Oceanologia No. 66 (3) / 24
Original research article
-
Mapping of morphological coastline changes based on aerial photographs and Discrete Fourier Transform, Hel Peninsula, Poland: Barbara Stachurska
-
Revisiting wave friction factors for rough turbulent flow: Dag Myrhaug, Hong Wang, Lars Erik Holmedal
-
Long-term responses of phytoplankton biomass to the ocean surface variables in the central parts of the Arabian Sea and the Bay of Bengal: Chinnadurai Karnan, Sreedharan Gautham, Soolamkandath Variem Sandhya, Shajahan Shahin
-
Extreme sea levels and floods: the case study of Klaipėda City, Lithuania: Erika Vasiliauskienė, Gertrūda Pociūtė, Inga Dailidienė, Angelija Bučienė
-
Modelling beach volume changes caused by moderate and weak hydrodynamic conditions: Natalia Bugajny
-
Monsoonal patterns of wave reflection from rubble mound breakwater of Chabahar Bay: Seyed Masoud Mahmoudof, Amin Eyhavand-Koohzadi, Ali Khosh Kholgh
Original research article
Mapping of morphological coastline changes based on aerial photographs and Discrete Fourier Transform, Hel Peninsula, Poland
Oceanologia 2024, 66(3), 66301, 15 pp.
https://doi.org/10.5697/ULWV7710
Barbara Stachurska
Institute of Hydro-Engineering, Polish Academy of Sciences, Kościerska 7, 80–328 Gdańsk, Poland;
e-mail: b.stachurska@ibwpan.gda.pl
Keywords:
Aerial photography, Fourier analysis, Hel Peninsula, Coastline changes, Spatial analysis, Spectral analysis
Received 18 November 2022; revised 22 April 2024; accepted 22 May 2024.
Highlights
- Spatial and spectral analysis of aerial photograph data
- Fourier transformation as a special coastline analysis technique
- Useful for analysis of long-term coastline changes
- Precise information about the dominant length of coastline undulations
Abstract
The coast is a dynamic zone where constantly occurring hydrodynamic and morphodynamic processes affect the shape of the shore. The paper presents a method based on spatial and spectral analysis of changes in the coastline position based on data obtained from aerial photographs interpretation and Fourier analysis, on the example of the Hel Peninsula. The Hel Peninsula is one of the most interesting accumulation forms of the Polish Baltic coast, where dynamic changes of the seashore cause the occurrence of time-varying sections of accumulation-abrasion of the coastline. For the purpose of detecting the coastline changes, historical aerial photographs from the years 1947, 1957, 1963, 1991 were used. It was assumed that the over-40-year research period, which includes the obtained series of aerial photographs, would allow for a sufficient study of the long-term shoreline changes, which allow for distinguishing the length of characteristic coastline undulations. The quasi-wave signal of the shoreline changes obtained from the aerial photographs interpretation, after using Fourier analysis, enabled an effective and precise identification of the coastline undulation. The spatial analyses, showed that the Hel Peninsula is clearly divided into a part subjected to accumulation processes and an abraded one. Furthermore, the dynamics of coastline changes was determined, showing that the abrasive processes were intensifying. Moreover, spectral Fourier analysis allowed for the precise identification of coastline undulations with dominant lengths. The obtained results of spatial and spectral analysis indicate that abrasive-accumulation sections with a length of about 0.3–4.5 km dominate on the Hel Peninsula shoreline.
References
Anders, F., Byrnes, M., 1991.
Accuracy of shoreline change
rates as determined from maps and aerial photographs,
Shore and Beach 59 (1), 17–26.
Appeaning Addo, K., Walkden, M., Mills, J.P., 2008.
Detection, measurement, and prediction of shoreline recession in Accra, Ghana, ISPRS J. Photogramm. 63,
543–558.
https://doi.org/10.1016/j.isprsjprs.2008.04.001
Basiński, T., Pruszak, Z., Tarnowska, M., Zeidler, R., 1993.
Sea coast protection, IHE PAS, Gdańsk, 536 pp., (in
Polish).
Boak, E.H. , Turner, I.L., 2005.
Shoreline definition and detection: A Review, J. Coastal. Res. 21(4), 688–703.
https://doi.org/10.2112/03-0071.1
Cohen, W.B, Kushla, J.D, Ripple, W.J, Garman, S.L., 1996.
An
introduction to digital methods in remote sensing of
forested ecosystems: Focus on the Pacific Northwest,
USA, Ecol. Envir. 20, 421–435.
https://doi.org/10.1007/BF01203849
Collier P., Inkpen R., Fontana D., 2001.
The use of historical
photography in environmental studies, Cybergeo: Eur.J. Geogr. 184.
https://doi.org/10.4000/cybergeo.4019
Constantino, D., Pepe, M., Dardanelli, G., Baiocchi, V., 2020.
Using optical satellite and aerial imagery for automatic
coastline mapping, Geographia Tech. 15(2), 171–190.
https://doi.org/10.21163/GT_2020.152.17
Cooley, J.W., Tukey, J.W., 1965.
An algorithm for the machine
calculation of complex Fourier series, Math. Comput.
19, 297–301.
Cracknell, A., 1999.
Remote sensing techniques in estuaries
and coastal zones – an update, Int. J. Remote Sens.
19(3), 485–496.
https://doi.org/10.1080/014311699213280
Davis, J.D., Chojnacki, J.D., 2017.
Two-dimensional discrete
Fourier transform analysis of karst and coral reef morphologies,
T GIS 21(13), 521–545.
https://doi.org/10.1111/tgis.12277
Dellepiane, S., Laurentiis, R., Giordano, F., 2004.
Coastline
extraction from SAR images and a method for the evaluation
of the coastline precision, Pattern Recogn. Lett.
25(13), 1461–1470.
https://doi.org/10.1016/j.patrec.2004.05.022
Dolan, R., Hayden, B., Heywood, J., 1978.
A new photogrammetric
method for determining shoreline erosion, Coast.
Eng. 2, 21–39.
https://doi.org/10.1016/0378-3839(78)90003-0
Dolan, R., Hayden, B., May, S., 1983.
Erosion of the US shorelines,
[in:] Erosion of the US shorelines, Komar, P.D. (Ed.),
CRC Handbook of Coastal Processes and Erosion, CRC
Press, Boca Raton FL, 285–299.
Dubrawski, R., 2000.
The impact of artificial beach replenishment
of sea shores on the coastal zone of the Hel
Peninsula in the period 1989–1997, Sci. Publ. Dept.
Maritime Institute, Gdańsk-Szczecin, 23–29, (in Polish).
Dudgeon, D.E., Mersereau, R.M., 1983.
Multidimensional
Digital Signal Processing, Prentice-Hall Signal Processing
Ser., Prentice Hall, Englewood Cliffs, 406 pp.
Ferreira, O., Garcia,T., Matias, A., Taborda, R., Dias, J.A., 2006.
An integrated method for the determination of set-back
lines for coastal erosion hazards on sandy shores, Cont.
Shelf. Res. 26, 1030–1044.
https://doi.org/10.1016/j.csr.2005.12.016
Furmańczyk, K., 1994.
Contemporary development of the
coastal zone of the tidal sea in the light of remote sensing
research on the Baltic coast, Szczecin Univ. Press,
Szczecin, 147 pp., (in Polish).
Furmańczyk, K., Musielak, S., 1993.
Analysis of changes and
forecast of threats to the Hel Peninsula in the light of
remote sensing research, Inżynieria Morska i Geotechnika 1/1993, 351–362, (in Polish).
Gehrmann, A., Harding, Ch., 2018.
Geomorphological Mapping
and Spatial Analyses of an Upper Weichselian Glacitectonic
Complex Based on LiDAR Data, Jasmund Peninsula
(NE Rügen), Germany, Geosciences 8(208), 2–24.
https://doi.org/10.3390/geosciences8060208
Hughes, M.L., McDowell, P.F., Marcus, W.A., 2006.
Accuracy
assessment of georectified aerial photographs: Implications
for measuring lateral channel movement in a GIS,
Geomorphology 74, 1–16.
https://doi.org/10.1016/j.geomorph.2005.07.001
Idier, D., Falques. A., 2014.
How kilometric sandy shoreline
undulations correlate with wave and morphology
characteristics: Preliminary analysis on the Atlantic
coast of Africa, Advances in Geosciences 39, 55–60.
https://doi.org/10.5194/adgeo-39-55-2014
Jensen, J., 2000.
Remote sensing of the environment: An
Earth resource perspective, Prentice-Hall, 592 pp.
Kaczmarek, L., Ostrowski, R., Skaja, M., Szmytkiewicz, M.,
1998.
Mathematical modeling of seashore changes at
the base of the Hel Peninsula, taking into account artificial
replenishment, Inżynieria Morska i Geotechnika 1/1998, 13–25, (in Polish).
Khairulbahri, M., 2022.
The qualitative analysis of the nexus
dynamics in the Pekalongan coastal area, Indonesia, Sci.
Rep. 12, 11391.
https://doi.org/10.1038/s41598-022-15683-9
Królikowski, L., Strzelecki, W., 1969.
Characteristics of the
sands of coastal dunes, Sylwian 12, 21–29, (in Polish).
Larson, M., Capobianco, M., Jansen, H., Rózyński, G., Southgate,
H.N., Stive, M., Wijnberg, K.M., Hulscher, S., 2003.
Analysis and modeling of field data on coastal morphological
evolution over yearly and decadal time scales.
Part 1: background and linear techniques, J. Coastal.
Res. 19(4), 760–775.
List, J., Farris, A., 1999.
Large-scale shoreline response to
storms and fair weather, Proc. Coastal Sediments 99,
Long Island, New York, 1324–1337.
Liu, H., Jezek, C., 2004.
Automated Extraction of Coastline
from Satellite Imagery by Integrating Canny Edge Detection
and Locally Adaptive Thresholding Methods, Int.
J. Remote Sens. 25, 937–958.
https://doi.org/10.1080/0143116031000139890
Moore, L.J., 2000.
Shoreline mapping techniques, J. Coastal
Res., 16(1), 111–124.
Morgan, E.L., Gergel, S., Coops, N., 2010.
Aerial photography:
A rapidly evolving tool for ecological management,
Bioscience 60(1), 47–59.
https://doi.org/10.1525/bio.2010.60.1.9
Overton, M., Fisher, J., 1996.
Shoreline analysis using digital
photogrammetry, Proc. 25th Int. Conf. Coastal Eng.
(Orlando, Florida), 3750–3761.
Paine, D., Kiser J., 2012.
Aerial Photography and Image
Interpretation, John Wiley & Sons, 648 pp.
Pelczar, M., Nejczew, P., Mielczarski, A., 1990.
Cartometric
analysis of the shore-line changes on the eastern part
of the Polish Baltic coast in the last century, Rozprawy
Hydrotechniczne, vol. 51, 69–113, (in Polish).
Prošek, A., Leskovar, M., 2015.
Use of fast Fourier transform
for sensitivity analysis, [in:] Fourier Transform – SignalProcessing and Physical Sciences, Salih, S.M. (Ed.), In-Tech Open, London, 227 pp.
https://doi.org/10.5772/59769
Rayner, J.N., 1972.
The application of harmonic and spectral
analysis to the study of terrain, [in:] Spatial Analysis in
Geomorphology, Chorley, R.J. (Ed.), Methuen, London,
UK, 283–302.
Ricard, Y., Froidevaux, C., Simpson, R., 1987.
Spectral analysis
of topography and gravity in the Basin and Range
Province, Tectonophysics 133, 175–187.
Shoshany, M., Degani, A., 1992.
Shoreline detection by digital
image processing of aerial photography, J. Coastal
Res. 8(1), 29–34.
Stachurska, B., 2012.
Analysis of changes in the position of
the Hel Peninsula coastline based on aerial photographs
from 1947–1991, Inżynieria Morska i Geotechnika 33(4), 541–542, (in Polish).
Spagnolo, M., Bartholomaus, T.C., Clark, C.D., Stokes, C.R.,
Atkinson, N., Dowdeswell, J.A., Ely, J.C., Graham, A.G.C.,
Hogan, K.A., King, E.C., Larter R.D., Livingstone S.J.,
Pritchard H.D., 2017.
The periodic topography of ice
stream beds: Insights from the Fourier spectra of megascale
glacial lineations, J. Geophys. Res.-Earth 122,1355–1373.
https://doi.org/10.1002/2016JF004154
Tomczak, A., 1995. Geological structure and evolution of
the Polish coastal zone, J. Coastal Res., 22, 15–31.
Tuominen, S., Pekkarinen, A., 2004.
Local radiometric correction
of digital aerial photographs for multisource
forest inventory, Remote Sens. Environ. 89, 72–82.
https://doi.org/10.1016/j.rse.2003.10.005
Urbański, J., 2001.
