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Abstract: Telomerase activity has been found in the somatic tissues of rainbow trout. The enzyme is
essential for maintaining telomere length but also assures homeostasis of the fish organs, playing
an important role during tissue regeneration. The unique morphological and physiological charac-
teristics of triploid rainbow trout, when compared to diploid specimens, make them a promising
model for studies concerning telomerase activity. Thus, in this study, we examined the expression
of the Tert gene in various organs of subadult and adult diploid and triploid rainbow trout females.
Upregulated Tert mRNA transcription was observed in all the examined somatic tissues sampled from
the triploid fish when compared to diploid individuals. Contrastingly, Tert expression in the ovaries
was significantly decreased in the triploid specimens. Within the diploids, the highest expression
of Tert was observed in the liver and in the ovaries of the subadult individuals. In the triploids,
Tert expression was increased in the somatic tissues, while the ovaries exhibited lower activity of
telomerase compared to other organs and decreased compared to the ovaries in the diploids. The
ovaries of triploid individuals were underdeveloped, consisting of only a few oocytes. The lack of
germ cells, which are usually characterized by high Tert expression, might be responsible for the
decrease in telomerase activity in the triploid ovaries. The increase in Tert expression in triploid
somatic tissues suggests that they require higher telomerase activity to cope with environmental
stress and maintain internal homeostasis.

Keywords: telomerase; triploid; rainbow trout

1. Introduction

Telomeres are non-coding regions of the genome that consist of tandemly repeated
DNA sequences located at the ends of chromosomes. Telomeres not only protect coding
fragments from loss during DNA replication but also safeguard chromosomes against
degradation and fusion, maintain their proper topology within the nucleus, and contribute
to the transcriptional silencing of genes located in the vicinity of telomeric regions [1]. Due
to the “end replication problem”, telomeres shorten during each cell division, serving as
a molecular clock that regulates the processes of cellular ageing and apoptosis. The loss
of the telomeric tandem arrays may be compensated by telomerase, a ribonucleoprotein
enzyme that consists of a catalytic subunit with reverse transcriptase activity (TERT) and an
RNA template (TERC) [2]. Though telomerase expression in the somatic tissues of certain
endotherms is largely absent or repressed, the enzyme activity is only present in germline
cells, tumour cells, and stem cells [3–5]. Thus, in mammals and birds, telomeres shorten in
almost all somatic cells as the organism ages [1].
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In fish, it has been demonstrated that telomere shortening does not necessarily occur
during ontogenesis, and its dynamics may vary depending on the species [6–9]. This phe-
nomenon is attributed to the telomerase activity that in ectothermic organisms, including
fish, is observed in the somatic cells irrespective of the organisms’ age and size [6,7,9–14]
and may prevent excessive telomere shortening during the period of rapid growth [6,9].

Moreover, upregulated Tert expression is observed in fishes’ regenerating tissues,
indicating its crucial role in the healing process of body injuries [6,11,15–17]. The knockout
of the Tert gene using CRISPR/Cas9 in killifish (Nothobranchius furzeri) resulted in reduced
fertility, atrophic testes, and ovaries, highlighting the significance of telomerase activity
in maintaining organ and tissue homeostasis [18]. Research on several model fish species
has demonstrated a high correlation between the expression pattern of the Tert gene and
variation in telomerase activity, which suggests that telomerase activity in fish is primarily
regulated at the transcriptional level and not at the level of protein modifications [13,14].

Rainbow trout (Oncorhynchus mykiss) is one of the most extensively farmed salmonid
species worldwide. In 2020, its total production amounted to approximately 960,000 metric
tonnes, making it the second most important species in aquaculture after Atlantic salmon
(Salmo salar) [19]. The species is also a popular model animal in various scientific fields, in-
cluding physiology, nutrition, toxicology, disease, ecology, genetics, and other fields [20,21].
Rainbow trout was the first fish species in which telomerase activity was confirmed in
several organs/tissues, regardless of the fish’s age and size [10].

