Oceanologia No. 51 (2
) / 09
Contents
Papers
-
Warming of the West Spitsbergen Current and sea ice north of Svalbard: Jan Piechura, Waldemar Walczowski
-
Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1. Development time:
Lidia Dzierzbicka-Głowacka, Anna Lemieszek, Maria Iwona Żmijewska
-
Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production: Lidia Dzierzbicka-Głowacka, Anna Lemieszek, Maria Iwona Żmijewska
-
Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon: Aistė Paldavičienė, Hanna Mazur-Marzec, Artūras Razinkovas
-
Using chemometrics to identify water quality in Daya Bay, China: Mei-Lin Wu, You-Shao Wang, Cui-Ci Sun, Haili Wang, Zhi-Ping Lou, Jun-De Dong
-
Factors affecting the occurrence of algae on the Sopot beach (Baltic Sea): Anna Filipkowska, Ludwik Lubecki, Małgorzata Szymczak-Żyła, Maria Łotocka, Grażyna Kowalewska
-
Mercury fluxes through the sediment water interface and bioavailability of mercury in southern Baltic Sea sediments: Jacek Bełdowski, Michał Miotk, Janusz Pempkowiak
Dissertations
Papers
Warming of the West Spitsbergen Current and sea ice north of Svalbard
Oceanologia 2009, 51(2), 147-164
http://dx.doi.org/10.5697/oc.51-2.147
Jan Piechura, Waldemar Walczowski*
Physical Oceanography Department,
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: walczows@iopan.gda.pl
*corresponding author
Keywords:
Nordic Seas, ocean circulation, sea ice, climate change
Received 12 March 2009, revised 18 May 2009, accepted 20 April 2009.
This research was supported by a grant from the Fifth European Union Frame-work Programme project ASOF-N, contract EVK2-CT-200200139, the Sixth Frame-work Programme DAMOCLES, contract 018509GOCE, and grants from the Polish Ministry of Science and Higher Education, decisions 61/N-IPY/2007/0 and 175/IPY/2007/01.
Abstract
According to the results of recent research, besides the atmospheric circulation, it is heat transport to the Arctic Ocean (AO) by ocean currents, the West Spitsbergen Current (WSC) in particular, that is playing a significant role in the process of
Arctic warming. Data collected by the Institute of Oceanology, Polish Academy of Sciences (IO PAS), in the Norwegian and Greenland Seas, and Fram Strait during the last 20 years reveal considerable changes in the amount of heat transported by the WSC into the Arctic Ocean. An increase in Atlantic Water (AW) temperature and the intensification of heat transport were observed in 2004-06; after this period, both parameters decreased. The aim of this study was to find out whether the fluctuations in heat input by the WSC have influenced the sea-ice distribution around Svalbard. In fact they do, but oceanic heat transport should nonetheless be regarded as just one of many processes influencing sea-ice behaviour.
References
Cokelet E. D., Tervalon N., Bellingham J. G., 2008, Hydrography of the West Spitsbergen Current, Svalbard Branch: Autumn 2001, J. Geophys. Res., 113, C01006,
http://dx.doi.org/10.1029/2007JC004150
Hansen B., Osterhus S., 2000, North Atlantic-Nordic sea exchanges, Prog. Oceanogr., 45 (2), 109-208.
http://dx.doi.org/10.1016/S0079-6611(99)00052-X
Hansen B., Osterhus S., Turrel W., Jonsson S., Valdimersson H., Hátún H., Olsen S., 2008, The in flow of Atlantic water, heat and salt to the Nordic Seas across the Greenland-Scotland Ridge, [in:] Arctic-Subarctic ocean fluxes, R. R. Dickson, I. Meincke & P. Rhines (eds.), Springer, Dordrecht, 15-43.
Jónsson S., Briem J., 2003, Flow of Atlantic water west of Iceland and onto the north Icelandic shelf, ICES Mar. Sci. Symp., 219, 326-328.
Manley T. O., 1995, Branching of Atlantic ater within the Greenland-Spitsbergen Passage: an estimate of recirculation, J. Geophys. Res., 100 (C10), 20627-20634.
http://dx.doi.org/10.1029/95JC01251
Orvik K. A., Niiler P., 2002, Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic, Geophys. Res. Lett., 29 (19), 1896, L015002, doi:10.1029/2002GL015002.
http://dx.doi.org/10.1029/2002GL015002
Polyakov I. V., Beszczynska A., Carmack E. C., Dmitrenko I. A., Fahrbach E., Frolov I. E., Gerdes R., Hansen E., Holfort J., Ivanov V. V., Johnson M. A., Karcher M., Kaker F., Morison J., Orvik K. A., SchaerU., Simmons H. L., Skagseth O., Sokolov V. T., Steele M., Timokhov L. A., Walsh D., Walsh J. E., 2005, One more step toward a warmer Arctic, Geophys. Res. Lett., 32, L17605, doi:10.1029/2005GL023740.
http://dx.doi.org/10.1029/2005GL023740
Rudels B., Fredrich H. J., Quatfasel D., 1999, The Arctic circumpolar boundary current, Deep-Sea Res. Pt. II, 46 (6-7), 1023-1062.
http://dx.doi.org/10.1016/S0967-0645(99)00015-6
Schauer U., Beszczynska-Moeller A., Walczowski W., Fahrbach E., Piechura J., Hansen E., 2008, Variation of measured heat flow through the Fram Strait between 1997 and 2006, [in:] Arctic-Subarctic ocean fluxes , R. R. Dickson, I. Meincke & P. Rhines (eds.), Springer, Dordrecht, 15-43.
Skagseth Ø., Orvik K. A., Furevik T., 2004, Coherent variability of the Norwegian Atlantic Slope Current derived from TOPEX/ERS altimeter data, Geophys. Res. Lett., 31, L14304,doi:10.1029/2004GL020057.
Spreen G., Kaleschke L., Heygster G., 2008, Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.
http://dx.doi.org/10.1029/2005JC003384
Walczowski W., 2009, Woda Arktyczna w Morzach Nordyckich - właściwośći, zmienność, znaczenie klimatyczne, Rozpr. monogr. 22, Inst. Oceanol. PAN, Sopot, 241 pp.
Walczowski W., Piechura J., 2006, New evidence of warming propagating toward the Arctic Ocean, Geophys. Res. Lett., 33, L12601, doi:10.1029/2006GL025872.
http://dx.doi.org/10.1029/2006GL025872
Walczowski W., Piechura J., 2007, Pathways of the Greenland Sea warming, Geophys. Res. Lett., 34, L10608, doi:10.1029/2007GL029974.
http://dx.doi.org/10.1029/2007GL029974
Walczowski W., Piechura J., Osiński R., Wieczorek P., 2005, The West Spitsbergen Current volume and heat transport from synoptic observations in summer, Deep-Sea Res. Pt. I, 52 (8), 1374-1931.
http://dx.doi.org/10.1016/j.dsr.2005.03.009
Whelan J., Maslowski W., Clement Kinney J. L., Jakacki J., 2007, Understanding recent variability in the Arctic Sea ice thickness and volume-synthesis of model results and observations, Eos Trans. AGU, 88 (52), Fall Meet. Suppl., Abstract C22A-06.
Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1. Development time
Oceanologia 2009, 51(2), 165-184
http://dx.doi.org/10.5697/oc.51-2.165
Lidia Dzierzbicka-Głowacka1,*, Anna Lemieszek2, Maria Iwona Żmijewska2
1Physical Oceanography Department,
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author
2Institute of Oceanography,
University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland
Keywords: population model, growth, development, Acartia spp., Gulf of Gdańsk (southern Baltic Sea)
Received 18 March 2009, revised 19 May 2009, accepted 22 May 2009.
This research was carried out in support of grant No. NN306 181537.
Abstract
The copepod model (see Dzierzbicka-Głowacka 2005b), reduced to a zero-dimensional population model (Fennel 2001, Stegert et al. 2007),
is calibrated for Acartia spp. under the environmental conditions typical of the southern Baltic Sea. Most of the coefficients used in the model are taken from the literature, containing values from various published studies and parameters derived for similar species. The parameters for growth are presented in Part 1; those for population dynamics are given in Part 2. Ingestion rates, which are dependent on developmental stage, food supply, temperature and weight of the animals, are estimated for Acartia bifilosa at 15°C from the Gdańsk Deep after the experimental data of Ciszewski & Witek (1977). In Part 1 the model presents the change in mean individual mass in successive stages. Quantitative formulae are obtained describing the effects of temperature and food concentration on the development time of Acartia spp. for each of the model stage groups. The generation time during the seasons in the upper layer of the Gdańsk Deep is also determined. The simulations computed here are similar to the experimental results. Part 2 (Dzierzbicka-Głowacka et al. 2009 - this issue) will evaluate egg production as a function of the above-mentioned parameters, temperature and food availability.