Cartographic modeling of the coastal
zone of the sea, Gdańsk University Press, Gdańsk, (in
Polish).
Uścinowicz, Sz., Kramarska, R., Kaulbarsz, D., Jurys, L., Frydel,
J., Przezdziecki, P., Jedliński, W., 2014.
Baltic Sea
coastal erosion; a case study from the Jastrzębia Góra
region, Geologos 20(4), 259–268.
https://doi.org/10.2478/logos-2014-0018
Yang, J., Seo, D., Lim, H., Choi, Ch., 2010.
An analysis of
coastal topography and land cover changes at Haeundae
Beach, South Korea, Acta Astronaut. 67, 1280–1288.
https://doi.org/10.1016/j.actaastro.2010.06.013
Zawadzka-Kahlau, E., 1999.
Development tendencies of the
Polish shores of the South Baltic Sea, Gdańsk Science
Association, Gdańsk, 147 pp., (in Polish).
Revisiting wave friction factors for rough turbulent flow
Oceanologia 2024, 66(3), 66302, 8 pp.
https://doi.org/10.5697/NMCX3016
Dag Myrhaug1,*, Hong Wang2, Lars Erik Holmedal1
1Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Otto Nielsens vei 10, NO–7491 Trondheim, Norway;
e-mail: dag.myrhaug@ntnu.no (D. Myrhaug)
2Hydrodynamics, MetOcean & SRA, DNV AS, NO–1322 Høvik, Norway
*corresponding author
Keywords:
Seabed shear stress, Rough turbulent flow, Ocean surface waves, Coastal zones
Received 3 October 2022; revised 3 May 2024; accepted 22 May 2024.
Highlights
- The wave friction factor and the phase lead of the seabed shear stress over the free stream velocity are presented
- The results are valid for rough turbulent flow based on similarity theory using data for large bed roughness
- An approximation for the friction factor is recommended covering a wide range of rough bed conditions
- The proposed formula should represent an alternative useful parameterization for coastal engineering applications
Abstract
The wave friction factor 𝑓𝑤 and the phase lead of the seabed shear stress over the free stream velocity 𝜑 for rough turbulent flow are revisited by utilizing the similarity theory used by Myrhaug (1989). Results are obtained for 𝑓𝑤 and 𝜑 by determining the similarity coefficients using the Dixen et al. (2008) data for large bed roughness. Comparisons are made with other experimental data and wave friction factor formulae. As a result, an approximation for 𝑓𝑤 by disregarding the phase 𝜑 is recommended covering a wide range of amplitude-to-roughness ratios.
References
Bagnold, R.A., 1946.
Motion of waves in shallow water. Interaction
between waves and sand bottoms, Proc. R.
Soc., Ser. A 187, 1–15.
https://doi.org/10.1098/rspa.1946.0062
Christoffersen, J.B., Jonsson, I.G., 1985.
Bed friction and
dissipation in a combined current and wave motion,
Ocean Eng. 12(5), 387–423.
https://doi.org/10.1016/0029-8018(85)90002-2
Dixen, M., Hatipoglu, F., Sumer, B.M., Fredsøe, J., 2008.
Wave
boundary layer over a stone-covered bed, Coast. Eng.
55(1), 1–20.
https://doi.org/10.1016/j.coastaleng.2007.06.005
Fredsøe, J., Deigaard, R., 1992.
Mechanics of Coastal Sediment
Transport, World Scientific, Singapore, 369 pp.
Fuhrman, D.R., Schløer, S., Sterner, J., 2013.
RANS-based simulation
of turbulent wave boundary layer and sheet-flow
sediment transport processes, Coast. Eng. 73, 151–166.
https://doi.org/10.1016/j.coastaleng.2012.11.001
Gill, A.E., 1982.
Atmosphere – Ocean Dynamics, Academic
Press, New York, 662 pp.
Grant, W.D., Madsen, O.S., 1986.
The continental–shelf
bottom boundary layer, Annu. Rev. Fluid Mech. 18,
265–305.
https://doi.org/10.1146/annurev.fl.18.010186.001405
Jensen, B.L., Sumer, B.M., Fredsøe, J., 1989.
Turbulent oscillatory
boundary layers at high Reynolds numbers,
J. Fluid Mech. 206, 265–297.
https://doi.org/10.1017/S0022112089002302
Jonsson, I.G., Carlsen, N.A., 1976.
Experimental and theoretical
investigation in an oscillatory turbulent boundary
layer, J. Hydraulic Res. 14(1), 45–60.
https://doi.org/10.1080/00221687609499687
Kamphuis, J.W., 1975.
Friction factor under oscillatory
waves, ASCE J. Waterw., Harbors, Coastal Eng. Div.
101(WW2), 135–144.
https://doi.org/10.1061/AWHCAR.0000276
Myrhaug, D., 1989.
A rational approach to wave friction coefficients
for rough, smooth and transitional turbulent
flow, Coast. Eng. 13(1), 11–21.
https://doi.org/10.1016/0378-3839(89)90030-6
Myrhaug, D., Fyfe, A.J., Reed, K., 1988.
Wave boundary layers
in large scale laboratory experiments, Ocean Eng.
15(4), 373–378.
https://doi.org/10.1016/0029-8018(88)90052-2
Myrhaug, D., Lambrakos, K.F., Slaattelid, H., 1992.
Wave
boundary layer in measurements near the seabed, Coast.
Eng. 18(1–2), 153–181.
https://doi.org/10.1016/0378-3839(92)90009-1
Nielsen, P., 1992.
Coastal Bottom Boundary Layers and
Sediment Transport, World Scientific, Singapore, 324
pp.
Schlichting, H., 1979.
Boundary – Layer Theory, 7th edn.,
Mc Graw-Hill, New York, N.Y., 817 pp.
Simons, R., Myrhaug, D., Thais, L., Chapalain, G., Holmedal,
L.E., MacIver, R., 2000.
Bed friction in combined wavecurrent
flows, Proc. 27th Int. Conf. Coast. Eng., Sydney,
Australia.
Sleath, J.F.A., 1987.
Turbulent oscillatory flow over rough
beds, J. Fluid Mech. 182, 369–409.
https://doi.org/10.1017/S0022112087002374
Sleath, J.F.A., 1991.
Velocities and shear stresses in wavecurrent
flows, J. Geophys. Res. 96(C8), 15237–15244.
https://doi.org/10.1019/91JC01458
Soulsby, R.L., 1983.
The bottom boundary layer of shelf seas,
[in:] Physical oceanography of coastal and shelf seas, B.
Johns (ed.), Elsevier, New York, N.Y., 189–266.
Soulsby, R., 1997.
Dynamics of Marine Sands: A Manuel for
Practical Applications, Thomas Telford, London, UK,
249 pp.
Sumer, B.M., Fuhrman, D.R., 2020.
Turbulence in Coastal
and Civil Engineering, World Scientific, Singapore, 731
pp.
Sumer, B.M., Jensen, B.L., Fredsøe, J., 1987.
Turbulence
in oscillatory boundary layers, [in:] Advances in Turbulence,
Comte-Bellot and Mathieu (eds.), Springer-
Verlag, Berlin, 556–567.
Swart, D.H., 1974.
Offshore sediment transport and equilibrium
beach profiles, Delft Hydraulics Laboratory, Publ.
No. 131, Delft, The Netherlands.
Long-term responses of phytoplankton biomass to the ocean surface variables in the central parts of the Arabian Sea and the Bay of Bengal
Oceanologia 2024, 66(3), 66303, 20 pp.
https://doi.org/10.5697/DMDO7507
Chinnadurai Karnan*, Sreedharan Gautham, Soolamkandath Variem Sandhya, Shajahan Shahin
CSIR – National Institute of Oceanography, Dona Paula, Goa, India;
e-mail: karnanc@nio.org (C. Karnan)
*corresponding author
Keywords: Chlorophyll a, Sea surface temperature, Sea level anomaly, Meridional currents, Arabian Sea, Bay of Bengal
Received 8 February 2023; revised 12 May 2024; accepted 22 May 2024.
Highlights
- Northern Indian Ocean shows significant increasing trends in SST and positive-MSLA
- Chlorophyll-a decreases in the central Arabian Sea and contrastingly increases in the central Bay of Bengal
- Seasonal changes in mean sea level anomaly and meridional currents are possible reasons for the increasing trend of chlorophyll-a in the central Bay of Bengal
Abstract
The northern Indian Ocean has been warming steadily for over a half-century, especially the north-western Indian Ocean. It is widely reported that the increasing sea surface temperature in the global oceans decreases phytoplankton biomass and productivity. The impacts of long-term variations in the sea surface properties on the phytoplankton biomass (chlorophyll a) are least studied in the northern Indian Ocean. In this study, we have retrieved satellite, model, and ARGO float data sets to investigate the long-term variations in the distributions and trends of major oceanic variables for a better understanding of the respective changes that occurred in chlorophyll a concentration in the central regions of the Arabian Sea (AS) and the Bay of Bengal (BB). We have selected variables such as sea surface temperature (SST), sea surface salinity (SSS), photosynthetically available radiation (PAR), euphotic depth (ZEU), mixed layer depth (MLD), wind speed, mean sea level anomaly (MSLA), surface currents, etc., to relate with chlorophyll a. We found significant increasing trends in SST and positive-MSLA in both basins, and the chlorophyll a was decreased in the AS but contrastingly increased in the BB. Further data analysis revealed the possible reasons, such as seasonal changes in mean sea level anomaly and meridional currents, for the increasing trend of chlorophyll a in the central Bay of Bengal. The northward flow of the meridional currents during the southwest monsoon (SWM), transports the nutrient-rich water from the coastal upwelling zone of the southwest coast of India to the southern and central BB, and enhances chlorophyll a. Contrastingly, the southward flow of low-saline and nutrient-depleted Bay of Bengal water reduces the chlorophyll a. In addition, the large area of cold-core eddies found during the NEM enhanced the chlorophyll a in the central BB. Though contrasting trends between both basins in chlorophyll a distribution were found, the mean concentration of chlorophyll a in the northern Indian Ocean decreases. The present study signifies the importance of monsoon currents and eddies in regulating the chlorophyll a biomass and primary productivity in the AS and BB.
References
Aksnes, D.L., Ohman, M.D., 2009.
Multi-decadal shoaling of
the euphotic zone in the southern sector of the California
Current System, Limnol. Oceanogr. 54, 1272–1281.
Albin, K.J., Jyothibabu, R., Alok, K.T., Santhikrishnan, S.,
Sarath, S., Sudheesh, V., Sherin, C.K., Balachandran,
K.K., Devi, C.R.A., Gupta, G.V.M., 2022.
Distinctive phytoplankton
size responses to the nutrient enrichment ofcoastal upwelling and winter convection in the eastern Arabian Sea. Prog. Oceanogr. 203, 102779.
Anil, A.C., Desai, D.V., Khandeparker, L., Krishnamurthy, V.,
Mapari, K., Mitbavkar, S., Patil, J.S., Sarma, V., Sawant,
S.S., 2021.
Short term response of plankton community
to nutrient enrichment in central eastern Arabian Sea:
Elucidation through mesocosm experiments, J. Environ.
Manage. 288, 112390.
Araujo, M.B., Rahbek, C., 2006. How does climate change
affect biodiversity?, Science 313, 1396–1397.
Banse, K., 1968.
Hydrography of the Arabian Sea Shelf of
India and Pakistan and effects on demersal fishes, Deep-
Sea Res. 15, 45–79.
https://doi.org/10.1016/0011-7471(68)90028-4
Batten, S.D., Crawford, W.R., 2005.
The influence of coastal
origin eddies on oceanic plankton distributions in the
eastern Gulf of Alaska, Deep-Sea Res. Pt II 52, 991–1009.
Behrenfeld, M.J., Boss, E., Siegel, D.A., Shea, D.M., 2005.
Carbon-based ocean productivity and phytoplankton
physiology from space, Glob. Biogeochem. Cy. 19.
Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A., McClain, C.R.,
Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski,
P.G., Letelier, R.M., Boss, E.S., 2006.
Climate-driven
trends in contemporary ocean productivity, Nature 444,
752–755.
Boyce, D.G., Lewis, M.R., Worm, B., 2010.
Global phytoplankton
decline over the past century, Nature 466, 591–596.
Calbet, A., Sazhin, A.F., Nejstgaard, J.C., Berger, S.A., Tait,
Z.S., Olmos, L., Sousoni, D., Isari, S., Martinez, R.A., Bouquet,
J.-M., 2014.
Future climate scenarios for a coastal
productive planktonic food web resulting in microplankton
phenology changes and decreased trophic transfer
efficiency, PloS One 9, e94388.