Spontaneous triploidization has been reported in rainbow trout, resulting from post-
ovulatory oocyte ageing and the incidence of sub-lethal temperatures during fertilisation
and early zygote development [22–26]. Additionally, artificial triploidization can be in-
duced in this species by dispermic fertilisation of a haploid egg [27], mating tetraploid and
diploid individuals [28–30], or by exposing eggs to chemical (colchicine, ether, deuterium
oxide, and specific enzyme inhibitors) or physical (sub-lethal temperature or high hydro-
static pressure) shocks that are applied shortly after fertilisation and prevent extrusion
of the second polar body and result in the development of autotriploid embryos [31,32].
The nuclear genome of autotriploid embryos is composed of haploid sets of chromosomes
originating from the egg, sperm, and the second polar body [33]. The additional set of
chromosomes in triploids causes cytogenetic incompatibility, impairing proper gonadal
development and gamete production [34]. As a result, triploid rainbow trout females
(XXX) have underdeveloped ovaries with a low number of usually aneuploid oocytes,
rendering them unable to produce eggs [35]. The reproductive sterility of triploid rainbow
trout females makes them an attractive subject for aquaculture production, as they are not
affected by the decline in growth rate and decreased meat quality commonly observed in
diploids after sexual maturation [36,37]. Moreover, sterile triploids cannot interbreed with
wild fish populations if they escape from fish farms or are introduced into open waters for
recreational purposes [35,38]. Triploidization has also been used as an effective sterilisa-
tion method for transgenic and potentially invasive fish species [39–42]. Triploid rainbow
trout embryos have been used in reproduction studies as recipients for the interspecific
transplantation of primordial germ cells to produce Atlantic salmon gametes [43]. On
the other hand, it is commonly observed that triploid fish are more sensitive to sub-lethal
external conditions, such as high temperatures and hypoxia, exhibiting reduced survivabil-
ity and an increased incidence of skeletal malformations in comparison to their diploid
counterparts [44].

Multiple studies have demonstrated that triploid rainbow trout can be an excellent
model for investigating the mechanisms of gene expression regulation in autopolyploid
organisms [45–48]. The unique morphological and physiological characteristics of triploid
rainbow trout, including increased cell size, number of alleles/heterozygosity, sterility,
continuous growth, and susceptibility to external conditions when compared to diploid
specimens, make them a promising model for studies concerning telomere length dynamics
and telomerase activity. Recent examinations have exhibited age-related changes in the
telomeric DNA length in diploid and triploid rainbow trout females [8]. However, to
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the best of our knowledge, no information regarding the expression of the Tert gene in
the somatic and reproductive tissues of polyploid vertebrates has been published to date.
Therefore, the aim of this research was to explore the dynamics of telomerase expression in
diploid and triploid rainbow trout females across somatic and reproductive organs.

2. Materials and Methods
2.1. Rainbow Trout Stocks, Origin and Maintenance

All-female diploid and all-female triploid stocks of rainbow trout were produced
using gametes originating from breeders from a spring-spawning Rutki strain kept in the
Department of Salmonid Research (DSR) of the Inland Fisheries Institute (IFI) in Olsztyn,
Rutki, Poland. For this purpose, the eggs of rainbow trout were fertilised with milt from
neo-males (XX) and sex-reversed genetic females. To produce triploid stock of rainbow
trout, a standard protocol that involves the application of a 3-min-high hydrostatic pressure
(HHP) shock (9000 psi) 35 min after egg insemination using a TRC-APV electric/hydraulic
device (TRC Hydraulics Inc. in Dieppe, Canada) [34] was used. Both diploid and triploid
rainbow trout individuals were reared separately under the same husbandry in the hatchery
plastic tanks (1 m3) (first year) and outdoors in the rectangular (10 m3) (second year) and
circular concrete ponds (56 m3) (third year of rearing). The fish were fed daily, and
feeding rates were adjusted to their growth and diurnal temperature. Detailed information
on environmental conditions during fish rearing has been described by Panasiak et al.
(2020) [8]. Diploid and triploid females within the second (subadults) and third (adults)
years of life were randomly chosen and sacrificed by an overdose of MS-222 (Supplementary
Table S1). For examination of telomerase expression and the histopathology of ovaries,
five specimens from each age and ploidy stock were sampled. Cytogenetic analysis was
applied for ploidy confirmation.

