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Abstract

The paper presents the results o f measurements o f high-frequency wind waves, carried out, du­
ring the “ Kamchiya 79” experiment, in various anemobaric situations on the immovable plat­
form situated at a depth of 6 m.
Spectral and frequency characteristics o f wind waves are discussed and dimensionless estimator 
of the function o f  high-frequency spectrum of wind wave energy is formulated. The spectra 
on both slopes o f the carrier wave are compared.
Correlations between wind velocity, variance o f high-frequency waves, the Reynolds number 
and the stage of development o f the wind waves are presented.

1. T H E  SU B JE C T  AND A IM  O F  IN V ESTIG A TIO N S

The free surface o f the sea is the interface o f tw o fluid media, i.e. w ater and air. 
Their density difference is great enough p j p x  1 0 "3, (pa and  p  are the densities 
o f  a ir and  w ater, respectively) to  screen the transfer o f  m ass and  energy fluxes between 
the  sea and  the atm osphere. F o r these reasons, various high-frequency irregularities 
occurring on the free surface o f  a  w ater area  may be considered as rough elements 
resistant to  air masses dislocated above this surface. As opposed to  land surfaces, 
however, rough  elem ents o f  the  sea surface are  movable. Irrespective o f wind velo­
city, they always constitu te  a structural p a rt o f  the  wave process called w ind waves. 
In  very light breezes or the initial stages o f  generation o f such waves, fine ripples 
o f  the  capillary wave category will constitu te rough elem ents. In  the rem aining 
cases, m ore or less developed gravity waves will constitu te such elements. W ithin 
the high-frequency range com ponents o f  the w ind waves random  field, the  phase 
velocity (C) o f  which is considerably lower than  the w ind velocity ( U ), it can be 
assum ed, w ith an  accuracy satisfactory for practical purposes, th a t roughness ele­
m ents are  im m ovable, i.e. they behave like the roughness elem ents o f  land  surfaces. 
The indicator o f  air turbulence affecting the intensity o f  the m om entum  exchange 
processes in the near-surface layer can here be characterized by the Reynolds num ber 
[4, 10]
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w here / is the characteristic size scale o f  gravity waves w ith a  phase velocity o f  C,<CU, 
va the  kinem atic coefficient o f  air viscosity, and  £/* the dynam ic friction velocity.

In  higher stages o f  developm ent o f  w ind waves, the assum ption on im m ovable 
elem ents o f  roughness becomes m ore and  m ore problem atic. In  the  random  field 
o f these waves, com ponents w ith phase velocities com parable to  those o f  the wind 
velocity, o r even higher, occur m ore frequently. These com ponents cannot be 
considered as im m ovable elements. Owing to  the small velocity difference ( U — C  
small), they are  “ flown ro u n d ” by air stream s, similar to  the case o f  higher elevations 
on  the land . H igh-frequency waves located on these com ponents act upon  the displa­
cing a ir  m ass w ith a  considerably dim inished efficiency caused by a  decrease in the 
relative velocity V — C.

The developed field o f wind waves will thus include a  num ber o f  various com po­
nents (irregularities), am ong which only the high-frequency band, responsible for 
the effective roughness o f  the free surface o f  the sea, and  the low-frequency band, 
responsible fo r the “ flowing ro u n d ” processes, can be defined approxim ately as 
regards their effect upon  the dynam ics o f  exchange processes. The influence o f the 
rem aining com ponents o f  the random  field o f wind waves has no t been precisely 
determ ined as yet. I t can only be stated, th a t when a fully developed field o f  wind 
waves occurs, the characteristics o f  turbulence and  tangential stresses in the atm osphe­
ric near-w ater layer depend bo th  on the Reynolds num ber and  the  stage o f  develop­
m ent o f w ind waves, this being characterized by the following param eter [4, 10]

i - t p .  (2 )

where a1 is the standard  deviation o f the wind waves random  process, related to  
the function o f  the  full frequency spectrum  o f w ind waves energy S(co) by the zero 
m om ent o f  spectral density

a \ — \  S(co)dco (3)
o

w here co denotes the angular frequency o f  the waves.
N um erous investigations have been carried ou t in  the field o f  the above-defined 

effect o f  w ind waves upon the sea-air m om entum  exchange processes. A m ong the 
au thors, K itaigorodskii and  his associates obtained som e im portan t results. In  
conform ity w ith their findings, the estim ator o f the velocity d istribution fo r the wind 
blow ing over an  undulating  sea surface is represented by the  higher approxim ation 
o f  the  well know n logarithm ic d istribu tion  [4]