Chen, X., Pan, D., Bai, Y., He, X., Wang, T., 2014.
Are the trends
in the surface chlorophyll opposite between the South
China Sea and the Bay of Bengal?, [in:] Remote Sensing
of the Ocean, Sea Ice, Coastal Waters, and Large Water
Regions Conference Proceedings 2014, SPIE, 270–277.
Chinnadurai, K., Retnamma, J., Nagarathinam, A., Subramanian,
P.R., Singaram, P., Shoba, S., 2021.
Microplankton
size structure induced by a warm-core eddy in the western
Bay of Bengal: Role of Trichodesmium abundance,
Oceanologia 63(3), 283–300.
https://doi.org/10.1016/j.oceano.2021.02.003
Chowdhury, M., Biswas, H., Mitra, A., Silori, S., Sharma,
D., Bandyopadhyay, D., Shaik, A.U.R., Fernandes, V.,
Narvekar, J., 2021.
Southwest monsoon-driven changes
in the phytoplankton community structure in the central
Arabian Sea (2017–2018): After two decades of
JGOFS, Prog. Oceanogr. 197, 102654.
Coghlan, A., 2018. A little book of R for time series, Available online at:
https://buildmedia.readthedocs.org/media/pdf/a-little-book-of-r-for-time-series/latest/a-little-book-of-r-for-time-series.pdf
Dalpadado, P., Arrigo, K.R., van Dijken, G.L., Gunasekara,
S.S., Ostrowski, M., Bianchi, G., Sperfeld, E., 2021.
Warming
of the Indian Ocean and its impact on temporal and
spatial dynamics of primary production, Prog. Oceanogr.
198, 102688.
Dandapat, S., Chakraborty, A., 2016.
Mesoscale eddies in the
Western Bay of Bengal as observed from satellite altimetry
in 1993–2014: statistical characteristics, variability
and three-dimensional properties, IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 9, 5044–5054.
Doney, S.C., 2006.
Plankton in a warmer world, Nature 444,
695–696.
Falkowski, P.G., Fenchel, T., Delong, E.F., 2008.
The microbial
engines that drive Earth’s biogeochemical cycles,
Science 320, 1034–1039.
Feng, M., Majewski, L.J., Fandry, C.B., Waite, A.M., 2007.
Characteristics of two counter-rotating eddies in the
Leeuwin Current system off the Western Australian coast,
Deep Sea Res. Pt. II 54, 961–980.
https://doi.org/10.1016/j.dsr2.2006.11.022
Friendly, M., 2002.
Corrgrams: Exploratory displays for
correlation matrices, Am. Stat. 56, 316–324.
Giorgi, F., 2005. Climate change prediction, Clim. Change
73, 239–265.
Goes, J.I., Thoppil, P.G., Gomes, H. do R., Fasullo, J.T., 2005.
Warming of the Eurasian landmass is making the Arabian
Sea more productive, Science 308, 545–547.
Gopalakrishna, V.V., Murty, V.S.N., Sengupta, D., Shenoy, S.,
Araligidad, N., 2002.
Upper ocean stratification and
circulation in the northern Bay of Bengal during southwest
monsoon of 1991, Cont. Shelf Res. 22, 791–802.
https://doi.org/10.1016/S0278-4343(01)00084-X
Gregg, W.W., Casey, N.W., 2007.
Modeling coccolithophores
in the global oceans, Deep Sea Res. Pt. II 54, 447–477.
https://doi.org/10.1016/j.dsr2.2006.12.007
Gregg, W.W., Rousseaux, C.S., 2019.
Global ocean primary
production trends in the modern ocean color satellite
record (1998–2015), Environ. Res. Lett. 14, 124011.
Guinehut, S., Le Traon, P.Y., Larnicol, G., Philipps, S., 2004.
Combining Argo and remote-sensing data to estimate
the ocean three-dimensional temperature fields-a first
approach based on simulated observations, J. Marine
Syst. 46, 85–98.
Hosoda, S., Ohira, T., Sato, K., Suga, T., 2010.
Improved
description of global mixed-layer depth using Argo profiling
floats, J. Oceanogr. 66, 773–787.
https://doi.org/10.1007/s10872-010-0063-3
Huot, Y., Brown, C.A., Cullen, J.J., 2005.
New algorithms for
MODIS sun-induced chlorophyll fluorescence and a comparison
with present data products, Limnol. Oceanogr.
Methods 3, 108–130.
Jiang, R., Wang, Y.-S., 2018.
Modeling the ecosystem response
to summer coastal upwelling in the northern
South China Sea, Oceanologia 60 (1), 32–51.
Jorgensen, E.G., 1968.
The adaptation of plankton algae: II.
Aspects of the temperature adaptation of Skeletonema
costatum, Physiol. Plant. 21, 423–427.
Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Karnan, C.,
Lallu, K.R., Vinayachandran, P.N., 2018.
Response of
phytoplankton to heavy cloud cover and turbidity in the
northern Bay of Bengal, Nature Sci. Rep. 8, 1–15.
https://doi.org/10.1038/s41598-018-29586-1
Jyothibabu, R., Karnan, C., Arunpandi, N., Santhi Krishnan,
S., Balachandran, K.K., Sahu, K.C., 2021.
Significantly
dominant warm-core eddies: An ecological indicator of
the basin-scale low biological production in the Bay of
Bengal, Ecol. Indic. 121, 107016.
https://doi.org/10.1016/j.ecolind.2020.107016
Jyothibabu, R., Madhu, N.V., Habeebrehman, H., Jayalakshmy,
K.V., Nair, K.K.C., Achuthankutty, C.T., 2010.
Reevaluation
of “paradox of mesozooplankton” in the eastern
Arabian Sea based on ship and satellite observations,
J. Marine Syst. 81, 235–251.
Jyothibabu, R., Vinayachandran, P.N., Madhu, N.V., Robin,
R.S., Karnan, C., Jagadeesan, L., Anjusha, A., 2015.
Phytoplankton
size structure in the southern Bay of Bengal
modified by the Summer Monsoon Current and associated
eddies: Implications on the vertical biogenic flux, J.
Marine Syst. 143, 98–119.
https://doi.org/10.1016/j.jmarsys.2014.10.018
Keen, T.R., Kindle, J.C., Young, D.K., 1997.
The interaction of
southwest monsoon upwelling, advection and primary
production in the northwest Arabian Sea, J. Marine Syst.
13, 61–82.
Kerr, R.A., 2012.
Experts agree global warming is melting
the world rapidly, Science 338, 1138.
Khan, T.M.A., Quadir, D.A., Murty, T.S., Sarker, M.A., 2004.
Seasonal and interannual sea surface temperature variability
in the coastal cities of Arabian Sea and Bay of
Bengal, Nat. Hazards 31, 549–560.
Killick, R., Fearnhead, P., Eckley, I.A., 2012.
Optimal detection
of changepoints with a linear computational cost,
J. Am. Stat. Assoc. 107, 1590–1598.
Kumar, G.S., Prakash, S., Ravichandran, M., Narayana, A.C.,
2016.
Trends and relationship between chlorophyll-a
and sea surface temperature in the central equatorial
Indian Ocean, Remote Sens. Lett. 7, 1093–1101.
https://doi.org/10.1080/2150704X.2016.1210835
Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K.L.,
Davis, C., 2007.
Euphotic zone depth: Its derivation and
implication to ocean-color remote sensing, J. Geophys.
Res.-Oceans 112.
https://doi.org/10.1029/2006JC003802
Lewandowska, A.M., Hillebrand, H., Lengfellner, K., Sommer,
U., 2014.
Temperature effects on phytoplankton diversity
– the zooplankton link, J. Sea Res. 85, 359–364.
Li, H., Xu, F., Zhou, W., Wang, D., Wright, J.S., Liu, Z., Lin,
Y., 2017.
Development of a global gridded Argo data
set with Barnes successive corrections, J. Geophys. Res.-Oceans 122, 866–889.
https://doi.org/10.1002/2016JC012285
Liu, M., Liu, X., Ma, A., Li, T., Du, Z., 2014.
Spatio-temporal
stability and abnormality of chlorophyll-a in the Northern
South China Sea during 2002–2012 from MODIS images using wavelet analysis, Cont. Shelf Res. 75, 15–27.
Lotliker, A.A., Baliarsingh, S.K., Sahu, K.C., Kumar, T.S., 2020.
Long-term chlorophyll-a dynamics in tropical coastal
waters of the western Bay of Bengal, Environ. Sci. Pollut.
Res. 27, 6411–6419.
Luo, J.-J., Sasaki, W., Masumoto, Y., 2012.
Indian Ocean
warming modulates Pacific climate change, Proc. Natl.
Acad. Sci. 109, 18701–18706.
Ma, C., Zhao, J., Ai, B., Sun, S., Zhang, G., Huang, W., Wang,
G., 2021.
Assessing responses of phytoplankton to consecutive
typhoons by combining Argo, remote sensing
and numerical simulation data, Sci. Total Environ. 790,
148086.
Madhupratap, M., Gopalakrishnan, T.C., Haridas, P., Nair,
K.K.C., Aravindakshan, P.N., Padmavati, G., Paul, S., 1996.
Lack of seasonal and geographic variation in mesozooplankton
biomass in the Arabian Sea and its structure
in the mixed layer, Curr. Sci. 17(11), 863–868.
Mahadevan, A., Jaeger, G.S., Freilich, M., Omand, M.M., Shroyer,
E.L., Sengupta, D., 2016.
Freshwater in the Bay of Bengal:
Its fate and role in air-sea heat exchange, Oceanography
29, 72–81.
McCulloch, M.T., Winter, A., Sherman, C.E., Trotter, J.A.,
2024.
300 years of sclerosponge thermometry shows
global warming has exceeded 1.5°C, Nat. Clim. Change°
14, 171–177.
https://doi.org/10.1038/s41558-023-01919-7
Miranda, J., Baliarsingh, S.K., Lotliker, A.A., Sahoo, S., Sahu,
K.C., Kumar, T.S., 2020.
Long-term trend and environmental
determinants of phytoplankton biomass in coastal
waters of northwestern Bay of Bengal, Environ. Monit.
Assess. 192, 1–13.
Mishra, A.K., Dwivedi, S., Das, S., 2019.
Role of Arabian Sea
warming on the Indian summer monsoon rainfall in a
regional climate model, Int. J. Climatol. 40, 2226–2238.
Mohan, S., Mishra, S.K., Sahany, S., Behera, S., 2021.
Longterm
variability of Sea Surface Temperature in the Tropical
Indian Ocean in relation to climate change and variability,
Glob. Planet. Change 199, 103436.
Montagnes, D.J.S., Franklin, M., 2001.
Effect of temperature
on diatom volume, growth rate, and carbon and nitrogen
content: reconsidering some paradigms, Limnol.
Oceanogr. 46, 2008–2018.
Murphy, G.E.P., Romanuk, T.N., Worm, B., 2019.
Cascading
effects of climate change on plankton community
structure, Ecol. Evol. 10, 2170–2181.
Prakash, P., Prakash, S., Rahaman, H., Ravichandran, M.,
Nayak, S., 2012.
Is the trend in chlorophyll-a in the
Arabian Sea decreasing?, Geophys. Res. Lett. 39.
Prakash, S., Ramesh, R., 2007.
Is the Arabian Sea getting
more productive?, Curr. Sci. 667–671.
Pramanik, S., Sil, S., Gangopadhyay, A., Singh, M.K., Behera,
N., 2020.
Interannual variability of the Chlorophyll a
concentration over Sri Lankan Dome in the Bay of
Bengal, Int. J. Remote Sens. 41, 5974–5991.
Prasad, T.G., 2004.
A comparison of mixed-layer dynamics
between the Arabian Sea and Bay of Bengal: Onedimensional
model results, J. Geophys. Res.-Oceans
109.
https://doi.org/10.1029/2003JC002000
Prasanna Kumar, S., Madhupratap, M., Kumar, M.D., Gauns,
M., Muraleedharan, P.M., Sarma, V., De Souza, S.N., 2000.
Physical control of primary productivity on a seasonal
scale in central and eastern Arabian Sea, J. Earth Syst.
Sci. 109, 433–441.
Prasanna Kumar, S., Muraleedharan, P.M., Prasad, T.G., Gauns,
M., Ramaiah, N., De Souza, S.N., Sardesai, S., Madhupratap,
M., 2002.
Why is the Bay of Bengal less productive during
summer monsoon compared to the Arabian Sea?,
Geophys. Res. Lett. 29, 88-1-88-4.
Prasanna Kumar, S., Narvekar, J., Nuncio, M., Kumar, A.,
Ramaiah, N., Sardessai, S., Gauns, M., Fernandes, V.,
Paul, J., 2010.