References
Ambler J. W., 1985, Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana, from East Lagoon, Galveston, Texas, Estuar. Coast. Shelf Sci., 20 (6),743-760.
http://dx.doi.org/10.1016/0272-7714(85)90030-7
Berggreen U., Hansen B., Kiørboe T., 1988, Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for det rmination of copepod production, Mar. Biol., 99 (3), 341-352.
http://dx.doi.org/10.1007/BF02112126
Carlotti F., Sciandra A., 1989, Population dynamics model of Euterpina acutifrons (Copepoda:Harpacticoida) coupling individual growth and larval development, Mar. Ecol.-Prog. Ser., 56, 225-242.
http://dx.doi.org/10.3354/meps056225
Carlotti F., Wolf K. U., 1998, A Lagrangian ensemble model of Calanus finmarchicus coupled with a 1-D ecosystem model, Fish. Oceanogr., 7 (3-4), 191-204.
http://dx.doi.org/10.1046/j.1365-2419.1998.00085.x
Ciszewski P., Witek Z., 1977, Production of older stages of cop pods Acartia bifilosa Giesb. and Pseudocalanus longatus Boeck in Gdańsk Bay, Pol. Arch. Hydrobiol., 24, 449-459.
Corkett C. J., McLaren I. A., 1978, The biology of Pseudocalanus, Adv. Mar. Biol., 15, 1-231.
http://dx.doi.org/10.1016/S0065-2881(08)60404-6
Dzierzbicka-Głowacka L., 2005a, A numerical investigation of phytoplankton and Pseudocalanus longatus dynamics in th spring bloom tim in th Gdańsk Gulf, J. Marine Syst., 53 (1-4), 19-36.
Dzierzbicka-Głowacka L., 2005b, Modelling the s asonal dynamics of marin plankton in th southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
Dzierzbicka-Głowacka L., 2006, Modelling the s asonal dynamics of marin plankton in th southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41-71.
Dzierzbicka-Głowacka L., Bielecka L., Mudrak S., 2006, Seasonal dynamics of Pseudocalanus minutus elongatus and Acartia spp. in the southern Baltic Sea (Gdańsk Deep)– numerical simulations, Biogeosciences, 3 (4), 635-650.
Fennel W., 2001, Modelling of copepods with links to circulation model, J. Plankton Res., 23 (11), 1217-1232.
http://dx.doi.org/10.1093/plankt/23.11.1217
Kiørboe T., Mohlenberg F., Hamburger K., 1985, Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action, Mar. Ecol.-Prog. Ser., 26, 85-97.
http://dx.doi.org/10.3354/meps026085
Klein Breteler W. C. M., Gonzales S. R., Schogt N., 1995, Development of Pseudocalanus longatus (Copepoda,Calanoida)cultur d at different temperature and food conditions, Mar. Ecol.-Progr. Ser., 119, 99-110.
http://dx.doi.org/10.3354/meps119099
Klein Breteler W. C. M., Schogt N., 1994, Development of Acartia clausi (Copepoda, Calanoida) cultured at different conditions temperature and food, Hydrobiologia, 292-293(1), 469-479.
http://dx.doi.org/10.1007/BF00229974
Kremer J. N., Nixon S. W., 1978, A coastal marine cosystem. Simulation and analysis, Ecol. Stud., 24, Springer-Verlag, Heidelberg, 217 pp.
Last J. M., 1978a, The food of four species of pleuronectiform larvae in the Eastern English Channel and southern North Sea , Mar. Biol., 45 (4), 359-368.
http://dx.doi.org/10.1007/BF00391822
Last J. M., 1978b, The food of three species of gadoid larvae in the Eastern English Channel and southern North Sea, Mar. Biol., 48 (4), 377-386.
http://dx.doi.org/10.1007/BF00391643
Last J. M., 1980, Th food of twenty species of fish larva in the west-central North Sea, Fish. Res. Tech. Rep. No. 60, Lowestoft, 44 pp.
McLaren I. A., 1978, Generation lengths of some temperate marin copepods: estimation, production and implications, J. Fish Res. Board Can., 35, 1330-1342.
http://dx.doi.org/10.1139/f78-208
McLaren I. A., Leonard A., 1995, Assessing the equivalence of growth and egg production of copepods, ICES J. Mar. Sci., 52, 397-408.
http://dx.doi.org/10.1016/1054-3139(95)80055-7
McLaren I. A., Sévigny J. M., Corkett C. J., 1989, Temperature-dependent development in Pseudocalanus species, Can. J. Zoolog., 67 (3), 559-564.
http://dx.doi.org/10.1139/z89-079
Miller C. B., Johnson J. K., Heinle D. R., 1977, Growth rules in the marin copepod genus Acartia, Limnol. Oceanogr., 22 (2), 326-335.
http://dx.doi.org/10.4319/lo.1977.22.2.0326
Norrbin M. F., 1996, Timing of diapaus in relation to the onset of winter in the high-latitud copepods Pseudocalanus acuspes and Acartia longiremis, Mar. Ecol.-Prog. Ser., 142, 99-109.
http://dx.doi.org/10.3354/meps142099
Paffenhöfer .A.,1971,Grazing and ingestion rat s of nauplii,copepodids and adults of the marin planktonic copepod Calanus helgolandicus, Mar. Biol., 11 (3), 286-298.
http://dx.doi.org/10.1007/BF00401275
Paffenhöfer G. A., Harris R. P., 1976, Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus longatus Boeck, J. Mar. Biol. Assoc. UK, 56, 327-344
http://dx.doi.org/10.1017/S0025315400018956
Piontkovskii S. A., Petipa T. S., 1976, Quantitative description of the behavior of copepod Acartia clausi during feeding on algae, Sov. J. Mar. Biol., 2, 40-46.
Renk H., 2000, Primary production in the southern Baltic, Sea Fisher. Inst., Gdynia, 78 pp., (in Polish).
Sekiguchi H., McLaren I. A. ,Corkett C. J., 1980, Relationship between growth rate and egg production in the copepod Acartia clausi Hudsonica, Mar. Biol., 58 (2), 133-138.
http://dx.doi.org/10.1007/BF00396124
Steele J. H., Mullin M. M., 1977, Zooplankton dynamics, [in:] The sea.Ideas and observations on progress in the study of seas. Vol.6. Marin modelling, E. D. Goldberg, I. N. McCave, J. J. O ’Brien & J. H. Steele (eds.), Wiley-Intersci., New York, 857-887.
Stegert Ch., Kreus M., Carlotii F., Moll A., 2007, Parameterisation of a zooplankton population model for Pseudocalanus longatus using stage durations from laboratory experiments, Ecol. Model., 206 (3-4), 213-230.
http://dx.doi.org/10.1016/j.ecolmodel.2007.04.012
Thompson A. M., Durbin E. G., Durbin A. G., 1994, Seasonal changes in maximum ingestion rat of Acartia tonsa in Narragansett Bay, Rhod Island, USA , Mar. Ecol.-Prog. Ser., 108,91-105.
http://dx.doi.org/10.3354/meps108091
Turner J. T., Tester P. A., 1989, Zooplankton feeding ecology: nonselective grazing by the copepods Acartia tonsa Dana, Centropages velificatus De Oliveira, and Eucalanus pileatus Giesbrecht in the plume of the Mississippi River, J. Exp. Mar. Biol. Ecol., 126 (1), 21-43.
http://dx.doi.org/10.1016/0022-0981(89)90122-6
Verity P. G., Smayda T. J., 1989, Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp.(Copepoda): ingestion, egg production, and growth of nauplii, Mar. Biol., 100 (2), 161-171.
http://dx.doi.org/10.1007/BF00391955
Wlodarczyk E., Durbin A. G., Durbin E. G., 1992, Effect of temperature on lower feeding thresholds, gut evacuation rate, and diel feeding behavior in the copepod Acartia hudsonica, Mar. Ecol.-Prog. Ser., 85, 93-106.
http://dx.doi.org/10.3354/meps085093
Załachowski W., Szypuła J., Krzykawski S., Krzykawska I., 1975, Feeding of some commercial fishes in the southern region of the Baltic Sea in 1971 and 1972, Pol. Arch. Hydrobiol., 22, 429-448.
Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 2. Egg production
Oceanologia 2009, 51(2), 185-201
http://dx.doi.org/10.5697/oc.51-2.185
Lidia Dzierzbicka-Głowacka1,*, Anna Lemieszek2, Maria Iwona Żmijewska2
1Physical Oceanography Department,
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author
2Institute of Oceanography,
University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland
Keywords:
population model, egg production, Acartia spp., Gdańsk Deep (southern Baltic Sea)
Received 18 March 2009, revised 21 May 2009, accepted 26 May 2009.
This research was carried out in support of grant No. NN306 181537.