U  ( z )= ^  jln -  y £ y  • exp ( -  k 0 • z) J j  (4)

w here k 0 is the  wave num ber assigned to  the highest m axim um  in the d istribution 
o f  th e  frequency spectrum  o f w ind waves energy, and  /c « 0 .4  — the K arm an con­
stan t.

T he roughness param eter z0 in  th is form ula denotes the quantity  m ost sensitive



Early stages of wind waves 21

to  the influence o f w ind waves. This param eter determ ines the d istribution  o f wind 
velocity in the near-w ater air layer th rough the aerodynam ic coefficient o f  a ir re s is tan ­
ce

Ct =  K2 - ln ~ 2 ( — ) (5)■IB
w hich is connected w ith a  sim ilar coefficient determ ining the water-m ass drift flow 
in the near-surface layer

H o = ~ ’ Ct (6)
P

The relatively large num ber o f experim ents carried out to  estim ate the values o f  
these coefficients po in ted  ou t their considerable differentiation (Czk  1 0 —3 -f-3 ■ 1 0 ~ 3) 
due to  variability o f  the param eter z0. Ellison’s investigations [3] proved th a t in the 
first approxim ation the  tangential stress t 0 was p roportional to  the roughness p a ra ­
m eter ( t 0 ~ pagz0). As this stress is also proportional to  the dynam ic friction velocity 
( to ~ P aU * \  one can w rite

u i  u l

9 9
This relationship is know n as the  C harnock-E llison form ula [1].

Initially, the  factor o f p roportionality  m  was considered to  be constant. I t  w as 
later found  th a t it is, unfortunately , variable (its variability w ithin the range 1 0 “ 2 ~  
h-8 -10 - 2  [4], caused mainly by the  influence o f  w ind waves, has so far been proved 
experimentally). In  accordance w ith theoretical and  em pirical investigations by 
K itaigorodskii et al. [4, 10], the high-frequency range o f the  spectral density o f  w ind 
waves energy is essentially responsible for the effective roughness o f  the free surface 
o f the sea. Thus, the m ean height o f  w ind waves belonging to  the high-frequency 
band, p ropagated  a t phase velocities m uch lower than  the w ind velocity, shou ld  be a  
m easure o f this influence. A fter K itaigorodskii, the  m ean height o f  these w aves 
can be expressed by the following form  [4]

00

(8)
o

w here S w(a>) is the  high-frequency spectrum  o f wind waves energy in  the  f t » a >0  

frequency band, and  co0 denotes the frequency o f  the m ain  m axim um  in the  full 
d istribu tion  o f  the spectral density o f  energy.

The analysis o f  relationship  (8 ) in  the  ranges characterizing various stages o f  
developm ent o f  w ind waves [4, 10] gives rise to  the conclusion as to  the  conditions 
affecting variability o f  the coefficient m in form ula (7). This coefficient decidedly 
depends on  two dimensionless quantities: F  and  Re  (form ulae 1 and  2). F o r these 
reasons, expression (7) may be w ritten  in  the  general form

z 0 = / ( F , R e ) —  (9)
9
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A t very small w ind velocities, bo th  capillary waves and  gravity ripples are
v

com pletely im m ersed in  the viscous sub-layer, the thickness o f  w hich is S = ~
U *

and which decreases rapidly w ith increasing Re.  U nder these circum stances, the 
coefficient m  depends m ainly on  Re  and, tak ing  into consideration  (1), expression 
(9) may take the  form

V l  , U l  va 
z 0 = f ( R e ) ^ = R e - l — x m 0- ? -  ( 1 0 )