Is the biological productivity in the Bay
of Bengal light limited?, Curr. Sci. 98, 1331–1339.
Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A.,
Sardesai, S., De Souza, S.N., Gauns, M., Ramaiah, N.,
Madhupratap, M., 2004.
Are eddies nature’s trigger to
enhance biological productivity in the Bay of Bengal?,
Geophys. Res. Lett. 31.
Prasanna Kumar, S., Ramaiah, N., Gauns, M., Sarma, V., Muraleedharan,
P.M., Raghukumar, S., Kumar, M.D., Madhupratap,
M., 2001.
Physical forcing of biological productivity
in the Northern Arabian Sea during the Northeast
Monsoon, Deep Sea Res. Pt. II 48, 1115–1126.
Ravichandran, M., Girishkumar, M.S., Riser, S., 2012.
Observed
variability of chlorophyll-a using Argo profiling
floats in the southeastern Arabian Sea, Deep-Sea Res.
Pt. I 65, 15–25.
Raymont, J.E.G., 2014.
Plankton & productivity in the oceans.
Volume 1: Phytoplankton, Elsevier, 660 pp.
Resplandy, L., Levy, M., Madec, G., Pous, S., Aumont, O.,
Kumar, D., 2011.
Contribution of mesoscale processes
to nutrient budgets in the Arabian Sea, J. Geophys. Res.-
Oceans 116.
Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D.,
Feely, R.A., Gulev, S., Johnson, G.C., Josey, S.A., Kostianoy,
A., 2013.
Observations: Ocean, Cambridge University
Press, Cambridge, UK, New York, USA.
Rousseaux, C.S., Gregg, W.W., 2012.
Climate variability and
phytoplankton composition in the Pacific Ocean, J. Geophys.
Res.-Oceans 117.
https://doi.org/10.1029/2012JC008083
Roxy, M.K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S.,
Prasanna Kumar, S., Ravichandran, M., Vichi, M., Levy,M., 2016.
A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean,
Geophys. Res. Lett. 43, 826–833.
Roxy, M.K., Ritika, K., Terray, P., Masson, S., 2014.
The
curious case of Indian Ocean warming, J. Clim. 27,
8501–8509.
Sarma, V., Rao, G.D., Viswanadham, R., Sherin, C.K., Salisbury,
J., Omand, M.M., Mahadevan, A., Murty, V.S.N.,
Shroyer, E.L., Baumgartner, M., 2016.
Effects of freshwater
stratification on nutrients, dissolved oxygen, and
phytoplankton in the Bay of Bengal, Oceanography 29,
222–231.
Sarma, V.V.S.S., Rajula, G.R., Durgadevi, D.S.L., Kumar, G.S.,
Loganathan, J., 2020.
Influence of eddies on phytoplankton
composition in the Bay of Bengal, Cont. Shelf Res.
208, 104241.
https://doi.org/10.1016/j.csr.2020.104241
Sarma, V.V.S.S., Rao, D.N., Rajula, G.R., Dalabehera, H.B., Yadav,
K., 2019.
Organic Nutrients Support High Primary
Production in the Bay of Bengal, Geophys. Res. Lett.
46, 6706–6715.
https://doi.org/10.1029/2019GL082262
Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C.,
Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray,
P., 2004.
Response of ocean ecosystems to climate
warming, Glob. Biogeochem. Cy. 18.
Schaum, C.E., Barton, S., Bestion, E., Buckling, A., Garcia-
Carreras, B., Lopez, P., Lowe, C., Pawar, S., Smirnoff, N.,
Trimmer, M., 2017.
Adaptation of phytoplankton to a
decade of experimental warming linked to increased
photosynthesis, Nat. Ecol. Evol. 1, 1–7.
Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002.
The monsoon currents in the north Indian Ocean, Prog.
Oceanogr. 52, 63–120.
Shetye, S.R., Shenoi, S.S.C., Gouveia, A.D., Michael, G.S., Sundar,
D., Nampoothiri, G., 1991.
Wind-driven coastal
upwelling along the western boundary of the Bay of
Bengal during the southwest monsoon, Cont. Shelf Res.
11, 1397–1408.
Singh, G.P., Oh, J., 2007.
Impact of Indian Ocean sea-surface
temperature anomaly on Indian summer monsoon precipitation
using a regional climate model, Int. J. Climatol.
RMetS 27, 1455–1465.
Subramanian, V., 1993.
Sediment load of Indian rivers, Curr.
Sci. 64, 928–930.
Thomas, M.K., Kremer, C.T., Klausmeier, C.A., Litchman, E.,
2012.
A global pattern of thermal adaptation in marine
phytoplankton, Science 338, 1085–1088.
Thompson, B., Gnanaseelan, C., Parekh, A., Salvekar, P.S.,
2008.
North Indian Ocean warming and sea level rise
in an OGCM, J. Earth Syst. Sci. 117, 169–178.
Thushara, V., Vinayachandran, P.N.M., Matthews, A.J., Webber,
B.G.M., Queste, B.Y., 2019.
Vertical distribution of
chlorophyll in dynamically distinct regions of the southern
Bay of Bengal, Biogeosciences 16, 1447–1468.
van Leeuwen, S.M., van der Molen, J., Ruardij, P., Fernand,
L., Jickells, T., 2013.
Modelling the contribution of deep
chlorophyll maxima to annual primary production in
the North Sea, Biogeochemistry 113, 137–152.
Venrick, E.L., McGowan, J.A., Cayan, D.R., Hayward, T.L.,
1987.
Climate and chlorophyll a: long-term trends in
the central North Pacific Ocean, Science 238, 70–72.
Vinayachandran, P.N., 2009.
Impact of physical processes
on chlorophyll distribution in the Bay of Bengal, Indian
Ocean Biogeochem. Process. Ecol. Var. - Geophys.
Monogr. 71–86.
Vinayachandran, P.N., Kurian, J., 2007.
Hydrographic observations
and model simulation of the Bay of Bengal
freshwater plume, Deep-Sea Res. Part Oceanogr. Res.
Pap. 54, 471–486.
Wiggert, J.D., Hood, R.R., Banse, K., Kindle, J.C., 2005.
Monsoondriven
biogeochemical processes in the Arabian Sea,
Prog. Oceanogr. 65, 176–213.
https://doi.org/10.1016/j.pocean.2005.03.008
Wollrab, S., Izmestyeva, L., Hampton, S.E., Silow, E.A., Litchman,
E., Klausmeier, C.A., 2021.
Climate Change-Driven
Regime Shifts in a Planktonic Food Web, Am. Nat. 197,
281–295.
Xu, Y., Wu, Y., Wang, H., Zhang, Z., Li, J., Zhang, J., 2021.
Seasonal and interannual variabilities of chlorophyll
across the eastern equatorial Indian Ocean and Bay of
Bengal, Prog. Oceanogr. 198, 102661.
Yadav, K., Sarma, V., Rao, D.B., Kumar, M.D., 2016.
Influence
of atmospheric dry deposition of inorganic nutrients
on phytoplankton biomass in the coastal Bay of Bengal,
Mar. Chem. 187, 25–34.
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B.,
Shi, J., Dickinson, R., 2013.
The role of satellite remote
sensing in climate change studies, Nat. Clim. Change 3,
875–883.
Zlotnik, I., Dubinsky, Z., 1989.
The effect of light and temperature
on DOC excretion by phytoplankton, Limnol.
Oceanogr. 34, 831–839.
Extreme sea levels and floods: the case study of Klaipėda City, Lithuania
Oceanologia 2024, 66(3), 66304, 15 pp.
https://doi.org/10.5697/RCYK7139
Erika Vasiliauskienė1,*, Gertrūda Pociūtė2, Inga Dailidienė1, Angelija Bučienė3
1Marine Research Institute, Klaipėda University, Klaipėda, H. Manto str. 84, LT–92294, Lithuania;
e-mail: erika.cepiene@ku.lt (E. Vasiliauskienė)
2Faculty of Physics, Vilnius University, Saulėtekio av. 9, LT–10222, Vilnius, Lithuania
3Center for Social Geography and Regional Studies, Faculty of the Social Sciences and Humanities, Klaipėda University, S. Neries g. 5, LT–92227, Klaipėda, Lithuania
*corresponding author
Keywords: Baltic Sea, Coastal river city, Extreme sea levels, Storm surges, Compound flood
Received 28 February 2023; revised 29 October 2023; accepted 29 May 2024.
Highlights
- The Klaipėda Strait's mean annual water level increased by 3.9 mm per year–1 during 1961–2022
- From 1961 to 2022, there were 48 occurrences when the water level in the Klaipėda Strait was ≥100 cm, with 34 of the occurrences from 2000 to 2022
- There is a notable correlation (R=0.81) between the mean annual water levels observed in the Klaipėda Strait and the Danė River from 2008 to 2022
Abstract
Klaipėda City is located in the Southeast Baltic Sea region, where sea level rise has been observed for decades. The Klaipėda Strait, which separates the Baltic Sea and the Curonian Lagoon, where the port is located, is also more prone to sudden extreme changes in water levels, usually caused by windstorms. Extreme sea level changes pose a threat to port operations, technical structures, city residents, buildings, and infrastructure. Fluctuations in sea levels also affect the water level of the Danė River, which enters the Klaipėda Strait and divides the city into two parts. Therefore, this study aims to determine the past extreme sea level events and their influence on floods in the Danė River within Klaipėda City from 1961 to 2022. For this, the impact of meteorological parameters caused dangerous sea level rises in the Klaipėda Strait, and the following rise of the Danė River was studied. The results show that the annual mean, annual mean maximum, and annual mean minimum water levels in the Klaipėda Strait increased from 1961 to 2022. Also, the number of events where the water level in the Klaipėda Strait was ≥ 100 cm in the Baltic Elevation System was increasing. The increasing frequency of extreme water level events in the Klaipėda Strait puts urban areas at greater risk from Danė River compound floods.
References
BACC I Author Team, 2008.
Assessment of Climate Change
for the Baltic Sea Basin. Regional Climate Studies,
Springer-Verlag, Berlin-Heidelberg, 473 pp.
https://doi.org/10.1007/978-3-540-72786-6
BACC II Author Team, 2015.
Second Assessment of Climate
Change for the Baltic Sea Basin. Regional Climate Studies,
Springer International Publishing.
https://doi.org/10.1007/978-3-319-16006-1
Bevacqua, E., Maraun, D., Vousdoukas, M.I., Voukouvalas,
E., Vrac, M., Mentaschi, L., Widmann, M., 2019.
Higher
probability of compound flooding from precipitation
and storm surge in Europe under anthropogenic climate
change. Sci. Adv. 5(9), eaaw5531.
https://doi.org/10.1126/sciadv.aaw5531
Borradaile, G.J., 2003.
Statistics of earth science data: their
distribution in time, space, and orientation. Springer,
Berlin, 351 pp.
Čekanavičius, V., Murauskas, G., 2004.
Statistika ir jos taikymai.
II knyga. Vilnius: TEV.
Čepienė, E., Dailidytė, L., Stonevičius, E., Dailidienė, I., 2022.
Sea level rise impact on compound coastal river flood
risk in Klaipėda city (Baltic Coast, Lithuania). Water 14(3), 414.
https://doi.org/10.3390/w14030414
Dailidienė, I., Davulienė, L., Kelpšaitė, L., Razinkovas, A.,
2012.
Analysis of the climate change in Lithuanian
coastal areas of the Baltic Sea. J. Coastal Res. 28(3),
557–569.
https://doi.org/10.2112/JCOASTRES-D-10-00077.1
Dailidienė, I., Davulienė, L., Tilickis, B., Stankevičius, A.,
Myrberg, K., 2006.
Sea level variability at the Lithuanian
coast of the Baltic Sea. Boreal Environ. Res. 11,
109–121.
Environmental Protection Agency, 2018.
Potvynių Direktyvos
įgyvendinimas [Implementation of the Floods Directive].
Available online:
https://vanduo.old.gamta.lt/cms/index?rubricId=6d87deab-3ecc-412a-9b66-7fd6361f26ba (accessed on 16 September 2023).
Environmental Protection Agency, 2020.
Preliminaraus
Potvynių Rizikos Vertinimo Atnaujinimas 2011–2018
m. [Update of the Preliminary Flood Risk Assessment
2011–2018], Aplinkos Apsaugos Agentūra. Available
online:
https://vanduo.old.gamta.lt/files/Preliminary_flood_risk_assessment_2011_2018.pdf (accessed on 17 September 2023).
Ganguli, P., Merz, B., 2019.
Trends in compound flooding
in northwestern Europe during 1901–2014. Geophys.
Res. Lett. 46(19), 10810–10820.
General Plan of Klaipėda City municipality, 2021.