2.2. RNA Extraction and Analysis of Rainbow Trout Telomerase (Tert) Expression

The liver, spleen, muscles, gills, and ovaries were sampled and immediately sub-
merged in RNAlater (Thermo Fisher Scientific, Waltham, MA, USA). Preserved samples
were kept at −20 ◦C until further analysis. Total RNA was extracted using the Bead-Beat
Total RNA Mini kit (A&A Biotechnology, Gdańsk, Poland), following the manufacturer’s
instructions. Residual DNA in the extracted RNA samples was removed using the Clean-
Up Concentrator kit (A&A Biotechnology, Gdańsk, Poland). RNA concentration and
purity were measured with a NanoDrop One spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA), and RNA integrity was assessed by 1% agarose gel electrophoresis.
The obtained RNA samples were immediately processed further.

Purified total RNA samples of satisfactory quality were used to synthesise cDNA
using the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham,
MA, USA). The reaction mixtures were prepared in a total volume of 20 µL, composed of
1X Reaction Buffer, 5 µM of Random Hexamer primer, 1 µM of dNTP Mix, 20U of RiboLock
RNase Inhibitor, 20U of RevertAid M-MuLV RT reverse transcriptase, and 1 µg of RNA
sample. The reverse transcription reactions were carried out on a Mastercycler® X50a
(Epppendorf, Germany). The samples were incubated for 5 min at 25 ◦C, followed by 60
min at 42 ◦C, and terminated by heating at 70 ◦C for 5 min. The obtained cDNA samples
were diluted 1:10 in DEPC-treated water and stored at −20 ◦C for further analysis.

The primer sequences for the Tert gene were designed based on genetic information
deposited in the GenBank (accession numbers: KC204724-32, XR_005041402, HM852030, re-
lease 101) and Ensembl (accession numbers: ENSOMYG00000034782, release 109) databases.
All available isoforms and splice variants of the Tert gene were taken into consideration
before primer construction. The primers were designed with the Primer Blast designing tool
(NCBI) with default parameters, including the primer location on the exon-exon junction
and a qPCR product length of approximately 100 bp.

Real-time PCR analysis was performed using designed primers for the Tert gene (For-
ward: 5′-CTCTTCCATCACCCCTGCTC-3′, Reverse: 5′-CCCCACTCACATCCACCTTG-3′).
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β-actin (Actb) was chosen as the housekeeping gene due to its proven stable expression level
across different tissues (Forward: 5′-GCCGGCCGCGACCTCACAGACTAC-3′, Reverse:
5′-CGGCCGTGGTGGTGAAGCTGTAGC-3′) [49]. The qPCR was carried out separately
for housekeeping and target genes by a Cielo 6 Real-Time PCR System (Azure Biosystems,
Italy) using the PowerTrack SYBR Green Master Mix (Applied Biosystems, California,
USA). Reaction efficiencies were estimated from the slopes of the standard curves made of
5-point, and 10-fold serial cDNA dilutions starting from 10 ng/uL. The optimal reaction
conditions for both assays displayed an efficiency between 99 and 101%. The qPCR reaction
mixtures were prepared in a total volume of 10 µL, consisting of 1X PowerTrack SYBR
Green Master Mix, 0.5 µM (Tert) and 0.15 µM (Actb) of each primer, and 1 µL of cDNA.
The Real-Time PCRs were run in triplicates with the following thermal cycling conditions:
an initial polymerase activation step at 95 ◦C for 5 min, followed by 35 cycles of 95 ◦C
for 30 s (denaturation), 20 s at 62 ◦C (primer annealing), and 72 ◦C for 15 s (elongation).
During each run, negative controls using pure water and non-transcribed RNA were used
to exclude contamination. The analysis of the melting curve (60–95 ◦C) at the end of each
run concluded the protocol. Fluorescence data were collected after the elongation step and
in 0.1 ◦C steps on the melting curve. No splice variants were observed in the analysed
organs. The relative expression was calculated based on the difference between Ct values
for reference and target genes using the Livak and Schmittgen equation [50].