9 9 % *

where m 0 « 0 . 1  =  const [1 0 ].
In later stages o f  generation o f waves, expression (9) is conditioned m ain ly  by 

w ind waves. K now ing the function  m = f ( F ,  Re) and  the dynam ic velocity £/* an d  
using relationship (9) it w ould  be possible to  find the roughness param eter values 
in  various stages o f  developm ent o f  waves. U nfortunately, the  function m = f ( F ,  Re)  
has no t been determ ined precisely as yet, and  attem pts to  assum e its simplified and  
approxim ate representation have no t afforded satisfactory results. M oreover, the 
problem  is additionally com plicated by the dependence o f  the dynam ic velocity 
o n  w ind waves in the high-frequency band.

In  this connection, the m ain purpose o f the investigations u n d er considera tion  
was further exam ination o f the relations between statistical characteristics o f  th e  
random  field o f w ind waves and  the quantities w hich determ ine the roughness p a ra ­
m eter affecting relationships (4) to  (6 ).

2 T H E  M E T H O D S  A N D  S C O P E  O F  IN V ESTIG A TIO N S

The m ethods em ployed by the au thors in the investigations consisted in re c o r­
dings (in natural conditions) o f  random  trains o f  w ind waves using electronic capaci­
tive wave recorders (Fig. 1). Each o f  the wave-trains was recorded on  m agnetic ta p e  
an d  analyzed subsequently by digital com puter to  determ ine such statistical ch a rac ­
teristics as: correlation relations, spectral density o f  energy, variance, etc. T he m o tio n  
o f  the free surface o f  the w ater area  investigated, m easured a t a fixed site by a  w ire 
sensor o f  the wave recorder, was transm itted  to  the processing appara tus, in  w hich 
it was appropriately amplified, a ttenuated  or filtrated, then recorded on  m agnetic  
tape. By this m eans, tw o records o f  a  random  tra in  o f  wind waves were o b ta in e d  
fo r each 15-minutes’ em pirical run. The one characterized the full course o f  the wave 
process and  the second represented the high-frequency band  o f  this ran d o m  w ave 
tra in  in the frequency range o f  oj> 6.28. Realization o f  the high-frequency waves 
was obtained from  the first record by filtering off the com ponents w ith the frequencies 
o f  co< 6 .28  and  by subsequent appropria te  am plification o f  am plitude characteristics 
o f  the  rem aining waves.

Sim ultaneous w ith wave recordings by wire capacitive wave recorders, recordings 
via wire resistance wave recorders were conducted  for intercalibration  purposes. 
These recordings enabled p roper w ork  o f  the wave recorders to  be m onito red  on the 
o n e  hand, and  on the o ther hand  revealed an  im portan t advantage o f  capacitive
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Fig. 1. View of the wire sensor of the capacitive wave recorder.

sensors for recording high-frequency bands. N am ely, as opposed to  resistance 
sensors, settlem ent o f various im purity  films on the  capacitive w ave-recorder wire, 
m ostly a t the  zero ordinate, does n o t affect the  am plitude characteristics o f  high- 
-frequency waves. The dynam ic param eters o f  the capacitive sensor used in the  
investigations are as follows: the  frequency o f  the  pulses m odelled — 60 H z (the 
waves recorded a lter the pulse length), the  possibility o f  recording the  lowest wave 
am plitudes is restricted by the m eniscus on the wire to  1 — 2  m m , the  possibility o f  
recording tim e variations (wave periods) is restricted to  20 Hz. The long-term  stab i­
lity o f  the  device is ab o u t 2  mm.

The exam ination  o f the structure o f  the  high-frequency band  o f w ind waves 
constitu ted  p a rt o f  the  “ K am chiya — 79” com plex in ternational scientific experim ent 
o f  th e  C M EA  m em ber countries carried  ou t in  the Black Sea coastal zone in  Bulgaria. 
T he wave recordings were m ade from  an  im m ovable p latform  (Fig. 2) on  w hich a 
num ber o f  o ther physical quantities were also recorded, viz.: w ind velocity an d  
d irec tion , pu lsatory  quantities characterizing heat and m om entum  fluxes in  tbe



Fig. 2. View of the investigation platform at Shkorpilovtse (the base during the “ Kamchiya —79”  
experiment).

