur Soziologie des Süsswasserplanktons. Eine methodisch-ökologische Studie, Folia Limnol. Skand., 3, 1–66.

Trifonova I. S., 1998, Phytoplankton composition and biomass structure in relation to trophic gradient in some temperate and subarctic lakes of north-western Russia and the Prebaltic, Hydrobiologia, 369/370, 99–108. http://dx.doi.org/10.1023/A:1017074615932

Tremel B., 1996, Determination of the trophic state by qualitative and quantitative phytoplankton analysis in two gravel pit lakes, Hydrobiologia, 323 (2), 97–105. http://dx.doi.org/10.1007/BF00017587

Vollenweider R.A., 1968, Water management research. Scientific fundamentals of eutrophication of lakes and flowing water, with particular reference to nitrogen and phosphorus as factors in eutrophication, Tech. Rep. DAS/CSI/68.27, OECD, Paris, 192 pp.

Vollenweider R.A, 1989, Global problems of eutrophication and its control, Symp. Biol. Hung., 38, 19–41.

Vollenweider R.A., Kerekes J., 1982, Eutrophication of waters. Monitoring, assessment and control, OECD, Paris, 156 pp.

Wacklin P., Hoffmann L., Komárek J., 2009, Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahaut) comb. nova, Fottea, 9 (1), 59–64.

Zdanowski B., 1983, Ecological characteristics of lakes north-eastern Poland versus their trophic gradient. V. Chlorophyll content and visibility of Secchi’s disc in 46 lakes, Ekol. Pol., 31 (2), 333–351.

full, complete article (PDF - compatibile with Acrobat 4.0), 221 KB