2.3. Histological Preparation

Ovaries were removed and fixed with Bouin’s solution. After preservation in Bouin’s
solution, fragments of the ovary tissue samples were dehydrated in 70% ethyl alcohol,
treated with xylene, and submerged in paraffin blocks. Slices 4–5 µm thick were cut using
a LEICA RM 2165 rotational microtome (LEICA Microsystems, Wetzlar, Germany) and
stained with the HE (haematoxylin-eosin) topographic method [51]. Histological analyses
of cross-sections to determine the shape, size, and type of germ cells present in the gonads
were performed using a LEICA DM 3000 transmission light microscope and the micro
image computer analysis software LEICA QWin Pro (LEICA Microsystems AG, Heerbrugg,
Switzerland). The nomenclature of cellular structures and germ cells in the analysed gonads
was adapted according to Brown-Peterson et al. (2011) [52].

2.4. Ploidy Confirmation: Preparation of the Metaphase Spreads and Microscopic Analysis

Somatic metaphase chromosomes were prepared from the cells of a cephalic kidney,
a primary fish lymphoid organ. Portions of the cephalic kidney were removed, placed in
tubes with 5 mL of KCl (0.075 M) and 10 µL of 0.3% colchicine (Sigma-Aldrich, St. Louis,
MO, USA) solution, and incubated for 20 min. at room temperature. Fragments of tissues
were then macerated with scissors, dissociated by pipetting to obtain homogenous cell
suspensions, and left for hypnotization for another 45 min. Next, 10 drops of freshly
prepared ice-cold fixative (methanol: acetic acid, 3:1) were added to the tubes with cell
suspensions. After 1 min, the tubes were filled with the fixative up to 8 mL and centrifuged
at 160× g for 10 min. Then, the supernatant was tossed out, and the cell pellet was
resuspended in freshly prepared fixative. Samples were kept at −20 ◦C for 30 min. The
fixative was changed three times. After the final centrifugation, the supernatant was
replaced by a freshly prepared fixative (1–2 mL). Microscope slides were prepared by
placing one or two drops of the cell suspension from a height of about 30 cm onto a clean
slide and leaving it to dry.

The slides with the chromosomes were mounted using antifade solution Vectashield
containing DAPI (4′,6-diamidino-2-phenylindole) (1.5 µg/mL) (Vector, Burlingame, CA,
USA) and analysed using the BX53 Olympus microscope (Olympus, Japan) equipped with
epifluorescence, an appropriate filter set, and a dedicated 5 M CMOS camera (Applied
Spectral Imaging, Migdal Haemeqck, Israel). Images of the metaphase chromosomes were
captured, and the electronic processing of the images was performed using GenASIs 8.1.1
software (Applied Spectral Imaging, Israel).
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2.5. Statistical Analysis

The fold change expression values of Tert relative to the reference gene were analysed
using R software version 2022.12.0 (20 February 2023). The normal distribution was assessed
using the Shapiro-Wilk test, and the homogeneity of variances between the analysed groups
of rainbow trout was determined using Levene’s test. The student t-test, or Kruskal-Wallis’
test, was used, based on the data distribution, to determine significant differences (p < 0.05)
in the telomerase expression between the organs of the fish from the examined groups.

3. Results
3.1. Confirmation of Ploidy—Cytogenetic Examination

The chromosome number in rainbow trout from the diploid stock varied from 59 to
63, while fish from the triploid stock exhibited 89 to 94 chromosomes. The variation in the
chromosome numbers observed here originated from Robertsonian translocation, which in
rainbow trout is a common characteristic [53,54]. The differences observed in the number
of chromosomes showed that the studied fish differed in terms of their ploidy.

3.2. Histology of Gonads

Macroscopically, the gonads of the diploids were composed of paired, correctly shaped,
similar-sized lobes located cephalically in the peritoneal cavity, embedded just below the
wall of the swim bladder (Figure 1A). In contrast, in the triploid fish, these structures were
characterized by extremely thin, poorly demarcated bands of tissue adhering parallel along
the ventral port of the swim bladder wall (Figure 1B).
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Figure 1. Macroscopic structure of the rainbow trout gonads: (A) diploid female; (B) triploid female.