Table 1. List o f hydro-meteorological data (date of measurements: 13 October 1979)

Initial 
time o f 

recordings

Wind
velocity

u l0
[m -s-1 ]

Wind
direc­
tion

Frequency 
o f signifi­
cant wave 

co0 [rad-s_ l ]

Variance of 
the full-fre- 

quency 
wave-train 

o l  [m2]

Variance of 
the high-fre- 

quency 
wave-train 

o i  [m2]

Remarks on 
the state o f 
wind waves 
development

09.55 1.0 SE frequency 
o f swell 
a>o= 1.4

variance of 
swell 

ct“= 1 .9 1 0 - 3

4.13 -1 0 -5 almost smooth 
surface, swell 
from the SE

10.13 2.6 SE 5.02 without swell 
2 -1 0 -*

5 .2 -1 0 -5 wind waves 
developing

11.16 3.3 SE 5.78 without swell 
7-10"*

5 .2-10-* »>

11.30 4.1 SE 5.27 without swell 
1.7-10 — 3

4 .6 -10-* *»

11.45 4.0 SE 4.08 2 .4 1 0 " 3 6 .4 -10 '* »*
12.10 4.0 SSE 4.08 2 .2 -1 0 -3 5 .6-10-*
13.28 6.5 SSE 2.51 1.26 • 10~2 6.1 -10-* *»
13.42 7.8 SSE 2.38 | 1 .6 5 1 0 -2 5.8 -10-* »*
14.05 7.8 SSE 2.38 1.53-10 — 2 5 .6-10-*  | >>



atm osphere, the quantities characteristic o f solar energy transfer deep in to  the 
w ater, fine vertical distributions o f  sea-water tem perature. S tan d ard  and  surface 
m easurem ents o f  air and  w ater tem peratures were also carried out. T he depth  o f  the 
w ater area in the m easuring p latform  region was h — 6 m .

Fig. 3. Empirical distributions o f the spectral density o f wind waves energy (samples recorded*, 
on 29 September 1979, /  — frequency in Hz).
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T he investigations conducted under the “ K am chiya-79” program m e included 
statistical sam pling o f  w ind waves in a  dozen or so anem obaric situations. A m ong 
them , the samples fo r w hich the  developm ent o f  w ind conditions guaranteed the 
•existence o f  d irect causal connections between the w ind and  the waves generated,

f [ s - 1]

■Fig. 4. Empirical distributions o f the spectral density o f wind waves energy (samples recorded 
-on 13 October 1979).



were chosen for analyses. The samples collected on 13 O ctober 1979 between 09 .00  
and  14.00 hrs. are w orthy o f particu lar m ention in this respect. The developm ent o f  
meteorological conditions over this period and the m ain param eters o f  waves gene­
rated  are shown in Table 1.

It follows from  this th a t during the period  from  09.00 to  14.00 hrs. the w ind 
velocity increased gradually, the  w ind direction  changed slightly and  the wind waves 
developed continuously. The m ean height o f  the full-frequency w ave-train increased, 
the m ean height o f  waves from  the high-frequency band also increased weakly, an d  
the frequency o f  the m ain m axim um  in the energy spectrum  decreased gradually . 
Simultaneously, over the whole period o f  the m easurem ents, the  wind waves induced  

were accom panied by swell, the  m ean height o f  w hich was H 0 =  \ /  2na^ k. 11 cm, 
period — T0 = 2na>o 1 « 4 .5 5  s and length — L 0 x  1.56- T \  « 3 3  m. This process is 
distinctly visible in  Fig. 4, in w hich the distributions o f  the spectral energy density 
function  are shown. Thus, it can  be said th a t the investigations carried ou t on 13 
O ctober 1979 concerned the structure  o f  w ind waves in the  early stages o f  develop­
m ent, induced by m onotonically  increasing w ind on the stable swell propagated  
a t a  depth  o f  6  m. *-

E ach 15-minute random  w ave-train was recorded in two versions: the  norm al 
(full) version and  the high-frequency one. In  the  la tter version, th e  random  tra in  o f  
w ind waves in the high-frequency b and  was obtained, as m entioned, by filtrating 
off all the com ponents a t frequencies o f  co<2n  and  subsequent ap p ro p ria te  am pli­
fication o f the  am plitudes o f  th a t wave-train. This process to o k  place au tom atica lly  
in the w ave-recorder processer, sim ultaneously w ith  the in situ recordings.