Klaipėdos
Miesto Savivaldybės Bendrasis Planas. Sprendiniai.
Aiškinamasis Raštas [General Plan of Klaipėda City municipality.
Solutions, Explanatory Note]. Administration
of Klaipėda City Municipality. Available online:
https://www.klaipeda.lt/data/public/uploads/2021/03/klaipedos-bp-aiskinamasis-rastas-2021-03-09.pdf
Gräwe, U., Klingbeil, K., Kelln, J., Dangendorf, S., 2019.
Decomposing
mean sea level rise in a semi-enclosed basin,
the Baltic Sea. J. Climate 32(11), 3089–3108.
https://doi.org/10.1175/JCLI-D-18-0174.1
Hieronymus, M., Dieterich, C., Andersson, H., Hordoir, R.,
2018.
The effects of mean sea level rise and strengthened
winds on extreme sea levels in the Baltic Sea. Theoretical
and Applied Mechanics Lett. 8(6), 366–371.
https://doi.org/10.1016/j.taml.2018.06.008
Hurrell, J., Kushnir, Y., Ottersen, G., Visbeck, M., 2003.
An
Overview of the North Atlantic Oscillation. [In:] The
North Atlantic Oscillation: Climatic Significance and
Environmental Impact. Geophys. Monogr. Vol. 134,
American Geophysical Union, 1–35.
Hünicke, B., Zorita, E., 2016.
Statistical analysis of the acceleration
of Baltic mean sea-level rise, 1900–2012. Front.
Mar. Sci. 3, 125.
https://doi.org/10.3389/fmars.2016.00125
Hünicke, B., Zorita, E., Soomere, T., Madsen, K.S., Johansson,
M., Suursaar, Ü., 2015.
Recent Change – Sea Level
and Wind Waves. [In:] Second Assessment of Climate
Change for the Baltic Sea Basin. Regional Climate Studies.
The BACC II Author Team (Eds.), Springer, Cham.
https://doi.org/10.1007/978-3-319-16006-1_9
Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2015.
Stipraus
štormo „Feliksas“ padariniai Lietuvos jūriniame krante.
Geologija Geografija 1(1).
https://doi.org/10.6001/geol-geogr.v1i1.3068
Katinas, V., Marčiukaitis, M., Gecevičius, G., Markevičius, A.,
2017.
Statistical analysis of wind characteristics based
on Weibull methods for estimation of power generation
in Lithuania. Renew. Energ. 113, 190–201.
https://doi.org/10.1016/j.renene.2017.05.071
Kirezci, E., Young, I.R., Ranasinghe, R., Muis, S., Nicholls,
R.J., Lincke, D., Hinkel, J., 2020.
Projections of globalscale
extreme sea levels and resulting episodic coastal
flooding over the 21st Century. Sci. Rep. 10(1), 1–12.
https://doi.org/10.1038/s41598-020-67736-6
Kowalewska-Kalkowska, H., Wisniewski, B., 2009.
Storm
surges in the Odra mouth area during the 1997–2006
decade. Boreal Environ. Res. 14(1), 183.
Kowalewska-Kalkowska, H., 2021.
Storm-Surge Induced
Water Level Changes in the Odra River Mouth Area
(Southern Baltic Coast). Atmosphere 12, 1559.
https://doi.org/10.3390/atmos12121559
Kulikov, E.A., Fain, I.V., Medvedev, I.P., 2015.
Numerical modeling
of anemobaric fluctuations of the Baltic Sea level.
Russian Meteorol. Hydrol. 40(2), 100–108.
https://doi.org/10.3103/S1068373915020053
Meier, H.M., Broman, B., Kjellström, E., 2004.
Simulated
sea level in past and future climates of the Baltic Sea.
Climate Res. 27(1), 59–75.
https://doi.org/10.3354/cr027059
Meier, H.E.M., 2015.
Projected Change – Marine Physics.
[In:] Second Assessment of Climate Change for the Baltic
Sea Basin. Regional Climate Studies. The BACC II Author
Team (Eds.), Springer, Cham.
https://doi.org/10.1007/978-3-319-16006-1_13
Mühr, B., Eisenstein, L., Pinto, J.G., Knippertz, P., Mohr, S.,
Kunz, M., 2022.
CEDIM Forensic Disaster Analysis Group
(FDA): Winter storm series: Ylenia, Zeynep, Antonia (int:
Dudley, Eunice, Franklin) – February 2022 (NW & Central
Europe).
https://doi.org/10.5445/IR/1000143470
Omstedt, A., Pettersen, Ch., Rodhe, J., Winsor, P., 2004.
Baltic Sea climate: 200 yr of data on air temperature,
sea level variation, ice cover, and atmospheric circulation.
Climate Res. 25, 205–216.
https://doi.org/10.3354/cr025205
On Approval (...), 2020. Lietuvos Respublikos Aplinkos Ministro
Įsakymas dėl Stichinių,
Katastrofinių Meteorologinių
ir Hidrologinių Reiškinių Rodiklių Patvirtinimo 2011 m.
lapkričio 11 d. Nr. D1-870 [On Approval of Indicators of
Natural, Catastrophic Meteorological and Hydrological
Phenomena. Order of the Minister of the Environment
of the Republic of Lithuania. 11 November 2011 No.
D1-870]. Available online:
https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.412088/asr (accessed on 5 February 2023).
Owen, L.E., Catto, J.L., Stephenson, D.B., Dunstone, N.J., 2021.
Compound precipitation and wind extremes over
Europe and their relationship to extratropical cyclones.
Weather Clim. Extremes 33, 100342.
https://doi.org/10.1016/j.wace.2021.100342
Pepler, A., Dowdy, A., 2021.
Fewer deep cyclones projected
for the midlatitudes in a warming climate, but with
more intense rainfall. Environ. Res. Lett. 16(5),
054044.
https://doi.org/10.1088/1748-9326/abf528
Pindsoo, K., Soomere, T., 2020.
Basin-wide variations in
trends in water level maxima in the Baltic Sea. Cont.
Shelf Res. 193, 104029.
https://doi.org/10.1016/j.csr.2019.104029
Quinn, T., Bousquet, F., Guerbois, C., Heider, L., Brown, K.,
2019.
How local water and waterbody meanings shape
flood risk perception and risk management preferences.
Sustain. Sci. 14, 565–578.
https://doi.org/10.1007/s11625-019-00665-0
Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich,
I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G.,
Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E.,
Olsson, T., Särkkä, J., Tuomi, L., Wasmund, N., 2022.
Natural hazards and extreme events in the Baltic Sea
region, Earth Syst. Dynam. 13, 251–301.
https://doi.org/10.5194/esd-13-251-2022
Stonevičius, E., Valiuškevičius, G., Rimkus, E., Kažys, J., 2010.
Potvynių Smeltėje Poveikio Švelninimo Ir Adapatacijos
Prie Jų Galimybės Atsižvelgiant Į Numatomus Klimato
Pokyčius [Possibilities of Mitigation and Adaptation To
The Effects Of Floods In Smelte Taking Into Account The
Expected Climate Change]. Vilnius University, Vilnius,
Lithuania.
Sinay, L., Carter, R.W., 2020.
Climate change adaptation
options for coastal communities and local governments.
Climate 8(1), 7.
https://doi.org/10.3390/cli8010007
Šakurova, I., Kondrat, V., Baltranaitė, E., Vasiliauskienė, E.,
Kelpšaitė-Rimkienė, L., 2023.
Assessment of Coastal
Morphology on the South-Eastern Baltic Sea Coast: The
Case of Lithuania. Water 15(1), 79.
https://doi.org/10.3390/w15010079
Vaidogas, E.R., Juocevičius, V., 2011.
A critical estimation
of data on extreme winds in Lithuania. J. Environ. Eng.
Landscape Manage. 19(2), 178–188.
https://doi.org/10.3846/16486897.2011.579452
Vautard, R., van Oldenborgh, G.J., Otto, F.E.L., Yiou, P., de
Vries, H., van Meijgaard, E., Stepek, A., Soubeyroux, J.-
M., Philip, S., Kew, S.F., Costella, C., Singh, R., Tebaldi,
C., 2019.
Human influence on European winter wind
storms such as those of January 2018, Earth Syst. Dynam.
10, 271–286.
https://doi.org/10.5194/esd-10-271-2019
Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan,
M., Feyen, L., 2017.
Extreme sea levels on the rise along
Europe’s coasts. Earth’s Future 5(3), 304–323.
https://doi.org/10.1002/2016EF000505
Vousdoukas, M.I., Voukouvalas, E., Annunziato, A., Giardino,
A., Feyen, L., 2016.
Projections of extreme storm surge
levels along Europe. Clim. Dynam. 47(9), 3171–3190.
https://doi.org/10.1007/s00382-016-3019-5
Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls,
R.J., Umgiesser, G., Willems, P., 2014.
Changing extreme
sea levels along European coasts. Coast. Eng. 87, 4–14.
https://doi.org/10.1016/j.coastaleng.2013.10.017
Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K.,
Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang,
W., Zorita, E., 2021.
Sea level dynamics and coastal
erosion in the Baltic Sea region, Earth Syst. Dynam. 12,
871–898.
https://doi.org/10.5194/esd-12-871-2021
Weisse, R., Weidemann, H., 2017.
Baltic Sea extreme sea
levels 1948–2011: Contributions from atmospheric forcing.
Procedia IUTAM, 25, 65–69.
https://doi.org/10.1016/j.piutam.2017.09.010
Wolski, T., Wiśniewski, B., 2021.
Characteristics and Long-
Term Variability of Occurrences of Storm Surges in theBaltic Sea. Atmosphere 12, 1679.
https://doi.org/10.3390/atmos12121679
Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska,
H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort,
J., Lydeikaitė, Ž., 2014.
Extreme sea levels at selected
stations on the Baltic Sea coast. Oceanologia 56(2),
259–290.
https://doi.org/10.5697/oc.56-2.259
Wolski, T., Wiśniewski, B., Musielak, S., 2016.
Baltic Sea
datums and their unification as a basis for coastal and
seabed studies. Oceanol. Hydrobiol. Stud. 45(2), 239–
258.
https://doi.org/10.1515/ohs-2016-0022
Modelling beach volume changes caused by moderate and weak hydrodynamic conditions
Oceanologia 2024, 66(3), 66305, 18 pp.
https://doi.org/10.5697/DPRP2478
Natalia Bugajny
Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70–383 Szczecin, Poland;
e-mail: natalia.bugajny@usz.edu.pl
Keywords: XBeach model, Dune coast, Baltic Sea, Coastal changes, Volume errors
Received 14 April 2023; revised 20 May 2024; accepted 29 May 2024.
Highlights
- Sets of parameters in 2D calibration for the significant storm are not optimal for moderate and weak hydrodynamic conditions simultaneously
- The increase of the facua parameter mostly impacts the decrease in the absolute error of volumetric changes induced by moderate and weak hydrodynamic conditions
- The average absolute error of volumetric changes decreases with a reduction in hydrodynamic condition values
- There is no correlation between the measured and modeled balance of volumetric changes induced by the weakest hydrodynamic conditions
- The model can reflect well a trend in the sum of volumes within a 4-month timeframe if constant bathymetric and topographic data are applied
Abstract
The goals of this study were the calibration of the XBeach model for moderate and weak hydrodynamic conditions in 2D mode and the determination of the volumetric changes induced by them. An evaluation of model performance was made based on the Brier Skill Score (BSS), the visual match of the profile shape (VMS), the absolute volumetric change error (m3/m) and the relative volumetric change error (%). An analysis of accuracy in determining volumetric changes in the dune coast, with XBeach applied, provided an average absolute error in determination of volumetric changes of 4.0 m3/m for a significant storm and 1.5 m3/m for moderate and weak hydrodynamic conditions in a 2D model calibration process.
Simulations of morphological changes caused by moderate and weak hydrodynamic conditions for seven timeframes classified into three groups have been run in 2D mode. Within a validation process, the average absolute error in the determination of volumetric changes in the beach was ranging from 0.64 m3/m to 2.42 m3/m depending on the group of hydrodynamic conditions.
A high value of the correlation coefficient (R) between the measured and modelled balance of volumetric changes (m3/m) for all timeframes – 0.79 and for the ‘strongest’ group no. 3 – 0.91 were revealed. For the remaining groups, i.e., group no. 1 and no. 2 of hydrodynamic conditions, no such correlation was observed. Furthermore, the temporal analysis of the sum of beach volumes proved that a rising trend was observed over 4 months. Thus, moderate and weak hydrodynamic conditions dominated the accumulation within the area of study. XBeach reflected this trend well, producing a difference between the measured and modelled sum of volumes at the end of the timeframe of 7.27 m3/m, which is close to the volume determination error by the model.