Histological analysis of the gonads of the diploids revealed the presence of only ovaries
filled with oocytes at the previtellogenesis stage, accompanied by single oogonia nests.
Some of the fish were characterized by the presence of distinct ovarian lamellae, typical of
salmonid ovaries, within the structure of the gonads (Figure 2A), while others lacked any
elements separating groups of previtellogenic oocytes (Figure 2B). In the subadult fish, the
presence of a small number of vitellogenic oocytes at the initial stage of vacuolization was
noted (Figure 2C). In the ovaries of the triploid individuals, two types of ovarian tissue
structures were observed on the histological sections. In some examined specimens, the
interior of the organ structure consisted exclusively of the somatic connective tissue cells
(fibrocytes) and surrounding fibrous elements enclosed in a connective tissue structure
surrounded by several layers of differentiated epithelial cells. In the cross sections of such
ovaries, faintly outlined structures resembling ovarian lamellae were observed (Figure 2D).
In other triploids, the structure of the gonads was disrupted, and the ovaries were filled
with connective tissue elements with single (Figure 2E) or few previtellogenic oocytes
(Figure 2F) located in the central part of such gonads.
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Figure 2. Histological cross-sections of the rainbow trout gonads: (A) the ovary of a diploid with
typical ovarian lamellae; (B) the ovary of a diploid individual formed of ovarian lamellae; (C) the
ovary of a diploid fish; (D) the sterile ovary-like organ of an individual filled with connective
tissue cells and fibrous elements; (E) the ovary-like gonad of a triploid individual with a single
previtellogenic oocyte located in the central part of the organ; (F) the ovary-like gonad of a triploid
individual with a few previtellogenic oocytes. Description: ct—connective tissue elements; og—
oogonia; oev—early vitellogenesis oocyte; ol—ovarian lamina; opr—previtellogenic oocyte.

3.3. Expression of the Tert Gene

Real-time PCR was used to quantify the Tert mRNAs, which were detected in all the
analysed organs. Generally, significantly (p < 0.05) increased expression of the Tert gene
was observed in all the examined somatic tissues from triploid specimens when compared
to diploids. A contrasting situation was reported in the ovaries sampled from triploid
individuals, which showed decreased expression (Figure 3). Upregulated Tert expression
was detected in muscles sampled from adult (3-year-old) rainbow trout compared to
subadult (2-year-old) fish; however, the observed differences were significant (p < 0.05)
only among diploids. In the gills, no significant differences in Tert expression were reported
between subadult and adult fish. In the liver, significantly (p < 0.05) higher Tert expression
in triploids compared to diploids was detected only in the adult trout, while transcription
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levels of the Tert gene in the subadults were significantly lower in the triploids than in the
diploids (Figure 3). The Tert expression level in the spleen was essentially increased in adult
triploids when compared to all other fish groups. No differences in Tert expression levels
were observed between subadult diploids, triploids, and adult diploid trout. In the ovaries,
the transcription level of Tert mRNAs in diploids was significantly higher (p < 0.05) than in
triploids, regardless of the age of the fish. Additionally, subadult individuals exhibited a
slightly higher expression of Tert than adult specimens in both the diploid and the triploid
groups, though the differences were not significant (p < 0.05).
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relative to the reference gene (β-actin). The measure of variation is derived from the respective SEM
of the Ct values.

4. Discussion

Compared to their diploid counterparts, triploids exhibit three fundamental differ-
ences: they are more heterozygous, they have fewer larger cells in the tissues, and their
gonadal development is disrupted [34,55]. Despite the commonly held belief that larger
cells have lower metabolic rates per unit of mass [56], the reported energy metabolic and
oxygen consumption rates in triploid fish are usually similar or even higher than those in
diploid individuals [34,55]. Likewise, the developmental rates of triploids are generally
comparable to those of diploids, although in some cases they may be slightly lower or
higher [34,55]. However, after the sexual maturation of diploid fish, triploids tend to exhibit
faster growth as they do not invest energy in gonadal development [33]. Triploids also
display a higher ratio of malformation incidences compared to diploids, which is based
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on their genetic perturbations resulting from the ploidy change, the detrimental effects of
physical shock applied for triploidization, and distinct nutritional requirements [57,58]. A
depleted resource transport capacity (especially of oxygen) in larger cells, attributed to
longer diffusion distances and reduced membrane surfaces, limits triploids’ aerobic energy
budget and abilities to accumulate energy reserves [59]. Triploids may also display an
increased mortality rate as they are less resistant to chronic hypoxia and high temperatures
than diploids. Nevertheless, under optimal conditions, both triploids and diploids actually
tend to display similar mortality rates [34,55].

