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Abstract

The multifrequcncy lidar inverse problem in aerosol research is discussed. Two models of marigenic 

aerosol are presented for water and water/salt aerosol ensembles. The Tikhonov functional solution 

method of the inverse problem for both models is described. The algorithms for calculating the values 

of the scattering medium optical parameters and the sizc-distribution functions of the aerosol are 

discussed. The numerical simulations performed to test the inverse problem solution algorithms are 

described and a brief discussion of the results is given.

1. Introduction

The multifrequency lidar inverse problem is a term describing the problem of 
calculating the optical characteristics of the atm osphere (especially the extinction 
and backscattering coefficients) using the backscattered signal received by a mul­
tifrequency lidar in experiments consisting of remote sensing of the atmosphere 
with lasers. However, the lidar inverse problem in aerosol studies applies to 
calculating the aerosol microstructure parameters (of which the im portant is the 
size distribution) from the backscattered lidar signal data. This task is one of the 
most interesting problems that can be solved with the lidar sensing techniques.

The optical m ethods of aerosol m icrostructure analysis are a very effective 
tool which provides information about aerosols in their undisturbed state (which 
is virtually impossible with the methods of direct aerosol studies). They are 
especially well suited for marine aerosol research because of almost spherical 
shape of water aerosol droplets (Killinger, M ooradian, eds, 1983) allowing 
application of the Mie theory, the only accurate scattering theory (Naats, 1978).

The precise characterization of the lidar inverse problem discussed in this 
paper is the determination of optical param eters of the atmosphere and the size 
distribution of aerosol particles from data gathered with multifrequency laser 
sounding of the atmosphere. The aerosol particles will be assumed to be almost 
spherical as they are in the case of marine aerosol.



2. Lidar equation

A multifrequency lidar can be defined, for the purposes of this paper, as 
a device capable of of sounding the atmosphere with m onochrom atic light at 
n discrete wavelengths A1# X2, from a spectrum interval lying within the
visible and IR regions. The signal is backscattered to the lidar (monostatic 
setting) and measured at the same wavelengths That constrains the
wavelengths used to parts of spectrum lying off absorption lines. Lidars used for 
aerosol studies should have the spatial resolution (the length of the laser beam 
path from which the signal is received in a single measurement) as fine as possible.

The backscattered signal P(z, A,), received by a lidar from a given distance z at 
the wavelength A,, depends both on the backscattering coefficient Pn(z, A,) and on 
the aerosol extinction coefficient /?ext(z, A,) of the sounded volume of atmosphere. 
We assume that the lidar sounds the atmosphere in the boundary layer and we 
can neglect the influence of the Rayleigh scattering.

The basis of the multifrequency lidar theory is the lidar equation (Hinkley, ed, 
1976; Zuev, Naats, 1983):

P(z, A,) =  P 0M B M z - 2PK(z, A,)· exp [ — 2 J f}eJ z \  A,)dz'], (1)
o

where:
P(z, A,) — the backscattered signal received by the lidar from the distance z at the 

wavelength 
Po(Ai) — the lidar output at
B (i;) — the lidar efficiency factor at the wavelength A,.
It is assumed here that the spatial resolution of the lidar dz is negligible in 
comparison to the sounding distance z(dz «  z).

3. The inverse problems

It is obvious that to make a successful direct inversion of the lidar equation 
one needs to know at least one of the two optical characteristics. Unfortunately, 
the measured variable is none of them but the signal P. It would be very helpful to 
know a m athematical relationship between these two characteristics, which 
would reduce two unknown functions /?n and /?exl to one. There is a simple 
function relating the two optical characteristics for the molecular (Rayleigh) 
component of the scattering but, unfortunately, in the Mie theory it is impossible 
to find a relation between them in an explicit analytical form (Hulst, 1957; Zuev, 
Naats, 1983).