References
Bruun, P., 1962.
Sea level rise as a cause of shore erosion. J.
Waterway. Div. ASCE 88(1), 117–130.
https://doi.org/10.1061/JWHEAU.0000252
Bugajny, N., Furmańczyk, K., 2014.
Dune coast changes
caused by weak storm events in Miedzywodzie, Poland.
J. Coastal Res., SI 70, 211–216.
https://doi.org/10.2112/SI70-036.1
Bugajny, N., Furmańczyk, K., 2017.
Comparison of Short-
Term Changes Caused by Storms along Natural and Protected
Sections of the Dziwnow Spit, Southern Baltic
Coast. J. Coastal Res. 33, 77–785.
https://doi.org/10.2112/JCOASTRES-D-16-00055.1
Bugajny, N., Furmańczyk, K., 2020.
Short-term volumetric
changes of the berm and beachface during storm calming.
J. Coastal Res., SI 95, 398–402.
https://doi.org/10.2112/SI95-077.1a>
Bugajny, N., Furmańczyk, K., 2022.
Defining a single set of
calibration parameters and prestorm bathymetry in the
modeling of volumetric changes on the southern Baltic
Sea dune coast. Oceanologia 64(1), 160–175.
https://doi.org/10.1016/j.oceano.2021.10.004
Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., 2015.
Application of XBeach to model a storm response on a
sandy spit at the southern Baltic. Oceanol. Hydrobiol.Stud. 44, 552–562.
https://doi.org/10.1515/ohs-2015-0052
Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., Paplińska-
Swerpel B., 2013.
Modelling morphological changes
of beach and dune induced by storm on the Southern
Baltic coast using XBeach (case study: Dziwnow Spit). J.
Coastal Res. 65, 672–677.
https://doi.org/10.2112/SI65-114.1
Cherneva, Z., Andreeva, N., Pilar, P., Valchev, N., Petrova, P.,
Guedes Soares, C., 2008.
Validation of the WAMC4 wave
model for the Black Sea. Coast. Eng. 55(11), 88–893.
https://doi.org/10.1016/j.coastaleng.2008.02.028
Ciavola, P., Ferreira, O., Van Dongeren, A., Van Thiel de Vries,
J., Armaroli, C., Harley, M., 2014.
Prediction of Storm
Impacts on Beach and Dune Systems. [In:] Hydrometeorological
Hazards: Interfacing Science and Policy,
Quevauviller, P. (Ed.), Wiley-Blackwell, 227–250.
https://doi.org/10.1002/9781118629567.ch3d
Cieślikiewicz, W., Herman, A., 2001.
Modelowanie falowania
wiatrowego Morza Bałtyckiego i Zatoki Gdańskiej.
Inżynieria Morska i Geotechnika 22(4), 173–184.
Cieślikiewicz, W., Herman, A., 2002.
Wave and current modelling
over the Baltic Sea. Proc. 28th Interntl. Conf.
Coastal Engng Conf., ICCE 2002, Cardiff, Wales.
Coco, G., Senechal, N., Rejas, A., Bryan, K.R., Capo, S., Parisot,
J.P., Brown, J.A., MacMahan, J.H.M., 2014.
Beach response
to a sequence of extreme storms. Geomorphology,
204, 493–501.
https://doi.org/10.1016/j.geomorph.2013.08.028
Dissanayake, P., Brown, J., Karunarathna, H., 2014.
Modelling
storm-induced beach/dune evolution: Sefton coast,
Liverpool Bay, UK. Mar. Geol. 357, 225–242.
https://doi.org/10.1016/j.margeo.2014.07.013
Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015a.
Effects of storm clustering on beach/dune evolution. Mar. Geol. 370, 63–75.
https://doi.org/10.1016/j.margeo.2015.10.010.
Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015b.
Comparison of storm cluster vs isolated event impacts
on beach/dune morphodynamics. Estuar. Coast. Shelf
Sci. 164, 301–312.
https://doi.org/10.1016/j.ecss.2015.07.040
Dobracki, R., Zachowicz, J., 2005.
Mapa Geodynamiczna
Polskiej Strefy Brzegowej Bałtyku. Państwowy Instytut
Geologiczny, Oddział Pomorski, scale 1:10,000, 2
sheets.
Dodet, G., Castelle, B., Masselink, G., Scott, T., Davidson, M.,
Floch, F., Jackson, D., Suanez, S., 2019.
Beach recovery
from extreme storm activity during the 2013–14 winter
along the Atlantic coast of Europe. Earth Surf. Process.
Landforms 44, 393–401.
https://doi.org/10.1002/esp.4500
Dudzińska-Nowak, J., 2006a.
Coastline long-term changes
of the selected area of the Pomeranian Bay. [In:] Coastal
Dynamic, Geomorphology and Protection, Tubielewicz,A. (ed.), Gdańsk University of Technology, Gdańsk,
163–170.
Dudzińska-Nowak, J., 2006b.
Wpływ metod ochrony brzegu
morskiego na zmiany położenia linii podstawy wydmy
na wybranym przykładzie. [In:] Człowiek i środowisko
przyrodnicze Pomorza Zachodniego: III. Środowisko
przyrodnicze i problemy społeczno-ekonomiczne, Koźmiński Cz., Dutkowski, M., Radziejewska, T. (Eds.),
Szczecin, 91–98.
Dudzińska Nowak, J., 2015.
Metody ochrony zachodniego
wybrzeża Polski i ich wpływ na zmiany brzegu w latach
1938–2015. Wydawnictwo Naukowe Uniwersytetu
Szczecińskiego.
Dudzińska-Nowak, J., Wężyk, P., 2014.
Volumetric changes
of a soft cliff coast 2008–2012 based on DTM from airborne
laser scanning (Wolin Island, southern Baltic Sea).
J. Coast. Res. 70, 59–64.
https://doi.org/10.2112/si70-011.1
Ferreira, O., 2005.
Storm groups versus extreme single
storms: predicted erosion and management consequences.
J. Coastal Res. SI 42, 221–227.
Furmańczyk, K., Dudzińska-Nowak, J., 2009.
Effects of extreme
storms on coastline changes: A southern Baltic
example. J. Coastal Res. 56, 1637–1640.
Harley, M., Armaroli, C., Ciavola, P., 2011.
Evaluation of
XBeach predictions for a real-time warning system in
Emilia-Romagna, Northern Italy. J. Coastal Res. 64,
1861–1865.
Harter, C., Figlus, J., 2017.
Numerical modeling of the morphodynamic
response of a low-lying barrier island beach
and foredune system inundated during Hurricane Ike
using. XBeach and CSHORE. Coast. Eng. 120, 64–74.
https://doi.org/10.1016/j.coastaleng.2016.11.005
Kombiadou, K., Costas, S., Roelvink, D., 2021.
Simulating
Destructive and Constructive Morphodynamic Processes
in Steep Beaches. J. Mar. Sci. Eng. 9(1), 86.
https://doi.org/10.3390/jmse9010086
Masselink, G., Hughes, M.G., Knight, J., 2011.
Introduction
to Coastal Processes and Geomorphology. Routledge,
London, 288 pp.
McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N.G., Van Dongeren,
A.R., Roelvink, J.A., Thompson, D.M., Reniers,
A.J.H.M., 2010.
Two-dimensional time dependent hurricane
overwash and erosion modeling at Santa Rosa
Island. Coast. Eng. 57, 668–683.
https://doi.org/10.1016/j.coastaleng.2010.02.006
Musielak, S. Furmańczyk, K., Bugajny N., 2017.
Factors and
processes forming the Polish Southern Baltic Sea coast
on various temporal and spatial scales. [In:] Coastline
changes of the Baltic Sea from South to East: past
and future projection, Harff, J., Furmańczyk, K. and von
Storch, H. (Eds.), Coastal Res. Library, Vol. 19, 69–86.
Musielak, S., Łabuz, T., Wochna, S., 2007.
Procesy morfodynamiczne
strefy brzegowej Mierzei Dziwnowskiej. [In:]
Geologia i geomorfologia Pobrzeża i Południowego Bałtyku,
Florek W. (Ed.), Wydaw. PAP, 63–75.
Paplińska, B., 1999.
Wave analysis at Lubiatowo and in the
Pomeranian Bay based on measurements from 1997/
1998 – comparison with modelled data (WAM4 model).
Oceanologia 41(2), 241–254.
Paplińska, B., 2001.
Specific features of sea waves in the
Pomeranian Bay. Arch. Hydro-Eng. Environ. Mech. 48,
55–72.
Paplińska, B., Reda, A., 2001.
Regional variability of the
wave climate at the Polish coast of the Baltic Sea. [In:]
Zastosowania mechaniki w budownictwie lądowym i
wodnym, Szmidt, K. (Ed.), Księga Jubileuszowa poświęcona
70-leciu urodzin Profesora Piotra Wilde. Wyd.
IBW PAN, Gdańsk, 191–215.
Pender, D., Karunarathna, H., 2013.
A statistical-process
based approach for modelling beach profile variability.
Coast. Eng. 81, 19–29.
https://doi.org/10.1016/j.coastaleng.2013.06.006
Phillips, M.S., Blenkinsopp, C.E., Splinter, K.D., Harley, M.D.,
Turner, I.L., 2019.
Modes of berm and beachface recovery
following stormreset: Observations using acontinuously
scanning lidar. J. Geophys. Res. 124, 720–736.
https://doi.org/10.1029/2018JF004895
Phillips, M.S., Harley, M.D., Turner, I.L., Splinter, K.D., Cox,
R.J., 2017.
Shoreline recovery on wave-dominated sandy
coastlines: the role of sandbar morphodynamics and
nearshore wave parameters. Mar. Geol. 385, 146–159.
https://doi.org/10.1016/j.margeo.2017.01.005
Ponce de León, S., Guedes Soares, C., 2008.
Sensitivity of
wave model predictions to wind fields in the Western
Mediterranean sea. Coast. Eng. 55(11), 920–929.
Roelvink, J.A., Brøker, J., 1993.
Cross-shore profile models.
Coast. Eng. 21, 163–191.
Roelvink, D., Costas, S., 2019.
Coupling nearshore and aeolian
processes: XBeach and duna process-based models.
Environ. Model. Software 115, 98–112.
https://doi.org/10.1016/j.envsoft.2019.02.010
Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de
Vries, J., McCall, R., Lescinski, J., 2009.
Modelling storm
impacts on beaches, dunes and barrier islands. Coast.
Eng. 56, 1133–1152.
https://doi.org/10.1016/j.coastaleng.2009.08.006
Sallenger, A.H.J., 2000.
Storm impact scale for barrier islands.
J. Coast. Res. 16, 890–895.
Schambach, L., Grilli, A.R., Grilli, S.T., Hashemi,. M.R., King,
J.W., 2018.
Assessing the impact of extreme storms on
barrier beaches along the Atlantic coastline: Application
to the southern Rhode Island coast. Coast. Eng.
133, 26–42.
https://doi.org/10.1016/j.coastaleng.2017.12.004
Sutherland, J., Peet, A.H., Soulsby, R.L., 2004.
Evaluating
the performance of morphological models. Coast. Eng.
51, 917–939.
https://doi.org/10.1016/j.coastaleng.2004.07.015
Splinter, K.D., Carley, J.T., Golshani, A., Tomlinson, R., 2014.
A relationship to describe the cumulative impact of storm
clusters on beach erosion. Coast. Eng. 83, 49–55.
https://doi.org/10.1016/j.coastaleng.2013.10.001
Splinter, K.D., Palmsten, M.L., 2012.
Modeling dune response
to an East Coast Low. Mar. Geol. 329–331, 46–57.
https://doi.org/10.1016/j.margeo.2012.09.005
Sztobryn, M., Stigge, H.-J., Wielbińska, D., Weidig, B., Stanisławczyk,
I., Kańska, A., Krzysztofik, K., Kowalska, B.,
Letkiewicz, B., and Mykita, M., 2005.
Storm Surges in
the Southern Baltic Sea (western and central parts).
Rostock Berichte des Bundesamtes für Seeschifffahrt
und Hydrographie, vol. 39, 74 pp.
Terefenko, P., Giza, A., Paprotny, D., Kubicki, A., Winowski,
M., 2018.
Cliff Retreat Induced by Series of Storms at
Międzyzdroje (Poland). J. Coastal Res., 85, 181–185.
https://doi.org/10.2112/SI85-037.1
Turner, I.L., Harley, M.D., Short, A.D., Simmons, J.A., Bracs,
M.A., Phillips, M.S., Splinter, K.D., 2016.
A multi-decade
dataset of monthly beach profile surveys and inshore
wave forcing at Narrabeen, Australia. Sci. Data, 3, 13.
https://doi.org/10.1038/sdata.2016.24
Valchev, N., Pilar, P., Cherneva, Z., Guedes Soares, C., 2004.