Abstract
The paper describes the modelling of egg production in Acartia spp. under changing environmental conditions in the southern Baltic Sea (Gdańsk Deep). The hypothesis (Sekiguchi et al. 1980) that the food-saturated rate of egg matter production is equivalent to specific growth rate of copepods is applied. The average number of eggs produced per day by one Acartia female is obtained as a function of growth rate, i.e. by multiplying exp gN3-1 from the growth rate of the nauplius stage equation by Wfemale / Wegg. The copepod model, reduced to a zero-dimensional population model calibrated for Acartia spp. under the environmental conditions typical of the southern Baltic Sea, was used to determine the effects of temperature and food concentration on the growth rate of each of the model stages (see Part 1 - Dzierzbicka-Głowacka et al. 2009 - this issue). In this part, egg production as a function of the above parameters is evaluated. The rate of reproduction during the seasons in the upper layer of the Gdańsk Deep is also determined.
References
Ambler J. W., 1985, Seasonal factors affecting egg production and viability of eggs of Acartia tonsa Dana, from East Lagoon, Galveston, Texas, Estuar. Coast. Shelf Sci., 20 (6), 743-760.
http://dx.doi.org/10.1016/0272-7714(85)90030-7
Bautista B., Harris R. P., Rodriguez V. et al, 1994, Temporal variability in copepod fecundity during two different spring bloom periods in coasta waters off Plymouth (SW Eng and), J. Plankton Res., 16 (10), 1367-1377.
http://dx.doi.org/10.1093/plankt/16.10.1367
Beckman B. C., Peterson W. T., 1986, Egg production of Acartia tonsa Dana in Long Island Sound, J. Plankton Res., 8 (5), 917-925.
http://dx.doi.org/10.1093/plankt/8.5.917
Berggreen U., Hansen B., Kiörboe T., 1988, Food size spectra, ingestion and growth of the copepod Acartia tonsa during development:implications for determination of copepod production, Mar. Biol., 99 (3), 341-352.
http://dx.doi.org/10.1007/BF02112126
Checkley D. M., 1980, Food limitation of egg production by a marine planktonic copepod in the sea off southern California, Limnol. Oceanogr., 25, 991-998.
http://dx.doi.org/10.4319/lo.1980.25.6.0991
Ciszewski P., Witek Z., 1977, Production of older stages of copepods Acartia biffosa Giesb. and Pseudocalanus elongatus Boeck in Gda#324;sk Bay, Pol. Arch.
Hydrobiol., 24, 449-459.
Corkett C. J., McLaren I. A., 1978, The biology of Pseudocalanus, Adv. Mar. Biol., 15, 1-231.
http://dx.doi.org/10.1016/S0065-2881(08)60404-6
Durbin E. G., Durbin A. G., Smayda T. J. et al., 1983, Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr., 28, 1199-1213.
http://dx.doi.org/10.4319/lo.1983.28.6.1199
Dzierzbicka-Głowacka L., 2005a, A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk
Gulf, J. Marine Syst., 53 (1-4), 19-36.
Dzierzbicka-Głowacka L., 2005b, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591-619.
Dzierzbicka-Głowacka L., 2005c, Equivalence of rates of growth and egg production of Pseudocalanus, Ocean Hydrobiol. Stud., 34 (4), 19-32.
Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia ,48 (1), 41-71.
Dzierzbicka-Głowacka L., Lemieszek A.,& #379;mijewska M. A., 2009, Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1: Development time, Oceanologia, 51 (2), 165-184.
http://dx.doi.org/10.5697/oc.51-2.165
Fennel W., 2001, Modelling of copepods with inks to circulation model, J. Plankton Res., 23 (11), 1217-1232.
http://dx.doi.org/10.1093/plankt/23.11.1217
Fryd M., Haslund O. H., Wohlgemuth O., 1991, Development, growth and egg production of two copepod species Centropages hamatus and Centropages typicus in the laboratory, J. Plankton Res., 13, 683-689.
http://dx.doi.org/10.1093/plankt/13.4.683
Harrison K.., 1990, The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: a review, J. Shellfish Res., 9, 1-28.
Hay S. J., 1995, Egg production and secondary production of common North Sea copepods: field estimates with regional and seasonal comparisons, IC SJ. Mar. Sci., 52, 315-327.
Hernroth L., 1985, Recommendations on methods for marine biological studies in the Baltic Sea, Mesozooplankton biomass assessment, Baltic Mar. Biolog., 10, 1-32.
Kiørboe T., Johansen K., 1986, Studies of a larval herring (Clupea harengus L.) patch in the Buchan area,IV. Zooplankton distribution and productivity in relation to hydrographic features, Dana, 6, 37-51.
Kiørboe T., Mohlenberg F., Hamburger K., 1985, Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action, Mar. Ecol.-Prog. Ser., 26, 85-97.
http://dx.doi.org/10.3354/meps026085
Kleppel G. S., 1992, Environmenta regulation of feeding and egg production by Acartia tonsa off southern California, Mar. Biol., 112, 57-65.
http://dx.doi.org/10.1007/BF00349728
McLaren I. A., Leonard A., 1995, Assessing the equiva ence of growth and egg production of copepods, IC S J. Mar. Sci., 52, 397-408.
Mudrak S., 2004, Short- and long-term variability of zooplankton in coasta Baltic water: using the Gulf of Gdańsk as an example, Ph. D. thesis, Univ.Gdańsk, Gdynia, (in Polish).
Paffenhöfer G. A., Harris R. P., 1976, Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus elongatus Boeck, J. Mar. Biol. Assoc. UK, 56, 327-344.
http://dx.doi.org/10.1017/S0025315400018956
Pond D., Harris R., Head R. et al., 1996, Environmenta and nutritiona factors determining seasona variability in the fecundity and egg viability of Calanus helgolandicus in coastal waters o-Plymouth, UK Mar. Ecol.-Prog. Ser., 143, 45-63.
http://dx.doi.org/10.3354/meps143045
Renk H., 2000, Primary production in the southern Baltic, Sea Fisher. Inst., Gdynia, 78 pp., (in Polish).
Schmidt K., Kähler P., Bodungen B., 1998, Copepod egg production rates in the Pomerania Bay (southern Baltic Sea) as a function of phytoplankton abundance and taxonomic composition, Mar. Ecol. -Prog. Ser., 174, 183-195.
http://dx.doi.org/10.3354/meps174183
Sekiguchi H., McLaren I. A., Corkett C. J., 1980, Relationship between growth rate and egg production in the copepod Acartia clausi Hudsonica, Mar. Biol., 58 (2), 133-138.
http://dx.doi.org/10.1007/BF00396124
Stegert Ch., Kreus M., Carlotii F., Moll A., 2007, Parameterisation of a zooplankton population model for Pseudocalanus elongatus using stage durations from aboratory experiments , Ecol. Model., 206 (3-4), 214-234.
http://dx.doi.org/10.1016/j.ecolmodel.2007.04.012
Uye S., Shibuno N., 1992, Reproductive biology of the planktonic copepod Paracalanus sp. in the Inland and Sea of Japan, J. Plankton Res., 14, 343-359.
http://dx.doi.org/10.1093/plankt/14.3.343
Vanderploeg H. A., Paffenhöfer G. A., Liebig J. R., 1988, Diaptomus vs net phytoplankton: effects of algae size and morphology on selectivity of a behaviorally flexible, omnivorous copepod, Bull. Mar. Sci., 43, 377-394.
Verity P. G., Smayda T. J., 1989, Nutritiona value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Acartia spp.(Copepoda): ingestion, egg production, and growth of nauplii, Mar. Biol., 100 (2), 161-171.
http://dx.doi.org/10.1007/BF00391955
Vinogradov M. E., Shushkina E. A., 1987, Functioning of pelagic plankton communities in the ocean, Nauka,Moskva,(in Russian).
White J. R., Roman M. R., 1992, Egg production by the calanoid copepod Acartia tonsa in the mesohaline Chesapeake Bay: the importance of food resources and temperature, Mar. Ecol.-Prog. Ser., 86, 239-249.
http://dx.doi.org/10.3354/meps086239
Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon
Oceanologia 2009, 51(2), 203-216
http://dx.doi.org/10.5697/oc.51-2.203
Aistė Paldavičienė1,*, Hanna Mazur-Marzec2, Artūras Razinkovas1
1Coastal Research and Planning Institute,
University of Klaipėda,
H. Manto 84, LT-92294, Klaipėda, Lithuania;
e-mail: aiste@corpi.ku.lt
*corresponding author
2Department of Marine Biology and Ecology,
Institute of Oceanography, University of Gdańsk,
al. Marszałka Piłsudskiego 46, PL-81-378 Gdynia, Poland;
e-mail: biohm@univ.gda.pl
Keywords:
cyanobacteria, microcystins, nodularin, Curonian Lagoon, Lithuania
Received 10 February 2009, revised 30 April 2009, accepted 4 May 2009.