3. T H E  E ST IM A TO R  O F  T H E  EN ERG Y  SPE C T R U M

Each o f the  form ulae in section 1 includes, in  the explicit or the  im plicit fo rm , 
the variance o f the wind waves random  process (the to tal variance a l  and  the high- 
-frequency variance a 2) w hich depends on  the frequency spectrum  o f energy (for­
m ula 3). Thus, the accuracy o f  the theoretical estim ator o f  the spectral energy density 
function affects the  accuracies o f  the  o ther quantities depending on it. F o r these 
reasons, it is im portan t th a t the p roper estim ator be chosen. In  the au th o rs’ opin ion , 
the  existing possibilities o f  m aking such a  choice enable the selection o f the  following 
th ree  proposals:
(a) the Phillips distribution fo r the  high-frequency equilibrium  range o f  gravity 
waves [9]

where p  is the  dimensionless coefficient varying little, depending on the extent and 
du ra tion  o f  the  w ind [7]. F o r practical purposes, it can  be assum ed th a t 

P k  6.5-10“ 3 const [4];
(b) the Kitaigorodskii, Krasitskii and Zaslavskii distribution, w hich introduces the 
effect o f  the depth  o f a  w ater area in to  form ula (11) [5]

S w ( ( o ) = p - g 2 - c o  5 ( 11)

S w(co) = p - g 2 -ri(wh) - œ  5 ( 12)



where:

tl((oh) = t p 2(cDh) \  1 +
lo f ,  ■ (p{o)h)

s h [ 2 a * 9>(co*)]J ’ (° h

h is the depth  o f the w ater area, and  <p(o)h) denotes the universal function  satisfying 
the equation:

?th(co* <p)= 1 ;

(c) the MasseI non-dimensional distribution connecting the depth  o f  th e  w ater area 
w ith the m ain p aram eters  o f the full energy spectrum  [2, 7, 8 ]

H  is th e  m ean height o f the w ind waves random  field, A 0, M, N, m, n denoting num e­
rical coefficients and  exponents. In  the shallow -w ater zone o f wave transform ation: 
^ 0 =  1.12, M = 2.52, N =  6.98, m = 0 .71  and  « = 1 .1 3 .

In  the high-frequency range, function (13) is simplified to  the  form  o f function

All three estim ators (11 ,12  and  15) o f the high-frequency spectrum  have a  general 
characteristic feature. Nam ely, in the b and  o f  high frequencies co^>co0 and  in  areas

terized by the “  — 5”  d istribution law. M oreover, in an  area  w ith  small relative 
depths functions (12) and (15) vary proportionally  to  co~3.

Experim ental d a ta  are presented in  Fig. 5, characterizing the non-dim ensional 
d istributions o f  empirical functions o f  spectral energy density show n in Fig. 4 for 
the frequency range 6.28 < « < 4 4 .  These da ta  clearly do  n o t confirm  the “  — 5” 
d istribu tion  law. This band  is no t well know n, as yet. The reason for this is th a t 
w ind waves are usually recorded a t the  signal am plitude am plification level enabling 
the full am plitude spectrum  o f the wind waves random  field, this including the highest

(13)

where:

(14)

(15)

(15).