An analytical calculation of the optical characteristics pn{X) and /Jext(A) is 
possible only for particles of a few simple geometric shapes. One of them is 
a spherical particle made of optically homogeneous material with a known 
complex index of refraction m. The scattering of light by such particles is described 
by the classic Mie theory (Hulst, 1957). Another class of particles for which there 
is an analytical scattering theory consists of particles that may be best modelled 
as a spherical shell of homogeneous material with a complex index of refraction



m l and an outer radius r2, surrounding a homogeneous spherical kernel with 
a different refractive index m2 and radius r1. There is an analytical theory of light 
scattering on such “double spheres” (Aden, Kerker, 1951; Guttler, 1952) (such 
a particle is also called “two concentric spheres”). The theory is analogous to the 
Mie scattering theory for single spheres; in fact, the difference is in formulae for 
the calculation of the Mie functions an and bn. In marine aerosol studies, a typical 
representative of the first class of particles is a droplet of sea water, and of the 
second one —a particle consisting of a water droplet with a salt kernel. The 
marigenic aerosol is very convenient for optical aerosol studies and the lidar 
inverse problem is particularly well defined in its studies because of the 
well-known optical properties of sea water and salt.

The usual way of characterizing aerosol, consisting of spherical particles, is by 
a particle density distribution function with respect to the particles radii n(r). It 
can be defin'ed only for sm ooth size distributions (Zuev, Naats, 1983). It is defined 
by a formula for the total num ber of particles from size interval R  =  [ R 1, i?2] in 
unit volume:
R i
J n(r)dr.

Ri

One can define an analogous size distribution function for the case of “double 
spheres” n(rlr r2) defined by a similar formula (Piskozub, 1988) for the num ber of 
particles with outer radii from within the interval R per unit volume:
R 2 r2

J J n{rlt r2)d r jd r2.
R i R i

The equations linking the optical characteristics and j9ext(/1) to the 
distribution s in the classical Mie theory (uniform homogeneous spheres) have the 
form:

=  J K n(r, A)s(r)dr (2)
Ri

and

PexM )  = ) 2 K eJr,X)s (r )dr ,  (3)
Ri

where s{r) =  FIr2n(r) (by definition) and the integral kernels K n{r, 2), K exl(r, X) 
are dimensionless functions analytically calculable from the Mie scattering 
theory. They are equal to the differentiable cross-sections for respectively back- 
scattering and extinction divided by the optical cross-section of the particle /7r2. 
W ithin the Mie theory the kernels K K(r, 2.) and K cxt(r, A) are expressed in terms of 
functions a„(x) and bn(x), the so-called Mie functions (Hulst, 1957), viz:

X,(r, A) =  - i j |Z  ( - l )" (2n+I)(a„(x)-b„(x))|2 (4)
X n= 1

and

/ 2 00
Ke*,(r, X)~-s\t (2 n + l)[ |a n(x)|2 +  |fe„(x)|2] |,

X n — 1



where x =  2/7r/A is a dimensionless param eter (in the case of “double spheres” 
x =  2TIr2/X).

In the case of “double spheres” one needs not one param eter r but two (rx and 
r2) to describe a particle. The distribution s and the scattering efficiency factors K n 
and K ext depend, in this aerosol model, on both the radii r x and r2 and have the 
form:

s(rj, r2) =  f l r \n ( r l5 r2); K n(ru r2, /.); K eit(r1? r2, a ).

Thus, equations (2) and (3) become:

PK(X) =  J ]  K„(r!, r2, A)s(r1} r2)drl dr2, (6)
R i Ri

PcxM) =  J i  K eJ r i. r 2> ^)s (r i> /•2,)dr1d r2. (7)
Ri R l

The Mie functions an(xv  x 2) and bn(xY, x 2) have different, much more com­
plicated, formulae in the case of “double spheres” (Guttler, 1952; Hulst, 1957) 
than in the classical Mie scattering theory. However, formulae (4) and (5) are valid 
with this aerosol model (obviously both the kernels K n, K exl and the Mie 
functions a„, bn depend on two variables in the case of Mie functions Xj =  ITIrJX,  
x 2 =  l l lrJX) .

In fact it is not difficult to notice that every integral of a function/(r) takes in 
the case “double spheres” the form of

i  ] f ( r 1, r 2)dr1dr2
R ,  R i

instead of

i  fir) dr
Ri

as is in the case of homogeneous spheres. One can denote both the integrals with 
a common symbol j  f{r)dr where r stands for r in the case of simple spheres and 
the pair (ru r2) in the case of “double spheres” ; dr denotes dr and d r1; d r2, 
respectively, and R  is the interval i?2] in the first case and a triangular area 
delineated by the integral
R i  r i
j  J dr^ 2 .