Abstract
The phenomenon of cyanobacteria (blue-green algae) blooms in the Baltic and the surrounding freshwater bodies has been known for several decades. The presence of cyanobacterial toxic metabolites in the Curonian Lagoon has been investigated and demonstrated for the first time in this work (2006-2007). Microcystis aeruginosa was the most common and widely distributed species in the 2006 blooms. Nodularia spumigena was present in the northern part of the Curonian Lagoon, following the intrusion of brackish water from the Baltic Sea; this is the first time that this nodularin-(NOD)-producing cyanobacterium has been recorded in the lagoon. With the aid of high-performance liquid chromatography (HPLC), four microcystins (MC-LR, MC-RR, MC-LY, MC-YR) and nodularin were detected in 2006. The presence of these cyanobacterial hepatotoxic cyclic peptides was additionally confirmed by enzyme-linked immunosorbent assay (ELISA) and protein phosphatase inhibition assay (PP1). Microcystin-LR, the most frequent of them, was present in every sample at quite high concentrations (from <0.1 to 134.2 µg dm-3). In 2007, no cyanobacterial bloom was recorded and cyanotoxins were detected in only 4% of the investigated samples. A comparably high concentration of nodularin was detected in the northern part of the Curonian Lagoon. In one sample dimethylated MC-RR was also detected (concentration 7.5 µg dm-3).
References
Blackburn S. I., McCausland M. S., Bolch C. J., Newman S. J., Jones G. J., 1996, Effect of salinity o growth and toxin production in cultures of the blogom-forming cyanobacterium Nodularia spumigena from Australian waters, Phycologia, 35 (6), 511-522.
http://dx.doi.org/10.2216/i0031-8884-35-6-511.1
Carmichael W. W., 2001, Health effects of toxin-producing cyanobacteria: 'The CyanoHABs', Hum. Ecol. Risk Assess., 7 (5), 1393-1407.
http://dx.doi.org/10.1080/20018091095087
Choru I., Bartram J. (eds.), 1999, Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management, E & FN Spon, London, 416 pp.
Codd G. A., 1995, Cyanobacterial toxins: occurrence, properties and biological significance, Water Sci. Technol., 32 (4), 149-156.
http://dx.doi.org/10.1016/0273-1223(95)00692-3
Daunys D., Olenin S., 1999, Bottom macrofauna communities in the littoral zone of the Curonian Lagoon, Ekologiya, 2, 19-27, (in Lithuanian with English summary).
Fastner J., Wirsing B., Weidner C., Heinze R., Neumann U., Chorus I.,2001, Microcystins and hepatocyte toxicity ,[in:]The cyanotoxins, I. Chorus (ed.), Springer, Berlin, 22-37.
Franci G., 1878, Poisonous Australian lake, Nature, 18, 11-12.
http://dx.doi.org/10.1038/018011d0
Henriksen P., 1996, Microcysti profiles and conte ts i Danish populations of cyanobacteria/blue-gree algae as determined by HPLC, Phycologia, 35 (Suppl.), 102-110.
http://dx.doi.org/10.2216/i0031-8884-35-6S-102.1
Horstmann U., 1975, Eutrophication and mass occurrence of blue-green algae in the Baltic, Merentutkimu lait. Julk./Havsforskningsinst. Skr., 239, 83-90.
Jones G. J., Blackburn S. I., Parker N. S., 1994, A toxic bloom of Nodularia spumigena Mertens in Orielton Lagoon, Tasmania, Aust. J. Mar. Fresh Res. 45 (5), 787-800.
http://dx.doi.org/10.1071/MF9940787
Karlsson K. M., Kankaanpää H., Huttunen M., Meriluoto J., 2005, First observation on microcystin-LR in pelagic cyanobacterial blooms in the northern Baltic Sea, Harmful Algae, 4 (1), 163-166.
http://dx.doi.org/10.1016/j.hal.2004.02.002
Kondo F. L., 1999, Laboratory analysis of cyanotoxins, [in:] Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management, I. Choru && J. Bartram (eds.),E & N. Spon, London, 369-405.
Kupier-Goodman T., Falconer I., Fitzgerald J., 1999, Huma health aspects, [in:] Toxic cyanobacteria in water. A guide to their public health consequences,
monitoring and management, I. Choru & J. Bartram (eds.), E & N. Spon, London,113-153.
Lehtimaki J., Sivonen K., Luukkainen R., Niemela S. I., 1994, The effects of incubation time, temperature, light, salinity, and phosphorus on growth and hepatotoxin production by Nodularia strains, Arch. Hydrobiol., 130 (3), 269-282.
Maršalek B., Blaha L., Turanek J., Neca J., 2001, Microcystin-LR and total microcystins in cyanobacterial blooms in the Czech Republic 1993-1998, [in:] The cyanotoxins, I.C horu (ed.), Springer, Berlin, 56-62.
Mazur-Marzec H., Zeglinska L., Plinski M., 2005, The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdańsk, southern Baltic Sea, J. Appl. Phycol., 17(2), 171-179.
http://dx.doi.org/10.1007/s10811-005-5767-1
Olenina I., 1997, Phytoplankton and its development in the South-Eastern coastal Baltic and in the Curonian lagoon, Ph. D. thesis, Vilnius, 161 pp., (in Russian).
Pilkaityt&279; R., 2003, Phytoplankton seasonal succession and abundance in the eutrophic estuarine lagoons, Ph. D. thesis, Klaipeda, 97 pp.
Pilkaitytė R., Razinkova A., 2007, Seasonal changes in phytoplankton composition and utrient limitation in a shallow Baltic lagoon, Boreal Environ.Res., 12 (5), 551-559.
Pliński M.,Dziopa M.,2001,E-ect of salinity,temperature a d light o growth of
Anabaena-os-aquae and Nostoc sp. Div. (Cyanobacteria, Blue-green algae), Oceanol. Stud., XXX(1-2), 13-19.
Pliński M., Jóźwiak T., 1999, Temperature and N:P ratio as factors causing blooms of blue-green alga in the Gulf of Gdańsk, Oceanologia, 41 (1), 73-80.
Rapala J., 1998, Toxin production by freshwater cyanobacteria: effects of enviro mental factors, Diss. Biocentri Viiki Univ. Helningiensis, 9, 1-63.
Rapala J., Erkomaa K., Kukkonen J., Sivonen K., Lahti K., 2002, Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay. Comparison of methods, Anal. Chim. Acta, 466, 213-231.
http://dx.doi.org/10.1016/S0003-2670(02)00588-3
Rapala J., Sivonen K., 1998, Assessment of environmental conditions that favor hepatotoxic and eurotoxic Anabaena spp. strains cultured under light limitation at different temperatures, Microbial Ecol., 36 (2), 181-192.
http://dx.doi.org/10.1007/s002489900105
Romo S., 1994, Growth parameters of Pseudanabaena galeata Bocher in culture under different light and temperature conditions, Algol. Stud., 75, 239-248.
Salomon P. S., Yune J. S., Matthiennen A., Codd G. A., 2003, Does salinity affect the toxin content of an estuarine strain of Microcystis aeruginosa?, [in:] Mycotoxins and Phycotoxins in perspective at the turn of the millennium , W. J. de Koe, R. A. Samson, H. P. van Egmond, J. Gilbert & M. Sabino (eds.), Proc. X Int. IUPAC Symp. `Mycotoxin and Phycotoxins', May 21-25, 2000, Guarujá Brazil, 537-548.
Sivonen K. K., Jones G., 1999, Cyanobacterial toxins,[in:] Toxic cyanobacteria in water. A guide to their public health conseque ces,monitoring and management, I. Choru & J. Bartram (eds.), E & N. Spon, London, 41-111.
Sivonen K., Kononen K., Carmichael W. W., Dahlem A. M, Rinehart K. L., Kiviranta J., Niemela S. I., 1989, Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin, Appl. Environ. Microbiol., 55 (8), 1990-1995.
Song L., Sano T., Li R., Watanabe M. M., Liu Y., Kaya K., 1998, Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions, Phycolog. Res., 46 (2), 19-23.
http://dx.doi.org/10.1111/j.1440-1835.1998.tb00266.x
Stalnåcke P., Grimvall A., Sundblad K., Tonderski A., 1999, Estimatio of riverine loads of itrogen and phosphorus to the Baltic Sea, 1970-1993, Environ. Monit. Assess., 58 (2), 173-200.
http://dx.doi.org/10.1023/A:1006073015871
Tonk L., Visser P. M., Christiansen G., Dittmann E., Snelder O. F. M., Wiedner C., Mur L. R., Huisman J., 2005, The Microcystin composition of the cyanobacterium Planktothrix agardhii changes toward a more toxic variant with increasing light intensity, Appl. Environ. Microbiol., 71 (9), 5177-5181.
http://dx.doi.org/10.1128/AEM.71.9.5177-5181.2005
Vasconcelos V. M., 2001, Freshwater cyanobacteria and their toxins in Portugal, [in:] The cyanotoxins, I. Choru (ed.), Springer, Berlin, 62-67.
Walsh K., Jones G. J., Dunstant R. H., 1997, Effect of radiance on fatty acid, carotenoid, total protein composition and growth of Microcystis aeruginosa, Phytochemistry, 44 (5), 817-824.
http://dx.doi.org/10.1016/S0031-9422(96)00573-0
Westhuizen A. J. van der, Eloff J. N., 1985, Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006), Planta, 163 (1), 55-59.
http://dx.doi.org/10.1007/BF00395897
WHO (World Health Organization), 1998, Guidelines for drinking water quality, 2nd edn., addendum to Vol. 2, Health criteria and other supporting information, WHO, Geneva.