w ith considerable depths h ^ 2 n k 0 1 (where k 0 = cul -g x) these functions are charac-



waves, to  be em braced. This m ethod enables the high-frequency spectrum  to  be 
distinguished only in the band  o f m uch lower frequencies, for the m ost part no t ex­
ceeding a value o f 2n. The “ — 5” law, w hich characterizes the so-called equilibrium  
range o f  gravity waves [9], is no t a  universal law for all waves. Considering th a t the 
wavelengths corresponding to  frequencies exceeding the m ean value c o x 2 0  o f  the 
band studied are  less than  7 ,=  15 cm, it is alm ost certain th a t a great num ber o f 
waves from  the b and  under consideration are  capillary waves which do not com e

log  (o> / u >0 )

Fig. 5. Distribution of the non-dimensional function o f the high-frequency spectrum of wind 
waves energy.



under the Phillips equilibrium  criteria. A p art from  this, the sam ples o f wind waves 
exam ined by the au thors characterize the early stages o f developm ent o f wind waves 
generated on the carrier swell, fo r w hich the criterion is n o t satisfied. As
follow s from  the above text, the discrepancies between the  em pirical distributions 
obtained and  the “  — 5” d istribution are likely to  be caused b o th  by the properties 
o f  early stages o f  developm ent o f  waves and  by the occurrence o f  num erous capillary 
w aves.

Considering the above, the au thors are o f  the opinion th a t the three estim ators 
o f  the  function o f  spectral density, presented earlier in this paper, do no t properly 
represen t the structure o f the high-frequency band o f  w ind waves in the early stages 
o f  the ir developm ent. A  m ore detailed study has shown, however, th a t function (13) 
correctly  represents the m ain  tendencies to  change resulting from  the effects upon 
the spectrum  o f  the ra tio  i¿>/a>0 and  depths o f  less th an  h o K n k ç 1. Thus, by in tro ­
ducing new coefficients and exponents in to  expressions (14) and  (15), i.e. by means 
o f  p roper param etrization , one can obtain  from  form ula (13) the equation  for the 
function o f  spectral density o f energy, w hich represents the early stage o f  wind wave 
developm ent correctly. This function was ob tained in the follow ing form

•Q-T-'-'KiHa . «•>
and  the coefficients and exponents in form ulae (14) and (15) take the following 
values: ^ o =  0.5, M = 2 ,  N — 7, m = 0.5, n — 1 , 77= 2 .

In  Fig. 5, estim ator 16 is p lo tted  together w ith em pirical d a ta  representing waves 
induced by wind only, i.e. those disregarding the variance a \  and  the frequency <u0 

o f  the swell.
The shape, steepness and  num ber o f  wave irregularities located on the carrier 

wave (swell, significant wave) constitute ano ther im portan t elem ent o f  the effect o f 
wind waves upon the effective roughness o f  the free surface. These features can 
significantly affect the value o f  tangential stresses. Thus, the differences between 
the structures o f  waves located on the w indw ard and  the leeward slopes (Fig. 6 ) 
o f  the carrier wave being flown round  by w ind can differentiate friction processes, 
since the sizes, shapes and  num bers o f  wave irregularities will be different on both 
slopes. In the au tho rs’ experim ent, the  wind directions alm ost coincided with the 
direction o f  the swell p ropagation. Only in the final stages o f developm ent o f  waves, 
w as the deviation observed o f the order o f 30 degrees, this being the deviation maxi­
m um  value. In  order to  properly  examine the structures o f waves on  bo th  slopes 
o f  the carrier wave, the wave records were subjected to  special processing and  ana­
lysis. A  group o f waves a t the  frequency co0, form ing a  distinct wave line on  the 
oscillogram, were filtered off from  the  full record  (full sample). This record acted 
as a  regulator o f  the readout in the  digital com puter. A t extrem e points (the tops o f 
th e  wave crests and  troughs) th e  com puter, following the program , started  recording 
(reading) the p a rt o f the high-frequency record located between a  given extrem e poin t 
and  the one following it. The la tter extrem um  then  switched off the reading o f the 
part betw'een itself an d  the next extrem um . In  practice, the  com puter cleared the



d a ta  there. The next p a rt was again  read. In  this way, a  series o f  operations was 
selected, characterizing the  waves o n  one slope. T he sum  o f the operations consti­
tu ted  a  full sam ple w hich was subsequently analyzed spectrally.