Set-up and validation of a third-generation wave model
for the Black Sea. Proc. 7th Int. Conf. “BLACK SEA
2004”, Sci. Tech. Univ. Varna, Bulgaria, 273–279.
van Dam, T., 2019.
Numerical Modelling of Beach Recovery
Following a Storm Event. PhD Thesis, Delft University
of Technology.
http://repository.tudelft.nl/
van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland,
J., Pan, S., Sierra, J.P., 2003.
The predictability of crossshorebed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models.
Coast. Eng. 47, 295–327.
https://doi.org/10.1016/S0378-3839(02)00120-5
Volpano, Ch.A., Zoet, L.K., Rawling, J.E., Theuerkauf, E.J.,
2022.
Measuring and modelling nearshore recovery of
an eroded beach in Lake Michigan, USA. J. Great Lakes
Res. 48(3), 633–644.
https://doi.org/10.1016/j.jglr.2022.03.012
Vousdoukas, M., Almeida, L., Ferreira, Ó., 2011.
Modelling
stor- m-induced beach morphological change in a mesotidal,
reflective beach using XBeach. J. Coastal Res. 64,
1916–1920.
Vousdoukas, M.I., Ferreira, Ó., Almeida, L.P., Pacheco, A.,
2012.
Toward reliable storm-hazard forecasts: XBeach
calibration and its potential application in an operational
early-warning system. Ocean Dynam. 62, 1001–1015.
https://doi.org/10.1007/s10236-012-0544-6
WAMDI Group, 1988.
The WAM model-a third generation
ocean wave prediction model. J. Phys. Oceanogr. 18,
1775–181.
Williams, J.J., Esteves, L.S., Rochford, L.A., 2015.
Modelling
storm responses on a high-energy coastline with XBeach.
Model. Earth Syst. Environ. 1, 3.
https://doi.org/10.1007/s40808-015-0003-8
Zawadzka-Kahlau, E., 1999.
Tendencje rozwojowe polskich
brzegów Bałtyku południowego, Gdańskie Towarzystwo Naukowe, Gdańsk, 147 pp.
Monsoonal patterns of wave reflection from rubble mound breakwater of Chabahar Bay
Oceanologia 2024, 66(3), 66306, 23 pp.
https://doi.org/10.5697/ECMX9318
Seyed Masoud Mahmoudof1,*, Amin Eyhavand-Koohzadi1,2, Ali Khosh Kholgh1,*
1Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran;
e-mail: m_mahmoudof@inio.ac.ir (S.M. Mahmoudof), a_khosh@inio.ac.ir (A. Khosh Kholgh)
2School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
*corresponding author
Keywords: Field measurements, Permeable structure, Bimodal wave climate, Seasonal variation, Shahid-Beheshti Port, Makran
Received 30 April 2024; revised 29 June 2024; accepted 3 July 2024.
Highlights
- The study investigates the monsoonal variations of the RMB of Chabahar Bay
- Swell waves exhibit higher reflection coefficients than sea waves
- Spectral periods Tm-1 and Tm-2 give more accurate predictions than mean periods
- Tm-2 is a more precise characteristic wave period than Tm-1 during the bimodal wave system
- Reflection coefficient during the summer monsoon is highly scattered
Abstract
This paper presents the results of a one-year field study on the monsoonal reflective response of the rubble mound breakwater (RMB) of Chabahar Bay, located on the northern coast of the Gulf of Oman, Iran. Measurements show that, in general, the correlation between the reflection coefficient and Iribarren number during the winter monsoon period is more remarkable than that of the summer monsoon period. The difference in wave reflection behavior during monsoonal periods is mainly due to the energy proportion of incoming sea and swell waves. Various characteristic wave periods by means of power- and hyperbolic-law prediction functions are explored to enhance the wave reflection prediction, highlighting the significant performance of negative-moment spectral periods Tm−1 and Tm−2 compared with peak and mean spectral periods. Statistical comparison of the performance of Tm−1 and Tm−2 shows that Tm−2 considerably improves the prediction accuracy for moderated energy waves with bimodal sea and swell climates originating from different directions in the winter monsoon and pre-summer monsoon months. However, the prediction improvement is insignificant for unimodal energetic waves observed during the summer monsoon months. Generally, using Tm−2 increases the accuracy of the preexisting equations in predicting the observations of this study.
References
Aboobacker, V. M., Rashmi, R., Vethamony, P., Menon, H.B.,
2011.
On the dominance of pre-existing swells over
wind seas along the west coast of India, Cont. Shelf.
Res., 31(16), 1701–1712.
https://doi.org/10.1016/j.csr.2011.07.010
Aboobacker, V.M., Shanas, P.R., 2018.
The climatology of
shamals in the Arabian Sea – Part 1: Surface winds, Int.
J. Climatol. 38(12), 4405–4416.
https://doi.org/10.1002/joc.5711
Altomare, C., Suzuki, T., Verwaest, T., 2020.
Influence of
directional spreading on wave overtopping of sea dikes
with gentle and shallow foreshores. Coast. Eng. 157,
103654.
https://doi.org/10.1016/j.coastaleng.2020.103654
Amrutha, M.M., Sanil Kumar, V., Sharma, S., Singh, J., Gowthaman, R., Kankara, R.S., 2015.
Characteristics of shallow water waves off the central west coast of India before, during and after the onset of the Indian summer monsoon. Ocean Eng. 107, 259–270.
https://doi.org/10.1016/j.oceaneng.2015.07.061
Andersen, T.L., 2006.
Hydraulic Response of Rubble Mound
Breakwaters Scale Effects – Berm Breakwaters. PhD
Thesis, Hydraulics and Coastal Engineering Laboratory,
Department of Civil Engineering, Aalborg University.
Aniel-Quiroga, Í., Vidal, C., Lara, J.L., González, M., 2019.
Pressures on a rubble-mound breakwater crown-wall
for tsunami impact. Coast. Eng. 152, 103522.
https://doi.org/10.1016/j.coastaleng.2019.103522
Anoop, T.R., Shanas, P.R., Aboobacker, V.M., Kumar, V.S., Nair,
L.S., Prasad, R., Reji, S., 2020.
On the generation and
propagation of Makran swells in the Arabian Sea. Int. J.
Climatol. 40(1), 585–593.
https://doi.org/10.1002/joc.6192
Barak, M.S., Kaliraman, V., 2019.
Reflection and transmission
of elastic waves from an imperfect boundary between
micropolar elastic solid half space and fluid saturated
porous solid half space. Mech. Adv. Mater. Struc.
26(14), 1226–1233.
https://doi.org/10.1080/15376494.2018.1432795
Barak, M.S., Kumari, M., Kumar, M., 2018.
Effect of local fluid
flow on the propagation of plane waves at an interface
of water/double-porosity solid with underlying uniform
elastic solid. Ocean Eng. 147, 195–205.
https://doi.org/10.1016/j.oceaneng.2017.10.030
Battjes, J.A., 1974. Surf Similarity. 14th ASCE Coast. Eng.
Conf., Copenhagen, Denmark.
Bourget, J., Zaragosi, S., Ellouz-Zimmermann, S., Ducassou,
E., Prins, M. A., Garlan, T., Lanfumey, V., Schneider, J.
L., Rouillard, P., and Giraudeau, J., 2010.
Highstand vs.
lowstand turbidite system growth in the Makran active
margin: Imprints of high-frequency external controls on
sediment delivery mechanisms to deep water systems.
Mar. Geol. 274(1–4), 187–208.
https://doi.org/10.1016/j.margeo.2010.04.005
Buccino, M., Calabrese, M., 2007.
Conceptual Approach for
Prediction of Wave Transmission at Low-Crested Breakwaters.
J. Waterw. Port Coast. Ocean Eng. 133(3), 213–224.
https://doi.org/doi:10.1061/(ASCE)0733-950X(2007)133:3(213)
Bruun, P., Gunbak, A.R., 1976.
New Design Principles for
Rubble Mound Structures. Coast. Eng. Proc. 1(15),
141.
https://doi.org/10.9753/icce.v15.141
Calhoun, R.J., 1971.
Field study of wave transmission through
a rubble-mound breakwater. Master Thesis, Naval Postgraduate
School, Monterey California, Publ. No. AD0721552.
https://apps.dtic.mil/sti/citations/AD0721552
Cao, D., Tan, W., Yuan, J., 2022.
Assessment of wave overtopping
risk for pedestrian visiting the crest area of coastal
structure. Appl. Ocean Res. 120, 102985.
https://doi.org/10.1016/j.apor.2021.102985
Chaichitehrani, N., Allahdadi, M.N., 2018.
Overview of wind
climatology for the Gulf of Oman and the northern Arabian
Sea. Am. J. Fluid Dynam. 8, 1–9.
Dattatri, J., Raman, H., Shankar, N.J., 1978.
Performance
Characteristics of Submerged Breakwaters. Coast. Eng.
Proc., Hamburg, Germany.
Davidson, M.A., Bird, P.A.D., Bullock, G.N., Huntley, D.A.,
1996.
A new non-dimensional number for the analysis
of wave reflection from rubble mound breakwaters.
Coast. Eng. 28(1–4), 93–120.
https://doi.org/10.1016/0378-3839(96)00012-9
Dekker, J., Caires, S., Van Gent, M.R.A., 2007.
Reflection of
non-standard wave spectra by sloping structures. 5th
Coastal Structures International Conference, Venice,
Italy.
Dı́az-Carrasco, P., 2023.
Hydraulic performance analysis
for homogeneous mound breakwaters: Application of
dimensional analysis and a new experimental technique.
Ocean. Eng. 286(Pt. 2), 115598.
https://doi.org/10.1016/J.OCEANENG.2023.115598
Dı́az-Carrasco, P., Eldrup, M.R., Lykke Andersen, T., 2021.
Advance in wave reflection estimation for rubble mound
breakwaters: The importance of the relative water depth.
Coast. Eng. 168, 103921.
https://doi.org/10.1016/j.coastaleng.2021.103921
Dong, Y., Zheng, Z., Ma, Y., Gao, J., Ma, X., Dong, G., 2023.
Numerical investigation on the mitigation of harbor
oscillations by periodic undulating topography. Ocean
Eng. 279, 114580.
Düing, W., 1970.
The Monsoon Regime of the Currents in
the Indian Ocean. East-West Center Press, Honolulu,
68 pp.
Eyhavand-Koohzadi, A., Badiei, P., 2021.
Laboratory experiments
on time-space conversion of wind waves in deep
water. Appl. Ocean. Res. 111, 102656.
https://doi.org/https://doi.org/10.1016/j.apor.2021.102656
Eyhavand-Koohzadi, A., Badiei, P., 2022.
Experimental study
on the growth and conversion of duration- and fetchlimited
wind waves in water of finite depth. Ocean. Eng.
266, 113020.
https://doi.org/10.1016/j.oceaneng.2022.113020
Galiatsatou, P., Makris, C., Prinos, P., 2018.
Optimized Reliability
Based Upgrading of Rubble Mound Breakwaters
in a Changing Climate. J. Mar. Sci. Eng. 6(3), 92.
https://www.mdpi.com/2077-1312/6/3/92
Gao, J., Zhou, X., Zang, J., Chen, Q., Zhou, L., 2018.
Influence
of offshore fringing reefs on infragravity period
oscillations within a harbor. Ocean Eng. 158, 286–298.
Gao, J., Zhou, X., Zhou, L., Zang, J., Chen, H., 2019.
Numerical
investigation on effects of fringing reefs on lowfrequency
oscillations within a harbor. Ocean Eng. 172,
86–95.
Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021.
Investigation
on the effects of Bragg reflection on harbor
oscillations. Coast. Eng. 170, 103977.
https://doi.org/https://doi.org/10.1016/j.coastaleng.2021.103977
Gao, J., Shi, H., Zang, J., Liu, Y., 2023.
Mechanism analysis on
the mitigation of harbor resonance by periodic undulating
topography. Ocean Eng. 281, 114923.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.114923
Gao, J., Hou, L., Liu, Y., Shi, H., 2024.
Influences of bragg
reflection on harbor resonance triggered by irregular
wave groups. Ocean Eng. 305, 117941.
Goda, Y., 2010.
Random seas and design of maritime structures.
Adv. Ser. Ocean Eng. Vol. 33, World Sci., 732 pp.
Haider, R., Ali, S., Hoffmann, G., Reicherter, K., 2023.
A
multi-proxy approach to assess tsunami hazard with a preliminary risk assessment: A case study of the Makran Coast, Pakistan. Mar. Geol. 459, 107032.
https://doi.org/10.1016/j.margeo.2023.107032
Han, X., Jiang, Y., Dong, S., 2022.