Yune J. S., Niencheski L. F. H., Salomon P. S., Parise M., Beattie K. A., Raggett S. L., Codd G. A., 1994, Development and toxicity of cyanobacteria in the Patos Lagoo estuary, southern Brazil, IOC Workshop Rep. COI/UNESCO Publ., 101 (III), 14-19.
Yune J. S., Niencheski L. F. H., Salomon P. S., Parise M., Beattie K. A., Raggett S. L., Codd G. A., 1998, Effect of utrient balance and physical factors on blooms of toxic cyanobacteria in the Patos Lagoon, southern Brazil, Verhandlung. Int. Verein. Theor. Angew. Limnol., 26, 1796-1800.
Using chemometrics to identify water quality in Daya Bay, China
Oceanologia 2009, 51(2), 217-232
http://dx.doi.org/10.5697/oc.51-2.217
Mei-Lin Wu1, You-Shao Wang1,*, Cui-Ci Sun1, Haili Wang2, Zhi-Ping Lou1, Jun-De Dong1
1Key Laboratory of Tropical Marine Environmental Dynamics,
South China Sea Institute of Oceanology, Chinese Academy of Sciences,
Guangzhou 510301, China;
e-mail: yswang@scsio.ac.cn
*corresponding author
2Scripps Institution of Oceanography,
University of California,
San Diego, CA 92093-0218, USA
Keywords:
cluster analysis, robust principal component analysis, water quality, Daya Bay (DYB), South China Sea
Received 13 January 2009, revised 18 March 2009, accepted 20 March 2009.
This research was supported by the project of knowledge innovation program of
the Chinese Academy of Sciences (No. KZCX2-YW-Q07-02 & No. KSCX2-SW-132),
the project of knowledge innovation program of the South China Sea Institute of
Oceanology (No. LYQ200701) and the National 908 project (No. 908-02-04-04).
Abstract
In this paper, chemometric approaches based on cluster analysis, classical and robust principal component analysis were employed to identify water quality in Daya Bay (DYB), China. The results show that these approaches divided water quality in DYB into two groups: stations S3, S8, S10 and S11 belong to cluster A, which lie in Dapeng Cove, Aotou Harbor and the north-eastern part of DYB, where water quality is related mainly to anthropogenic activities. The other stations belong to cluster B, which lie in the southern, central and eastern parts of DYB,
where the quality is related mainly to water exchange with the South China Sea. Cluster analysis yields good results as a first exploratory method for evaluating spatial difference, but it fails to demonstrate the relationship between variables and environmental quality on the one hand and the untreated data on the other. However, with the aid of suitable chemometric approaches, the relationship between samples or variables can be investigated. Classical and robust principal component analysis can provide a visual aid for identifying the water environment in DYB, and then extracting specific information about relationships between variables and spatial variation trends in water quality.
References
Bowen R. E., Depledge M. H., 2006, Rapid assessment of marine pollution (RAMP), Mar. Pollut. Bull., 53 (10-12), 631-639.
http://dx.doi.org/10.1016/j.marpolbul.2006.09.002
Chau K. W., Muttil N., 2007, Data mining and multivariate statistical analysis for ecological system in coastal waters, J. Hydroinform., 9 (4), 305-317.
http://dx.doi.org/10.2166/hydro.2007.003
Croux C., Ruiz-Gazen A., 2005, High breakdown estimators for principal components: the projection-pursuit approach evisited, J. Multivar. Anal., 95 (1), 206-226.
http://dx.doi.org/10.1016/j.jmva.2004.08.002
Gong F., Wang B. T., Fung Y. S., Chau F. T., 2005, Chemometric characterization of the quality of the atmospheric environment in Hong Kong, Atmos. Environ., 39 (34), 6388-6397.
http://dx.doi.org/10.1016/j.atmosenv.2005.07.039
Iscen C. F., Emiroglu Ö., Ilhan S., Arslan N., Yilmaz V., Ahiska S., 2008, Application of multivariate statistical techniques in the assessment of su face water quality in Uluabat Lake, Turkey, Environ. Monit. Assess., 144 (1-3), 269-276.
http://dx.doi.org/10.1007/s10661-007-9989-3
Kotti M. E., Vlessidis A. G., Thanasoulias N. C., Evmiridis N. P., 2005, Assessment of rive water quality in Northwestern Greece, Water Resour. Manag., 19 (1), 77-94.
http://dx.doi.org/10.1007/s11269-005-0294-z
Kuppusamy M. R., Giridhar V. V., 2006, Factor analysis of wate quality characteristics including trace metal speciation in the coastal environmental system of Chennai Ennore, Environ. Int., 32 (2), 174-179.
http://dx.doi.org/10.1016/j.envint.2005.08.008
Qiu Y. W., Wang Z. D., Zhu L. S., 2005, Variation trend of nutrient and chlorophyll contents and thei effects on ecological environment in Daya Bay ,J.Oceanogr.-Taiwan Strait, 24 (2), 131-139, (in Chinese).
Shrestha S., Kazama F., 2007, Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan, Environ. Modell. Softw., 22 (4), 464-475.
http://dx.doi.org/10.1016/j.envsoft.2006.02.001
Simeonov V., Stratis J. A., Samara C., Zachariadis G., Voutsa D., Anthemidis A., Sofoniou M., Kouimtzis Th., 2003, Assessment of the surface water quality in Northern Greece, Water Res., 37 (17), 4119-4124.
http://dx.doi.org/10.1016/S0043-1354(03)00398-1
Simeonova P., Simeonov V., Andreev G., 2003, Water quality study of the Struma river basin, Bulgaria (1989-1998), Centr. Eur. J. Chem., 1 (2), 121-136.
http://dx.doi.org/10.2478/BF02479264
Singh K. P., Malik A., Mohan D., Sinha S., 2004, Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)– a case study, Water Res., 38 (18), 3980-3992.
http://dx.doi.org/10.1016/j.watres.2004.06.011
Song X. Y., Huang L. M., Zhang J. L., Huang X. P., Zhang J. B., Yin J. Q., 2004, Variation of phytoplankton biomass and primary production in Daya Bay during spring and summer, Mar. Pollut. Bull., 49 (11-12), 1036-1044.
http://dx.doi.org/10.1016/j.marpolbul.2004.07.008
Stanimirova I.,Walczak B., Massart D.L.,Simeon v V.,2004,Acompaison
between two robust PCA algo ithms, Chem metr. Intell. Lab., 71 (1), 83-95.
http://dx.doi.org/10.1016/j.chemolab.2003.12.011
Suikkanen S., Laamanen M., Huttunen M., 2007, Long-term changes in summer phytoplankton communities of the open northern Baltic Sea, Estuar. Coast. Shelf Sci., 71 (3-4), 580-592.
http://dx.doi.org/10.1016/j.ecss.2006.09.004
Vega M., Pard R., Barrad E., Deban L., 1998, Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Res., 32 (12), 3581-3592.
http://dx.doi.org/10.1016/S0043-1354(98)00138-9
Wang Y. S., Lou Z. P., Sun C. C., Sun S., 2008, Ecological environment changes in Daya Bay, China, from 1982 to 2004, Mar. Pollut. Bull., 56 (11), 1871-1879.
http://dx.doi.org/10.1016/j.marpolbul.2008.07.017
Wang Y. S., Lou Z. P., Sun C. C., Wu M. L., Han S. H., 2006, Multivariate statistical analysis of water quality and phytoplankton characte istics in Daya Bay,
China, from 1999 to 2002, Oceanologia, 48 (2), 193-211.
Wang C. H., Qi Y. Z., Li J. T., Xu N., Chen J. F., 2004, Analysis and evaluation of trophic status in aquaculture areas of Daya Bay, Mar. Environ. Sci., 23 (2), 25-28, (in Chinese).
Wu M.L.,Wang Y.S.,2007,Using chemomet ics to evaluate anthropogenic effects in Daya Bay, China, Estuar. Coast. Shelf Sci., 72 (4), 732-742.
http://dx.doi.org/10.1016/j.ecss.2006.11.032
Xu G.Z.,1989, Environments and resources of Daya Bay, Anhui Sci. Publ., He Fei, China, 1-28, (in Chinese).
Zheng Q. H., He Y. Q., Zhang G. X., 1998, Impact on the changes of chemical composition of seawater from waste water discharged in Daya Bay, [in:] Annual research reports: Marine Biology research station at Daya Bay (II), J. Pen & Z. Wang (eds.), Sci. Publ., Beijing, China, 102-112, (in Chinese).