As a  result, tw o em pirical functions o f  the spectral density o f  wave energy were 
obtained, those characterizing tw o different wave slopes — the w indw ard and  the 
leeward. Those slopes a re  n o t identifiable, however, i.e. basing on  the  analysis one 
canno t decide which slope is leeward an d  w hich is w indw ard. In  the  light o f  the  results 
obtained (Fig. 6 ), th is problem  is unim portance, as the  characteristics o f  b o th  slopes 
are alm ost identical. The differences betw een them  show no  regularity and  they are 
contained w ithin the range o f the erro r o f  estim ation. Thus, it can  be stated th a t 
carrier waves are “ herm etically” encircled by wind an d  the  irregularities generated 
on  them  have approxim ately the  sam e geometrical and  quantitative properties^

Fig. 6. Empirical distributions o f the high-frequency spectrum o f energy o f wind waves on the 
slopes o f the significant wave (swell). ,



N aturally , th is regularity characterizes the w ind action upon  the free surface in  the 
early stages o f developm ent o f  wind waves as well as the  action o f light breezes 
■iU10^  10 m -s-1 ) on  the  swell. As can be seen in  Fig. 6 , the  distributions o f em pirical 
functions o f spectral density o f  energy com e under the  “ — 4” d istribution law, i.e. 
the d istribution  o f estim ator 16.

4. T H E  REY N O LD S N U M B ER  AND T H E  IN D IC A TO R  
O F T H E  STA TE O F  D EV EL O PM E N T  O F W IN D  W AVES

Let us now try to  find the relationship between the dimensionless quantities Re  
and  F, which determ ine the coefficient m = f { R e ,  F ) occurring in  form ula (9), and 
both  the characteristics o f w ind waves an d  velocity. V arious au thors differ as to  the 
characteristic scale o f linear dim ensions o f roughness elements, denoted in form ula 
<1) by /. I t is m ost often defined in  the following forms: /=  Ui/g, l= a ,  l = z 0. W ith 
the  definition o f the quantity  /, one should  assum e its value to  be either the  m ean 
length o f rough irregularities (in the case o f waves this w ould be the m ean length 
o f  the high-frequency range) or the  m ean height o f  these irregularities (in the  case 
o f  waves this height w ould be expressed by form ula 8 ). I t  follows from  a substantial 
num ber o f  various investigations on  coefficients o f friction, th a t the  height o f rough 
irregularities is a  m ore effective param eter. Let us, then, try to  determ ine tw o ver­
sions o f the Reynolds num ber, those being conditioned by characteristic linear scales: 
i i  =  Uljg  and  l2 =  crw. In  the form er case R ei =  Ul/vag,  and in  the la tter R e2 = crvtU^/va.

In  1978 K uznetsov published interesting results concerning dynam ic sea-atm o-

■Fig. 7. The dynamic friction velocity, t/„ , versus the wind velocity, Ul 0, taking into considera­
tion the root mean square deviation, a „ , of the high-frequency range of wind waves.



sphere interaction. O ne o f them  was the relationship found by K uznetsov between 
the dynam ic friction velocity and  the m ean square deviation o f  the high-frequency 
range o f waves [6 ]:

This relationship for the values o f  aw and  U10 m easured by the au thors is p re­
sented graphically in Fig. 7.

Substituting relationship (17) in to  form ula (2) and  into the form ulae for R e t 
an d  R e2 one will obtain

w here A =120 m 2 -s-2 , ^ =  9.81 m -s -2 , v„= 1 3 -1 0 -6  m 2 -s_1.
D ivision o f the left-hand and  the right-hand sides o f  expression (19) by the 

corresponding sides o f  expression (2 0 ) gives

Functions 19 and  20 are p lo tted  in  Fig. 8 , revealing a  significant discrepancy o f  
th e  data . Thus, a  dilem m a arises as to  the  choice o f  form ula representing the state 
o f  turbulence in  the near-w ater layer, assum ing th a t K uznetsov’s form ula (17) 
is the correct relationship for the early stages o f deyelopm ent o f  waves and  for a  wind 
velocity less than  10 m -s-1 , as this velocity range was dealt w ith in K uznetsov’s in­
vestigations [6 ],