R i  R i

4. The calculation schemes

It is convenient to write the integral equations 

PnW  =  J K n(r> A)s(r)dr; /3ext(A) =  J K eJ r ,  /t)s(r)dr
R R



in the operator form

p,(k) =  KJA); P .JX)  =  K ext(A). (8)

If one could assume that the optical characteristics and fiex{ are known, it 
would seem possible to calculate the values of the size distribution function s(r) by 
a simple numerical inversion of equations (8) (in fact one of the equations would 
be sufficient). Unfortunately, it can be proved (Dahlquist, Bjdrck, 1974) that the 
solutions produced in this way are very unstable with respect to measurement 
errors of the optical characteristics. That means that even in the simple case of 
homogeneous spherical particles two distributions can be selected, such that the 
relation \\Ks1 — K s2|| ^  <5 (where <5 is comparable to the experimental error) does 
not imply that the value of ||s, — s2|| is small. That implies that the problem of 
solving the equation Ks = /i is “ill-posed” (Ivanov et al, 1978; Tikhonov, Arsenin, 
1979) when there is an error in the measured value /?. It can be proved that the 
problem is “correct” when the set of possible solutions is compact (Ivanov et al, 
1978). The set can be restricted to a compact set by so-called regularization 
methods. One of the best verified ones is the m ethod of smoothing functional 
(Tikhonov, Arsenin 1979). For the equation Ks  =  /?, this functional is written in 
the case of homogeneous spheres

Ta(s) = \ \K s-P \\cl+ *Q 2(s), (9)

where

fi2(s) =  PoN Il2 +  P i I|s'IIl2

is the stabilizing functional. The symbol s' denotes, as usual, the first derivative of 
s. In the case of double spheres this functional has an analogous form. The 
difference lies in the norms used:

(10)

and the norm  || ||x has the explicit form:

ll/ll* = f/ 2(r)dr- 
R

The a, p0 and p i used in both functional formulae are constants (a, p0, p l ^  0). 
The value i2(s) is a measure of smoothness of the function s. It can be shown that 
all functions that obey the condition i2(s) ^  c = const form a compact set of 
distributions (Ivanov et al, 1978).

According to the variational principle, the function s, which minimizes the 
functional Ta(s) in a compact set of distributions is taken as a regularized solution 
of the initial equation Ks — p.

The used value of param eter a is arbitrary. However, it is obvious that the 
value Ta(s) is a smooth function of a and as such it has a minimum in the interval

ra(s) =  -  Σ  [ i  K(r'» ι̂)s(r)dr—>S(A,)]2 -ł-Ω2(sj,
n  1 =  1 R

where

Q 2(s) =  α|ρ0ΙΜΙ* +  Ρι +  ~  I



[0, oo)(Ta(s)-> co, a-> oo). Changing a makes the solution more or less smooth. 
A decrease of a makes the solution more rugged and prone to be influenced by 
random  errors. On the other hand, an increase of a makes the solution smoother 
with the implied loss of some information. Thus, the value of a should be chosen 
with care. One obvious condition helping in the choice of a is for the solution sx 
to be equal to zero for r =  0. A real, physical solution of the distribution smust 
meet this condition by definition (s(r) =  Tlr2n(r), where r is the outer radius of 
a particle). To be a minimum of the functional Ta(s), the size distribution sx must 
satisfy the condition that the value of the functional first variance be zero. From  
that condition, in the simpler case of homogeneous particles, on performing the 
necessary calculations the Euler equation is obtained:

where K*  is the operator conjugate to K  (the integral operator f K(r, A) /?(/l)dA); 
the expression K* K should be read in an explicit form as K*K(r,l )  
=  j.K(r, 2)K(l, A)da, and D2 is the Sturm-Liouville operator:

where K*"1 =  (K* K + ocD^^1 K*  is the regularized operator inverse to that in 
equation Ks  =  fi. This scheme bases on the greater stability of the Euler equation 
(11) with respect to measurement errors, as compared to equations (2) and (3).

The Euler equation approach is unfortunately impossible with a more general 
case of two concentric spheres because of the more complicated character 
of the resultant equation. However, in both cases one can obtain the “smoothed” 
solution sx through a direct numerical minimization of the Tikhonov functional 
Ta(s). One has to notice that this apporach is not so time-effective as an inversion 
of the Euler equation.