Zhou F.,Gu H.C.,Hao Z.J.,2007,Spatial dist ibution of heavy metals in Hong Kong's marine sediments and their human impacts: A GIS-based chemometric approach, Mar. Pollut. Bull., 54 (9), 1372-1384.
http://dx.doi.org/10.1016/j.marpolbul.2007.05.017
Factors affecting the occurrence of algae on the Sopot beach (Baltic Sea)
Oceanologia 2009, 51(2), 233-262
http://dx.doi.org/10.5697/oc.51-2.233
Anna Filipkowska1, Ludwik Lubecki1, Małgorzata Szymczak-Żyła1, Maria Łotocka2, Grażyna Kowalewska1,*
1Marine Pollution Laboratory,
Institute of Oceanology,Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: Kowalewska@iopan.gda.pl
*corresponding author
2Marine Chemistry and Biochemistry Department,
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland
Keywords:
Macroalgae, Phytoplankton, Eutrophication, Beach management, Baltic Sea, Chloropigments a
Received 27 January 2009, revised 29 April 2009, accepted 9 May 2009.
This study was financed by the EU CosCo project ("Regional
cycle development through coastal co-operation - sea grass and algae
focus" - INTERREG IIIC 2N00251) and the statutory IO PAS programme.
Abstract
The occurrence of algae on the Sopot beach was investigated from 2004 to 2006 from the beach management point of view. Various methods were applied in an attempt to understand the mechanisms underlying the accumulation of algae on the shoreline. They included daily observations of the occurrence of macrophyta on the beach, absorption measurements of acetone extracts of the particulate matter in the seawater, the collection of macrophyta and phytoplankton samples for biomass and taxonomic identification, and determination of the degree of decomposition on the basis of chloropigment analyses. The results were related to the environmental conditions: meteorological data and the physico-chemical parameters of the seawater. The biomass recorded on the beach consisted mainly of macroalgae and a small proportion of sea grass (Zostera marina). The phytoplankton biomass consisted mainly of dinoflagellates, diatoms, cyanobacteria, euglenoids and cryptophytes.
The conclusions to be drawn from this work are that the occurrence of huge amounts of macrophyta amassing on the Sopot beach depends on the combined effect of high solar radiation in spring and summer, high-strength (velocity × frequency) south-westerly winds in May-September, followed by northerly winds, bringing the macrophyta from Puck Bay on to the Sopot beach. At the same time, their abundance along the beach varies according to the shape and height of the shore, the wind strength and the local wind-driven seawater currents. According to estimates, from 2.2-4.4 × 102 tons (dry weight) of macrophyta can be moved on to the Sopot beach in one hour. In October, strong south-easterly winds can also transport huge amounts of decomposing biomass onshore. The phytoplankton content in the total biomass is negligible, even though at low concentrations its biological activity may be considerable. The intensive phytoplankton blooms observed on the Sopot beach in summer are not always caused by cyanobacteria.
References
Alström-Rapaport C., Leskinen E., 2002, Development of microsatellite markers in the green algae Enteromorpha intestinalis (Chlorophyta), Mol. Ecol. Notes, 2 (4), 581-583.
http://dx.doi.org/10.1046/j.1471-8286.2002.00325.x
Arèvalo R., Pinedo S., Ballesteros E., 2007, Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: descriptive study and test of proposed methods to assess water quality regarding macroalgae, Mar. Pollut. Bull., 55 (1-6), 104-113.
Ballesteros E., Torras X., Pinedo S., García M., Mangialajo L., de Torres M., 2007, A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive, Mar. Pollut. Bull., 55 (1-6), 172-180.
Berglund J., Mattila J., Rönnberg O., Heikkilä J., Bonsdorff E., 2003, Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays, Estuar. Coast. Shelf Sci., 56 (5-6), 1167-1175.
http://dx.doi.org/10.1016/S0272-7714(02)00326-8
Ciszewski P., Kruk-Dowgiałło L., Andrulewicz E., 1991, A study on ollution of the Puck Lagoon and ossibility of restoring the Lagoon's original state, Acta Ichthyol. Pisc., 21 (Suppl.), 29-37.
DzU Nr 162, poz. 1008-- Rozp. Min. Środ., 20.08.2008, Polish regulation-water policy, classiffication of the state of surface waters, (in Polish).
DzU Nr 183, poz. 1530-- Rozp. Min. Środ., 16.10.2002, Polish regulation-bathing water quality, (in Polish).
Edler L. (ed.), 1979, Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Balt. Mar. Biol. Publ. No. 5, 1-38.
EU WFD (The EU Water Frame Directive), 2000, Directive 2000/60/EC of the Euro ean Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, EUWFD.
Feistel R., Nausch G., Wasmund N. (eds.), 2008, State and evolution of the Baltic Sea 1952-2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment, John Wiley & Sons,Inc., Hoboken, New Jersey, 703 pp.
Filipkowska A., Lubecki L., Szymczak-Żyła M., Kowalewska G., Żbikowski R., Szefer P., 2008, Utilisation of macroalgae from the So ot beach (Baltic Sea), Oceanologia, 50 (2), 255-273.
Finni T., Kononen K., Olsonen R., Wallström K., 2001, The history of cyanobacterial blooms in the Baltic Sea, AMBIO: J. Human. Environ., 30 (4), 172-178.
Grasshoff K., 1976, Methods of seawater analysis, Verlag Chemie, Weinheim, New York, 317 pp.
Hällfors G., 2004, Checklist of Baltic Sea phytoplankton species, Balt. Sea Environ. Proc., 95, 5-208.
HELCOM, 1997, Manual for marine monitoring in the COMBINE programme of HELCOM, Part C. Programme for monitoring of eutrophication and its effects, Annex C-6: Phytoplankton species composition, abundance and biomass, Balt. Mar. Environ. Prot. Commiss., Helsinki, C6-1-C6-8, 22 pp.
HELCOM, 2006, Development of tools for assessment of eutrophication in the Baltic Sea, Baltic Sea Environ. Proc., 104, 64 pp.
HELCOM, 2007, Towards a Baltic Sea unaffected by eutrophication, HELCOM Overview 2007, HELCOM Ministerial Meeting, 15 November 2007, Kraków, Poland, 35 pp.
IMGW, 1998, Environmental conditions in the Polish zone of the southern Baltic Sea in 1997, B. Cyberska, Z. Lauer & A. Trzosińska (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, 269 pp., (in Polish).
IMGW,2000,Environmental conditions in the Polish zone of the southern Baltic
Sea in 1999, W. Krzymiński, E. Łysiak-Pastuszak & M. Miętus (eds.), Mater. Oddz. Mor. Inst. Meteorol. Gosp. Wod., Gdynia, (in Polish with English summary), 300 pp.
Jeffrey S. W., Mantoura R. F. C., Wright S. W., 1997, Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO Publ., Paris, 661 pp.
Kowalewska G., 2005, Algal igments in sediments as a measure of eutrophication in the Baltic environment, Quatern. Int., 130 (1), 141-151.
http://dx.doi.org/10.1016/j.quaint.2004.04.037
Kruk-Dowgiałło L., 1996, The role of filamentous brown algae in degradation of the underwater meadows of the Gulf of Gdańsk, Oceanol. Stud., 25 (1-2), 125-135.
Kruk-Dowgiałło L.,1998,Phytobenthos as an indicator of state of environment of the Gulf of Gdańsk, Oceanol. Stud., 27 (4), 105-121.
Lotze H. K., Schramm W., Schories D., Worm B., 1999, Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp., Oecologia, 119 (1), 46-54.
http://dx.doi.org/10.1007/s004420050759
Mackiewicz T., 1991, Composition and seasonal changes of nanoflagellates in the Gdańńsk Basin (Southern Baltic), Acta Ichthyol. Pisc., 21 (Suppl.), 125-134.
Martin G., 2005, BSRP training workshop on phytobenthos monitoring methods, BSRP training worksho Report, Kõoiguste field station, 23-27 May 2005, Laimjala, Estonia, 50 pp.
Massel S. R., 2007, Ocean waves breaking and marine aerosol fluxes, Atmos. Oceanogr. Sci. Libr. 38, Springer, New York, 328 pp.
Norkko J., Bonsdorff E., Norkko A., 2000, Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource, J. Exp. Mar. Biol. Ecol., 248 (1), 79-104.
http://dx.doi.org/10.1016/S0022-0981(00)00155-6
Ochocki S., Nakonieczny J., Chmielowski H., Zalewski M., 1995, The hydrochemical and biological impact of the river Vistula on the elagic system of the Gulf of GdaƧsk in 1994. Part 2. Primary roduction and chlorophyll a, Oceanologia, 37 (2), 207-226.
Pająk G., 2003, Formation of phytoplankton in the first years of existence of the water supplying reservoir (southern Poland) against the background of increased eutrophication process, Ocean. Hydrobiol. Stud.,3 2 (4), 5-77.
Pankow H., Kell V., Wasmund N., Zander B., 1990, Ostsee-Algenflora, G. Fischer Verlag, Jena, 648 pp.
Pliński M.,1995, Phytoplankton of the Gulf of Gdańsk in 1992 and 1993, Oceanologia, 37 (1), 123-135.