Taking into consideration th a t in the  overwhelming m ajority o f  cases o f  estim a­
t io n  o f  the Reynolds num ber lim it it is assum ed th a t lam inar m otion  takes place a t Re  
values o f less th an  o f  the order o f 1000 (e.g. in pipelines it is assum ed th a t (Re)lim=

2 . 2
10 (17)

F x  A  • (Tn ' <JW ' U  j0 

R e ^ i g - r ' - v ^ f o i - U l o  

R e 2x ( g  • r 1 ■ v“ 2)* • <j%-Ui0

(18)

(19)

(20)

R e l K S 3 - \ 0 ~ ^ - U 210-R e 2 (21)

1 '---------------1— -  - >  R e
0 200 400 600

Fig. 8. The Reynolds number, Re, versus the wind velocity, Ul0.
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Fig. 9. The state of wind waves development, F, versus the wind velocity, Ui0 .

Fig. 10. The Reynolds number, Re, versus the state o f development o f wind waves, F
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=  2 0 0 0 ), form ula (2 0 ) seems to  be the m ost useful for practical purposes, bu t in the 
au th o rs’ opinion the coefficient a. should  be considered to  be an approxim ate value 
only, requiring further investigations, and  relationship 2 0  should be written in the 
form

Re = cur* U io (22)

The effect o f  the sta te  o f  developm ent o f  w ind  waves F  upon the  Reynolds num ber 
value is illustrated in Fig. 10. F rom  those characteristics it follows th a t in the early 
stages o f  developm ent o f  wind waves w ith the w ind velocity increasing m onotonicly 
u p  to  10 m -s-1 , one has to deal w ith intensive developm ent o f  waves (low values o f  F  
o f  the order o f  m agnitude 1 0 < F < 2 0 , Fig. 9). U nder these conditions, the R eynolds 
num ber depends mainly on the wind velocity, whereas its dependence on  th e  state 
o f  wave developm ent is very w eak (Fig. 10). A lm ost immediately, the variance a l  
o f  the high-frequency waves (Table 1) reaches an  alm ost constant value o f  the o rder 
o f  (5 h-6 )• 1 0 - 4  m, and the total variance a \  increases proportionally  to  the squared 
w ind velocity (o-£«3 [/,20). Thus, the Reynolds num ber will change within the range 
2 0 < F < 3 0  in  accordance w ith the following relationship

R e 2K 80- U i0

5. PR O B L E M S FO R FU R T H E R  IN V ESTIG A TIO N S

D eterm ination o f the relationship com bining the variance o f high-frequency 
waves, the w ind velocity Ul0 and the dynam ic velocity £/* (K uznetsov’s form ula 17) 
also the determ ination o f the estim ator o f the spectral density o f wind waves energy 
(form ula 16) in the early stages o f  their developm ent enables calculation o f the p a ra ­
meters F  and  R e  w hich condition the roughness param eter z0 (form ula 9), i.e. the 
effective roughness o f  the free surface o f a  w ater area in the early stages o f develop­
m ent o f  w ind waves generated either on the horizontal surface or on the undu lating  
surface (w hen swell occurs). The findings presented in this paper, however, enable 
a  certain  estim ation o f  this problem  only and  nothing m ore. The form  o f the function 
m = / ( F ,  Re) in eq. (9) and  the effective value o f  the coefficient a  in eq. (22) are still 
unknow n. M oreover, in  the light o f  the discrepancies between the findings presented  
and  the results obtained from  direct m easurem ents o f the w ind profile in the  range 
o f  values o f the dynam ic velocity £/*, fu rther exam ination o f  function (17) is ind is­
pensable, this concerning the values o f the  coefficient X and the exponent determ ining 
the dependence on the velocity U10. F u rther investigations will also be necessary to  
determ ine the coefficients A 0, M , N  and  the exponents m, n in  form ulae (14) a n d  
(15) m ore precisely.
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