Despite the large cellular architecture and physiological differences between triploids
and diploids, the effect of triploidy on gene expression is surprisingly smaller than expected,
as triploid and diploid fish have usually comparable levels of expression in their somatic
tissues (a dosage compensation phenomenon) [60–65]. Only a small number of genes may
be subjected to both positive and negative dosage compensation in triploid fish [66]. Most
of the up- or down-regulated genes reported so far in the triploids are those regulating
metabolism and stress responses, which is hypothesised to be associated with the higher
susceptibility of triploids to hypoxia and thermal and oxidative stresses when compared to
diploids [34,55,63,64].

Research on Tert-/- knock-out zebrafish mutants revealed severe histopathological
abnormalities in their testes, liver, intestine, gills, pancreas, kidney, and muscle tissues,
which suggests that the activity of telomerase in fish, irrespective of their age, plays an im-
portant role in the maintenance of tissue homeostasis [67]. Thus, cellular and physiological
differences between diploid and triploid fish, including a larger size of cells, a potentially
changed standard metabolic rate, and decreased resistance to demanding conditions, may
require increased telomerase activity in triploids to sustain the proper physiology of their
tissues. Rearing conditions optimal for the diploid rainbow trout examined here might
have been more demanding for the triploid individuals, so the maintenance of tissue
homeostasis required increased telomerase expression.

Telomerase expression and activity have been extensively studied in the muscles of
various fish species [9,10,17,68,69]. However, the precise function of telomerase during
somatic growth and its connection with the indeterminate growth of fish remain unclear.
For instance, a study on the European hake (Merluccius merluccius) revealed a positive
correlation between the levels of Tert transcription and body size, while opposite findings
were reported in the Atlantic cod (Gadus morhua) and the rainbow trout [10,70]. Frequently
reported up-regulation of telomerase transcription and activity during early developmen-
tal stages in fish suggests its role in promoting tissue cellular proliferation [9–11,14,70].
Nevertheless, in our previous study, differences in telomerase activity in muscles from
trout siblings showing normal or retarded growth were insignificant [71]. Differences in
the expression of Tert in the muscles of subadult and adult diploid and triploid rainbow
trout may reflect a disparity in energy expenditure between fertile and sterile individuals
for somatic growth. Triploid salmonid females do not sexually mature, so they do not need
to spend as much energy on their gonadal development and gamete production as diploids
do. However, elevated rates of hypertrophic growth in triploids, which possibly demand
greater energy expenditure, might be considered to explain the up-regulated expression of
Tert in the muscles of triploid fish [55,72].

The liver, spleen, and gills are organs in fish that are known for their remarkable regen-
erative capabilities and resistance to oxidative stress [6,11,69]. The ability of these organs to
regrow after injury or damage has been linked to increased telomerase activity [7,11,15–17].
Triploid rainbow trout have been found to be more resistant to carcinogenesis and have
increased fin regenerative abilities when compared to diploid fish [73]. Our study’s findings
indicate that the increased regenerative abilities of triploids may be attributed, among
others, to the upregulation of telomerase expression in their somatic tissues [35,74]. More-
over, the increased telomerase activity observed in triploid rainbow trout might explain the
higher resistance of the polyploid cells/tissues to oxidative stress [75]. The liver serves as a
vital organ for regulating organisms’ energy metabolism, but it is also highly exposed to
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the toxic compounds and reactive oxygen species (ROS) that arise during metabolic pro-
cesses [76]. In fish, the liver is the organ with the highest level of telomerase expression and
activity, which is thought to be linked with the ability of this organ to cope with oxidative
stress [10,71]. The significantly upregulated Tert expression in the liver of the subadult
diploid fish when compared to the triploids might reflect a surge in the metabolic rate
associated with the sexual maturation process and vitellogenin synthesis, among others.
The decreased expression of Tert observed in adult fish may be correlated with a lower liver
metabolic rate as the process of gonadal maturation in triploids is accomplished. Neverthe-
less, further research is needed to explain the background of this phenomenon. Multiple
studies have demonstrated that triploids require higher gill irrigation rates to compensate
for their lower respiratory efficiency and oxygen supply compared to diploids [54,77]. The
higher rate of opercular movement in triploids can potentially increase their exposure
to environmental stressors; thus, up-regulated Tert transcription reported in the gills of
triploid trout might play some role in maintaining their homeostasis and regenerative
abilities. In turn, the significantly increased levels of telomerase expression in the spleen of
adult triploid rainbow trout observed here may be linked with the increased synthesis and
accumulation of erythrocytes observed in the triploid rainbow trout, which was thought to
be a compensatory response to a lower oxygen supply [78].