Raffaelli D., 2000, Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland, Helgoland Mar. Res., 54 (2-3), 71-79.
http://dx.doi.org/10.1007/s101520050004
Salovius S., Bonsdorff E., 2004, Effects of depth, sediment and grazers on the degradation of drifting filamentous algae (Cladophora glomerata and Pilayella littoralis), J. Exp. Mar. Biol. Ecol., 298 (1), 93-109.
http://dx.doi.org/10.1016/j.jembe.2003.08.006
Scanlan C. M., Foden J., Wells E., Best M. A., 2007, The monitoring of opportunistic macroalgal blooms fort he water framework directive, Mar. Pollut. Bull., 55 (1-6), 162-171.
Sfriso A., Facca C., Ghett P. F., 2009, Validation of the Macrophyte Quality Index (MaQI )set up to assess the ecological status of Italian marine transitional environments, Hydrobiologia, 617 (1), 117-141.
http://dx.doi.org/10.1007/s10750-008-9540-8
Stoń J., Kosakowska A., 2000, Qualitative and quantitative analysis of Baltic phytoplankton pigments, Oceanologia, 42 (4), 449-471.
Szymczak-Żyłł M., Kowalewska G., 2007, Chloropigments a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment, Mar. Pollut. Bull., 55 (10-12), 512-528.
http://dx.doi.org/10.1016/j.marpolbul.2007.09.013
Szymczak-Żyłł M., Louda J. W., Kowalewska G., 2008, Comparison of extraction and HPLC methods for marine sedimentary chloropigment determinations, J. Liq. Chromatogr. R. T., 31 (8), 1162-1180.
http://dx.doi.org/10.1080/10826070802000699
Wasmund N., 1997, Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions, Int. Rev. Ges. Hydrobio., 82(2), 169-184.
http://dx.doi.org/10.1002/iroh.19970820205
Wasmund N., Nausch G., Matthäus W., 1998, Phytoplankton spring blooms in the southern Baltic Sea - spatio-temporal development and long-term trends, J. Plankton Res., 20 (6), 1099-1117.
http://dx.doi.org/10.1093/plankt/20.6.1099
Wasmund N., Nausch G., Postel L., Witek Z., Zalewski M., Gromisz S., Łysiak-Pastuszak E., Olenina I., Kavolyte R., Jasinskaite A., Müller-Karulis B., Ikauniece A., Andrushaitis A., Ojaveer H., Kallaste K., Jaanus A., 2000, Trophic status of coastal and open areas of the south-eastern Baltic Sea based on nutrient and phytoplankton data from 1993-1997, Meereswiss. Ber., 38, 83 pp.
WIOŚ (Wojewódzki Inspektorat Ochrony Środowiska), 2008, Raport o stanie środowiska w województwie omorskim w 2007 roku, (`Report on state of the environment in the Pomerania voivodshi in 2007'), Biblioteka Monitoringu Środowiska, Gdańsk, 140 pp.
Witek Z., Ochocki S., Nakonieczny J., Podgórska B., Drgas A., 1999, Primary production and decomposition of organic matter in the epipelagic zone of the Gulf of Gdańsk, the estuary of the Vistula, ICES J. Mar. Sci., 56 (Suppl.), 3-14.
http://dx.doi.org/10.1006/jmsc.1999.0619
Mercury fluxes through the sediment water interface and bioavailability of mercury in southern Baltic Sea sediments
Oceanologia 2009, 51(2), 263-285
http://dx.doi.org/10.5697/oc.51-2.263
Jacek Bełdowski*, Michał Miotk, Janusz Pempkowiak
Marine Chemistry and Biochemistry Department,
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: hyron@iopan.gda.pl
*corresponding author
Keywords:
Baltic Sea, bioavailability, mercury, remobilization, sediments, speciation
Received 17 February 2009, revised 13 May 2009, accepted 22 May 2009.
The study was performed under the auspices of IO PAS statutory research grant No. II.2.3//2004 II.2.3 2005 and TROIA-Net Science network.
Abstract
Sediment cores collected in several areas of the southern Baltic were analysed for total mercury (HgTOT) and five operationally defined mercury fractions: HgA - contained in pore waters, HgF - bound to fulvic acids, HgH - bound to humic acids, HgS - bound to sulphide, and HgR - residual. An effort was made to quantify mercury fluxes at the sediment/water interface in the study area. Net mercury input, calculated on the basis of sedimentation rate and concentration in the uppermost sediments, ranged from 1 to 5.5 ng cm-2 year-1. Mercury remobilisation from sediments due to diffusion and resuspension was calculated from the proportion of labile mercury and the velocity of near-bottom currents. The results showed that the return soluble and particulate fluxes of mercury from the sediments to the water column constitute a substantial proportion of the input (20-50%), and are slightly higher than those found in pristine areas, although they are less than the values recorded in areas with a history of mercury contamination. In addition, an index was developed to assess the methylation potential of mercury in sediments. Mercury contained in pore waters, and mercury bound to fulvic and humic acids together with Loss on Ignition were used to calculate the semi-quantitative methylation potential (Pm). Despite the simplicity of this approach, Pm correlates well with methyl mercury in fish from the study area.
References
Beeckman J. W., 1990, Mathematical description of heterogeneous materials, Chem. Eng. Sci., 45 (8), 2603-2610.
http://dx.doi.org/10.1016/0009-2509(90)80148-8
Bełdowski J., 2004, Uwarunkowania oraz znaczenie stężeń i specjacji rtęci w osadach dennych zachodniej części Basenu Gdańskiego, Ph. D. thesis, Dept. Biol. Geogr. Oceanogr., UG, Gdańsk, 164 pp.
Bełdowski J., Pempkowiak J., 2003, Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdańsk Basin, Southern Baltic Sea, Chemosphere, 52 (3), 645-654.
Bełdowski J., Pempkowiak J., 2007, Mercury concentration and speciation changes along source/sink transport athway (Southern Baltic), Estuar. Coast. Shelf Sci., 72 (1-2), 370-378.
http://dx.doi.org/10.1016/j.ecss.2006.10.007
Bełdowski J., Pempkowiak J., 2008, Mercury concentration and solid phase speciation changes in the course of early diagenesis in marine coastal sediments (Southern Baltic Sea), Mar. Freshwater Res., (in press).
Benoit J. M., Gilmour C. C., Mason R. P., Heyes A., 1999, Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters, Environ. Sci. Technol., 33 (6), 951-957.
http://dx.doi.org/10.1021/es9808200
BHMW (Biuro Hydrograficzne arynarki Wojennej), 2001, Locja Bałtyku No. 502, Hydrographical Office of the Polish Navy, Gdynia, 180 pp.
Boening D. W., 2000, Ecological effects, transport, and fate of mercury: a general review, Chemosphere, 40 (12), 1335-1351.
http://dx.doi.org/10.1016/S0045-6535(99)00283-0
Borg H., Jonsson P., 1996, Large-scale metal distribution in Baltic Sea sediments, Mar. Pollut. Bull., 32 (1), 8-21 .
http://dx.doi.org/10.1016/0025-326X(95)00103-T
Boszke L., Głosińska G., Siepak J., 2002, Some aspects of speciation of mercury in a water enviroment, Pol. J. Environ. Stud., 11 (4), 285-298.
Boszke L., Siepak J., Falandysz J., 2003, Total mercury contamination of selected organisms in Puck Bay, Baltic Sea, Poland, Pol. J. Environ. Stud., 12 (3), 275-285.
Bothner M. H., Jahnke R. A., Peterson M. L., Carpenter R., 1980, Rate of mercury loss from contaminated estuarine sediments, Geochim. Cosmochim. Ac., 44 (2), 273-285.
http://dx.doi.org/10.1016/0016-7037(80)90137-4
Boudreau B. P., 1997, Diagenetic models and their implementation: Modelling transport and reactions in aquatic sediments, Springer-Verlag, Heidelberg, 414 pp.
Christiansen C., Edelvang K., Emeis K., Graf G., Jahmlich S., Kozuch J., Laima M., Leipe T., Loffler A., Lund-Hasen L. C., Miltner A., Pazdro K., Pempkowiak J., Shimmield G., Shimmield T., Smith J., Voss M., Witt G., 2002, Material transport from the near shore to the basinal environment in the Southern Baltic Sea: I. Processes and mass estimates, J. Marine Syst., 35 (3-4), 133-150.
http://dx.doi.org/10.1016/S0924-7963(02)00126-4
Ciesielski T., Szefer P., Bertenyi Zs., Kuklik I., Skóra K., Namiestnik J., Fodor P., 2006, Interspecific distribution and co-associations of chemical elements in the liver tissue of marine mammals from the Polish Economical Exclusive Zone, Baltic Sea, Environ. Int., 32 (4), 524-532.
http://dx.doi.org/10.1016/j.envint.2005.12.004
Compeau G., Bartha R., 1985, Sulfate reducing bacteria: Principal methylators of mercury in anoxic estuarine sediments, Appl. Environ. Microb., 50 (2), 498-502.