The above discussion on the inversion of the equation Ks  =  /? does not 
answer the question of reconstructing the aerosol size distribution from the 
received lidar signal. One needs to know the values of one of the two optical 
characteristics and Pcxt to calculate the values of the other from the lidar 
equation (1). However, if one could assume that one of the functions, for example 
the extinction fiexx is known, then it would be possible to calculate the size 
distribution s by the minimization of the Tikhonov functional for the assumed 
model of aerosol particles. Naturally, in the case of an ensemble of simple 
spherical particles it is possible to calculate s by an inversion of the Euler 
equation.

The idea of a full inversion of the lidar signal is to assume arbitrary initial 
values of the extinction along the laser path. This makes possible the 
calculation of backscattering coefficients (Piskozub 1985; Zuev, Naats, 1983) 
/?5/] and then the distribution s^1] using one of the above described ways. This 
distribution is the basis for calculating a new set of extinction values using the 
original equation K exts = /3ext. Repeating these steps one obtains increasingly

{K*K + a.D2)s = K*p , (11)

The calculation scheme corresponding to this equation is: 

s a  =  ( K * K  +  c t D 2 ) ~ l  K *  f t , (12)



more accurate representations of optical characteristics and the real aerosol size 
distributions. Iterations stop when changes in the optical characteristics between 
two consecutive steps fall below a given level.

A formal algebraic representation of this iterative scheme which enables 
a complete solution of the inverse multifrequency lidar problem, in the case of 
known refractive coefficient is:

W  =  F(P,

s™ =  (13)

fit*'] _  I? Ji]
A-'ext iVext°a *

The function F, associating the backscattering coefficients for every wavelength 
and sounding distance, may have various forms. It may employ a direct num eri­
cal integration scheme (Zuev, ed, 1976; Piskozub, 1985; Zuev, Naats, 1983) or an 
iterative process (Klett, 1982; Potter, 1987).

5. Simulation of the lidar inverse problem

The author has done some computer simulations of the above schemes for the 
lidar inverse problem  solution. The simulations involved assuming an aerosol 
size distribution s and calculating with appropriate equations (2) and (3) or (6) 
and (7) the optical characteristics and /?ext. Their values were the basis for 
calculating simulated values of the signal returning to the lidar P which, in turn, 
were the input data for the program  solving the inverse problem.

The numerical simulations of the multifrequency lidar inversion for aerosol 
described by a simple sphere model were performed by the author according to 
the iteration scheme (13). The results of simulations were a very good prognosis 
for the utilization of the scheme in actual lidar investigations of the atmospheric 
aerosol. The convergence of the algorithm was very quick, the difference between 
the values of the distributions s obtained in the second and third iteration step 
was smaller than 1 %. The scheme was very stable in terms of random  errors of the 
lidar signal. The inversions obtained were good for the number of frequencies 
n > 5. The optical characteristics were inverted satisfactorily with n = 3 (Pis­
kozub, 1985).

The author has solved the inverse problem for “double spheres” with direct 
minimization of the functional (10). The nonlinear optimization m ethod of 
Davidson-Fletcher and Powell with the length of an optimization step sought 
with the Powell algorithm (Dahlquist, Bjorck, 1974) was used. A num ber of 
values of the distribution functions in the triangular area defined by the integrals 
were the arguments of optimization.

The simulated distributions s(r,, r2) were inverted with errors under 50% of 
original values of the postulated distribution. This result is quite satisfactory 
when compared to the results obtained with use ofim pactors in marine salt/water 
aerosol studies.



6. Discussion

The m ethods described above of solving the multifrequency lidar inverse 
problem for aerosol complexes consisting of simple spherical and “double spheri­
cal” particles allow good reconstructions of the size distribution of the aerosol 
and the optical characteristics of the atmosphere with lidar devices working at at 
least 5 wavelengths in the first case and 7 in the second. The results acquired in 
the numerical simulations seem comparable in their accuracy to the results of 
conventional im pactor measurements of aerosol m icrostructure parameters. The 
calculation programmes were quite fast, especially in the m ethod involving an 
inversion of the Euler equation. The algorithms used in the solution of the lidar 
inverse problem require the knowledge of indices of refraction of the aerosol 
particles. However, the marigenic aerosol, the study of which was the main 
purpose of this research, is composed of substances of well-known refractive 
indices and its particles closely resemble spheres m aking applicable the algo­
rithms utilizing the Mie scattering theory.
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