Telomerase expression in mammalian adults is restricted to highly proliferating cells,
including female germline stem cells that can differentiate into oocytes. Moreover, telom-
erase activity has been confirmed in the oocytes at different stages of development [79,80]
and in the ovarian granulosa cells that proliferate in the developing follicle and form a sin-
gle layer around the oocytes [81–83]. In fish, expression of Tert varies significantly between
tissues, and gonads are the organs with the highest telomerase activity [6,84,85]. This is
also observed in the diploid rainbow trout examined here. Telomerase plays an important
role during fish ovarian development, egg production, and maturation. Tert-deficient fish
are characterized by atrophied ovaries, reduced egg production and premature infertil-
ity [18,67]. A dramatic decrease in telomerase activity has also been observed in the ovaries
in triploid rainbow trout that are considered sterile. The ovaries in triploid rainbow trout
are highly reduced, with only a few primordial germ cells and several, usually euploid or
aneuploid, oocytes [34,86–88]. The gonads of the triploid trout studied here were actually
devoid of oocytes and consisted exclusively of somatic connective tissue cells, mostly
fibrocytes (Figure 2). The sterility in triploid rainbow trout females results from the arrest
of oogonium development, failure of meiosis, and lack of interactions between oocytes and
follicular cells. Moreover, in triploid ovaries, the development of follicular cells is inhibited
and production of estradiol decreases, which in turn causes a decline in the synthesis
and secretion of hepatic vitellogenin (VTG) [89], a major precursor of the fish egg yolk
protein that is indispensable for oocyte growth and maturation in fish. Moreover, oocytes in
triploid rainbow trout may undergo apoptosis [90]. The presence of only a few germ cells
and oocytes that are usually characterized by high telomerase activity may therefore be
responsible for the reduced expression of Tert observed in the ovaries from triploid rainbow
trout females. Furthermore, it has been confirmed that telomerase is activated by oestrogen
through the stimulation of Tert expression [91], hence a deficiency of estradiol observed
in the ovaries of triploid rainbow trout [92] may also be responsible for the decreased
expression of Tert.

5. Conclusions

Ploidy compensation is known as an important process that ensures the equal distri-
bution of protein production across different ploidy levels in organisms. Recent research
on dosage compensation in polyploid fish has shown that diploid and triploid individuals
exhibit similar levels of gene expression in most analysed tissues, indicating compensation
mechanisms are in place. However, some genes may show either positive or negative
dosage compensation in triploid fish, with most up- or down-regulated genes in triploid
salmonids being related to metabolism and stress response. The positive dosage com-
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pensation of the Tert gene expression in several organs of triploid rainbow trout females
found in our study supports the notion that telomerase activity is essential in sustaining
fish tissue homeostasis/biology. This study adds to our understanding of the relationship
between ploidy and telomerase expression in fish and suggests that telomerase may play
a more significant role in the biology of triploid organisms than previously thought. The
significant downregulation of Tert expression in the ovaries of triploid rainbow trout, as
observed in our study, appears to be correlated with their atrophied state, decreased egg
production, and infertility. The absence of oocytes in triploid ovaries, along with their
inhibited follicular cell development, might contribute to the recorded decline in telomerase
expression. Nevertheless, further research is needed to explain the different patterns of
telomerase expression between diploids and triploids across different organs reported here,
which will allow us to better understand the relationship between ploidy and Tert gene
expression in vertebrates.
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