Cossa D., Gobeil C., 2000, Mercury speciation in the Lower St. Lawrence Estuary, Can. J. Fish. Aquat. Sci., 57 (S1), 138-147.
http://dx.doi.org/10.1139/f99-237
Covelli S., Faganeli J., Horvat M., Brambati A., 1999, Porewater distribution and benthic flux measurements of Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea), Estuar. Coast. Shelf Sci., 48 (4), 415-428.
http://dx.doi.org/10.1006/ecss.1999.0466
Emelyanov E.., 1995, Baltic Sea:Geology,geochemistry,aleo-oceanography, pollution, Acad. Nat. Sci., RF, Kaliningrad, 119 pp.
Falandysz J., Chwir A., Wyrzykowska B., 2000, Total mercury contamination of some fish species in the firth of Vistula and the lower Vistula River, Poland, Pol. J. Environ. Stud., 9 (4), 335-339.
Fant M. L., Nyman M., Helle E., Rudback E., 2001, Mercury, cadmium, lead and selenium in ringed seals (Phoca hispida)from the Baltic Sea and from Svalbard, Environ. Pollut., 111 (3), 493-501.
http://dx.doi.org/10.1016/S0269-7491(00)00078-6
Forstner U., Wittmann G., 1981, Metal pollution in the aquatic environment, Springer, Berlin, 485 pp.
Gagnon C., Pelletier E., Macci A., 1997, Behaviour of anthro ogenic mercury in coastal marine sediments, Mar. Chem., 59 (1-2), 159-176.
http://dx.doi.org/10.1016/S0304-4203(97)00071-6
Gobeil C., Cossa D., 1993, Mercury in sediments and sediments ore water in the Laurentian Trough, Can. J. Fish. Aquat. Sci., 50 (8), 1794-1800.
http://dx.doi.org/10.1139/f93-201
HELCOM (Helsinki Commission), 2003, Hazardous substances, [in:] The Baltic marine environment 1999-2002, BSE Proc. No. 87, 24-43.
IOW (Institut für Ostseeforschung Warnemünde), 2008, Meereswissenschaftliche Berichte/Marine Science Reports No.72,http://www.io-warnemuende.de
/tl_files/forschung/meereswissenschaftliche-berichte/mebe72_2007-zu/stand-hc-und-schwermetalle.pdf.
Jackson T. A., 1998, Mercury in aquatic ecosystems, [in:] Metal metabolism in the aquatic environment, J. Langston & M. J. Bebiano (eds.), Chapman &Hall, London, 178-249.
Jankowski A., 2002, Variability of coastal water hydrodynamics in the southern Baltic - hindcast modelling of an upwelling event along the Polish coast, Oceanologia, 44 (4), 395-418.
Jensen S., Jernelöv A., 1969, Biological methylation of mercury in aquatic organisms, Nature, 223 (5207), 753-754.
http://dx.doi.org/10.1038/223753a0
Kim E. H., Mason R. P., Porter E. T., Soulen H. L., 2004, The efect of resuspension on the fate of total mercury and methyl mercury in a shallow estuarine ecosystem: a mesocosm study, Mar. Chem., 86 (3-4), 121-137.
http://dx.doi.org/10.1016/j.marchem.2003.12.004
Korzeniewski K. (ed.), 1993, Zatoka Pucka, UG, Gdańsk, 259-262.
Laurier F. J. G., Cossa D., Gonzalez J. L., Breviere E., Sarazin G., 2003, Mercury transformations and exchanges in a high turbidity estuary: The role of organic matter and amorphous oxyhydroxides, Geochim. Cosmochim. Ac., 67 (18), 3329-3345.
http://dx.doi.org/10.1016/S0016-7037(03)00081-4
Lick W. J., 2008, Approximate equations for erosion rates, [in:] Sediment and contaminant transport in surface waters, CRC Press, Boca Raton, London, NewYork, 90-92.
Lund-Hansen L. C., Valeur J., Pejrup M., Jensen A., 1997, Sediment fluxes, re-suspension and accumulation rates at two wind-exposed coastal sites and in a sheltered bay, Estuar. Coast. Shelf Sci., 44 (5), 521-531.
http://dx.doi.org/10.1006/ecss.1996.0163
Millat J., 2008, Projekt dla elektrowni opartej na węglu kamiennym w Greifswaldzie. Możliwe oddziaływanie na środowisko naturalne będące skutkiem emisji rtęci i jej związkow, http://bipgdos.mos.gov.pl/doc/2009/Greifswalder 2009/spis treści segregator/segregator 3 4 %20zalacznik/Aneks II/zalacznik 16 Moźliwe oddziaływanie na środowisko naturalne bedace skutkiem.pdf.
Pempkowiak J., 1991, Enrichment factors of heavy metals in the Southern Baltic surface sediments dated with 210 Pb and 137 Cs, Environ. Int., 17 (5), 421-428.
http://dx.doi.org/10.1016/0160-4120(91)90275-U
Pempkowiak J., 1994, Zmiany otencjału oksydacyjno-redukcyjnego, pH oraz stę|enia węgla organicznego w osadach wewnętrznej Zatoki Puckiej,lipiec-październik 1988 rok, [in:] Zatoka Pucka. Możliwości rewaloryzacji, L. Kruk Dowgiałło & P. Ciszewski (eds.), Inst. Ochr. Środ., Warszawa, 53-64.
Pempkowiak J., Bełdowski J., Pazdro K., Staniszewski A., Leipe T., Emeis K. E., 2002, The contribution of the fine sediment fraction to the Fluffy Layer Suspended Matter (FLSM), Oceanologia, 44 (4), 513-527.
Pempkowiak J., Cossa D., Sikora A., Sanjuan J., 1998,Mercury in water and sediments of the southern Baltic Sea, Sci. Total Environ., 213 (1-3), 185-192.
http://dx.doi.org/10.1016/S0048-9697(98)00091-6
Pempkowiak J., Tylmann W., Staniszewski A., Golebiewski R., 2006, Lignin depolymerization products as biomarkers of the organic matter sedimentary record in 210 Pb-137 Cs-dated lake sediments, Org. Geochem., 37 (11), 1452-1464.
http://dx.doi.org/10.1016/j.orggeochem.2006.07.005
Pruszak Z., 1998, Dynamika brzegu i dna morskiego, IBW PAN, Gdańsk, 393-418.
Robbins J. A., 1978, Geochemical and geophysical application of radioactive lead, [in:] The biogeochemistry of lead in the environment, J. O. Nriagu (ed.), Elsevier, Amsterdam, 285-393.
SFI (Sea Fisheries Institute in Gdynia), 2008, Cruise Report r/v Baltica, http://www.mir.gdynia.pl/no/docuents/baltica short cruise report 11 2008.pdf.
Siebert U., Joiris C., Holsbeek L., Benke H., Failing K., Frese K., Petzinger E., 1999, Potential relation between mercury concentrations and necropsy findings in cetaceans from German waters of the North and Baltic Seas, Mar. Pollut. Bull., 38 (4), 285-295.
http://dx.doi.org/10.1016/S0025-326X(98)00147-7
Sternbeck J., Sohlenius G., 1997, Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea, Chem. Geol., 135 (1-2), 55-73.
http://dx.doi.org/10.1016/S0009-2541(96)00104-0
Ullman W. J., Aller R. C., 1982, Diffusion coeficients in nearshore marine sediments, Limnol. Oceanogr., 27 (3), 552-556.
http://dx.doi.org/10.4319/lo.1982.27.3.0552
US EPA (US Environmental Protection Agency), 2002, method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry, US Environ. Prot. Agency, Office of Water 4303, EPA-821-R-02-019, 46 pp.
Voigt H. R., 2004, Concentrations of mercury (Hg) and cadmium (Cd), and the condition of some coastal Baltic fishes, Environment. Fennica, 21, http://ethesis.helsinki.fi./julkaisut/bio/bioja/vk/voigt/concentr.pdf.
Wallschläger D., Desai M. V. M., Spengler M., Wilken R.-D., 1998a, Mercury speciation in floodplain soils and sediments along a contaminated river transect, J. Environ. Qual., 27 (5), 1034-1044.
http://dx.doi.org/10.2134/jeq1998.00472425002700050008x
Wallschläger D., Desai M. V. M., Spengler M., Windmöller C. C., Wilken R. D., 1998b, How humic substances dominate mercury geochemistry in contaminated floodplain soils and sediments, J. Environ. Qual., 27 (5), 1044-1054.
http://dx.doi.org/10.2134/jeq1998.00472425002700050009x
Wallschläager D., Desai M. V. M., Wilken R.-D., 1996, Theroleofhumicsubstances in the aqueous mobilisation of mercury from contaminated floodplain soils, Water Air Soil Poll., 90 (3-4), 507-520.
http://dx.doi.org/10.1007/BF00282665
Dissertations
Zoobenthos biodiversity in Arctic fjords
Oceanologia 2009, 51(2), 287-290
http://dx.doi.org/10.5697/oc.51-2.287
Maria Włodarczyk-Kowalczuk
Department of Marine Ecology,
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
e-mail: maria@iopan.gda.pl
Post-doctoral (habilitation) thesis in earth sciences (review by Maciej Wołowicz).