Wave forces on crown wall
of rubble mound breakwater under swell waves. Ocean.
Eng. 259, 111911.
https://doi.org/10.1016/j.oceaneng.2022.111911
Harry, M., Zhang, H., Lemckert, C., Colleter, G., Blenkinsopp,
C., 2018.
Observation of surf zone wave transformation
using LiDAR. Appl. Ocean. Res. 78, 88–98.
https://doi.org/10.1016/j.apor.2018.05.015
Hofland, B., Chen, X., Altomare, C., Oosterlo, P., 2017.
Prediction
formula for the spectral wave period Tm-1,0 on
mildly sloping shallow foreshores. Coast. Eng. 123, 21–28.
https://doi.org/10.1016/j.coastaleng.2017.02.005
Iglesias, G., Rabuñal, J., Losada, M.A., Pachón, H., Castro,
A., Carballo, R., 2008.
A virtual laboratory for stability
tests of rubble-mound breakwaters. Ocean Eng. 35(11–12),
1113–1120.
https://doi.org/10.1016/j.oceaneng.2008.04.014
Irı́as Mata, M., Van Gent, M.R.A., 2023.
Numerical modelling
of wave overtopping discharges at rubble mound breakwaters
using OpenFOAM®. Coast. Eng. 181, 104274.
https://doi.org/10.1016/j.coastaleng.2022.104274
Kamphuis, J.W., 2010.
Introduction to coastal engineering
and management. Adv. Ser. Ocean Eng. Vol. 30, World
Sci., 564 pp.
Karnan, C., Gautham, S., 2023.
Seasonal enhancement of
phytoplankton biomass in the southern tropical Indian
Ocean: Significance of meteorological and oceanography
parameters. Oceanologia 66(2), 196–219.
https://doi.org/10.1016/j.oceano.2023.10.003
Kober, F., Zeilinger, G., Ivy-Ochs, S., Dolati, A., Smit, J., and
Kubik, P. W., 2013.
Climatic and tectonic control on fluvial
and alluvial fan sequence formation in the Central
Makran Range, SE-Iran. Global Planet. Change 111,
133–149.
https://doi.org/10.1016/j.gloplacha.2013.09.003
Koley, S., Panduranga, K., Almashan, N., Neelamani, S., and
Al-Ragum, A., 2020.
Numerical and experimental modeling
of water wave interaction with rubble mound offshore
porous breakwaters. Ocean. Eng. 218, 108218.
https://doi.org/10.1016/j.oceaneng.2020.108218
Kor, K., Ershadifar, H., Ghazilou, A., and Koochaknejad,
E., 2021.
Seasonal variations, potential bioavailability,
and ecological risk of phosphorus species in the
coastal sediments of the Makran. Mar. Pollut. Bull.
173, 113125.
https://doi.org/10.1016/j.marpolbul.2021.113125
Koutrouveli, T.I., Dimas, A.A., 2020.
Wave and hydrodynamic
processes in the vicinity of a rubble-mound, permeable,
zero-freeboard break water. J. Mar. Sci. Eng.
8(3), 206.
https://doi.org/10.3390/jmse8030206
Krishna, P.S., Aboobacker, V.M., Ramesh, M., Nair, L.S., 2023.
Remotely induced storm effects on the coastal flooding
along the southwest coast of India. Oceanologia 65(3),
503–516.
https://doi.org/10.1016/j.oceano.2023.03.003
Kumar, R., Barak, M., 2007.
Wave propagation in liquidsaturated
porous solid with micropolar elastic skelton
at boundary surface. Appl. Math. Mech. 28(3), 337–349.
https://doi.org/10.1007/s10483-007-0307-z
Kumar, R., Gupta, V., Pathania, V., Kumar, R., Barak, M.S.,
2023.
Analysis of Waves at Boundary Surfaces at Distinct
Media with Nonlocal Dual-Phase-Lag. Proceedings
of the National Academy of Sciences, India Section
A: Physical Sciences, 93(4), 573–585.
https://doi.org/10.1007/s40010-023-00850-y
Lahiri, S.P., Vissa, N.K., 2022.
Assessment of Indian Ocean
upwelling changes and its relationship with the Indian
monsoon. Global Plant. Change 208, 103729.
https://doi.org/https://doi.org/10.1016/j.gloplacha.2021.103729
Lee, J.I., Shin, S., 2014.
Experimental study on the wave reflection
of partially perforated wall caissons with single
and double chambers. Ocean. Eng. 91, 1–10.
https://doi.org/10.1016/j.oceaneng.2014.08.008
Li, A.J., Liu, Y., Fang, H., Liu, X., 2022.
Wave scattering by a
periodic array of porous breakwaters. Appl. Ocean Res.
127, 103328.
https://doi.org/10.1016/j.apor.2022.103328
Li, D., Anis, A., Al Senafi, F., 2020.
Physical response of the
Northern Arabian Gulf to winter Shamals. J. Marine
Syst. 203, 103280.
https://doi.org/10.1016/j.jmarsys.2019.103280
Liu, Y., Li, S., Chen, S., Hu, C., Fan, Z., Jin, R., 2020.
Random
wave overtopping of vertical seawalls on coral reefs.
Appl. Ocean Res. 100, 102166.
https://doi.org/https://doi.org/10.1016/j.apor.2020.102166
Liu, Y., Li, S., Liao, Z., Liu, K., 2021.
Physical and numerical
modeling of random wave transformation and overtopping
on reef topography. Ocean Eng. 220, 108390.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.108390
Losada, M.A., Giménez-Curto, L.A., 1980.
Flow characteristics
on rough, permeable slopes under wave action.
Coast. Eng. 4, 187–206.
https://doi.org/10.1016/0378-3839(80)90019-8
Lykke Andersen, T., Burcharth, H.F., 2009.
Three-dimensional
investigations of wave overtopping on rubble mound
structures. Coast. Eng. 56(2), 180–189.
https://doi.org/10.1016/j.coastaleng.2008.03.007
Mahmoudof, S.M., Azizpour, J., 2020.
Field observation of
wave reflection from plunging cliff coasts of Chabahar.
Appl. Ocean. Res. 95, 102029–102029.
https://doi.org/10.1016/J.APOR.2019.102029
Mahmoudof, S.M., Hajivalie, F., 2021.
Experimental study of
hydraulic response of smooth submerged breakwaters
to irregular waves. Oceanologia 63(4), 448–462.
https://doi.org/10.1016/j.oceano.2021.05.002
Mahmoudof, S.M., Azizpour, J., Eyhavand-Koohzadi, A., 2021a.
Observation of infragravity wave processes near the
coastal cliffs of Chabahar (Gulf of Oman). Estuar. Coast.
Shelf Sci. 251, 107226.
https://doi.org/10.1016/j.ecss.2021.107226
Mahmoudof, S.M., Eyhavand-Koohzadi, A., Bagheri, M., 2021b.
Field study of wave reflection from permeable rubble
mound breakwater of Chabahar Port. Appl. Ocean Res.
114, 102786–102786.
https://doi.org/10.1016/J.APOR.2021.102786
Mahmoudof, S.M., Siadatmousavi, S.M., Seyedalipour, S.A.,
2021c.
Experimental study of bound triad interactions
across a dissipative surf zone under different wave breaking
conditions. Ocean Eng. 235, 109427.
https://doi.org/10.1016/j.oceaneng.2021.109427
Mahmoudof, S.M., Takami, M.L., 2022.
Numerical study of
coastal wave profiles at the sandy beaches of Nowshahr
(Southern Caspian Sea). Oceanologia 64(3), 457–472.
https://doi.org/https://doi.org/10.1016/j.oceano.2022.03.001
Mahmoudof, S.M., Eyhavand-Koohzadi, A., Kazeminezhad,
M.H., 2023.
Field investigation of spectral wave period 𝑇Tm−1,0 on shallow and very shallow foreshores of the southern Caspian Sea. Coast. Eng. 181, 104277.
https://doi.org/10.1016/j.coastaleng.2023.104277
Masselink, G., 1998.
Field investigation of wave propagation
over a bar and the consequent generation of secondary
waves. Coast. Eng. 33(1), 1–9.
https://doi.org/10.1016/S0378-3839(97)00032-X
Morrison, J.M., Codispoti, L.A., Gaurin, S., Jones, B., Manghnani,
V., Zheng, Z., 1998.
Seasonal variation of hydrographic
and nutrient fields during the US JGOFS Arabian
Sea Process Study. Deep-Sea Res. Pt. II 45(10–11),
2053–2101.
https://doi.org/10.1016/S0967- 0645(98)00063-0
Mostaghiman, A., Moghim, M.N., 2022.
An experimental
study of partly/hardly reshaping mass-armored doubleberm
breakwaters. Ocean Eng. 243, 110258.
https://doi.org/10.1016/j.oceaneng.2021.110258
Muttray, M., Oumeraci, H., Oever, E.T., 2006.
Wave reflection
and wave run-up at rubble mound breakwaters. 30th
International Conference, San Diego, California, USA.
Myrhaug, D., 2020. Some probabilistic properties of surf
parameter. Oceanologia 62(3), 395–401.
https://doi.org/10.1016/j.oceano.2020.02.003
Nassar, K., Mahmod, W.E., Tawfik, A., Rageh, O., Negm, A.,
and Fath, H., 2018.
Developing empirical formulas for
assessing the hydrodynamic behaviour of serrated and
slotted seawalls. Ocean Eng. 159, 388–409.
https://doi.org/10.1016/j.oceaneng.2018.04.048
Neelamani, S., Al-Salem, K., Rakha, K., 2007.
Extreme waves
for Kuwaiti territorial waters. Ocean Eng. 34(10),
1496–1504.
https://doi.org/10.1016/j.oceaneng.2006.08.013
Nguyen, N.M., Van, D.D., Le, D.T., Cong, S.D., Pham, N.T.,
Nguyen, Q., Tran, B., Wright, D.P., Tanim, A.H., Anh, D.T.,
2022.
Wave reduction efficiency for three classes of
breakwaters on the coastal Mekong Delta. Appl. Ocean.
Res. 129, 103362.
https://doi.org/10.1016/j.apor.2022.103362
Numata, A., 1976.
Laboratory Formulation For Transmission
And Reflection At Permeable Breakwaters Of Artificial
Blocks. Coast. Eng. Japan 19(1), 47–58.
https://doi.org/10.1080/05785634.1976.11924216
Oumeraci, H., Partenscky, H.W., 1990.
Wave-Induced Pore
Pressure in Rubble Mound Breakwaters. 22nd International
Conference on Coastal Engineering, Delft, The
Netherlands, July 2–6, 1990, 1334–1347.
https://doi.org/doi:10.1061/9780872627765.102
Peihong, Z., Dapeng, S., Hao, W., Yucheng, L., 2021.
Theoretical
investigation of wave reflection from partially
perforated caisson sitting on a rubble mound foundation.
Ocean Eng. 235, 109085.
https://doi.org/10.1016/j.oceaneng.2021.109085
Pedersen, T., Lohrmann, A., 2004.
Possibilities and limitations
of acoustic surface tracking. Oceans ’04 MTS/IEEE
Techno-Ocean ’04 (IEEE Cat. No.04CH37600), Kobe,
Japan.
Pedersen, T., Siegel, E., Wood, J., 2007.
Directional Wave
Measurements from a Subsurface Buoy with an Acoustic
Wave and Current Profiler (AWAC). Oceans 2007,
Vancouver, BC, Canada.
Postma, G.M., 1989.
Wave reflection from rock slopes under
random wave attack. Master thesis, University of
Technology Delft.
http://resolver.tudelft.nl/uuid:4c21a913-a78b-40d2-b690-a0184683434b
Pratola, L., Rinaldi, A., Molfetta, M.G., Bruno, M.F., Pasquali,
D., Dentale, F., Mossa, M., 2021.
Investigation on the
reflection coefficient for seawalls protected by a rubble
mound structure. J. Mar. Sci. Eng. 9, 937.
https://doi.org/10.3390/jmse9090937
Prizomwala, S.P., Vedpathak, C., Tandon, A., Das, A., Makwana,
N., Joshi, N., 2022.
Geological footprints of the
1945 Makran tsunami from the west coast of India. Mar.
Geol. 446(106773).
https://doi.org/10.1016/j.margeo.2022.106773
Radfar, S., Shafieefar, M., Akbari, H., Galiatsatou, P.A., Mazyak,
A.R., 2021.
Design of a rubble mound breakwater under
the combined effect of wave heights and water levels, under
present and future climate conditions. Appl. Ocean
Res. 112, 102711.
https://doi.org/10.1016/j.apor.2021.102711
Requejo, S., Vidal, C., and Losada, I.J., 2002.
Modelling of
wave loads and hydraulic performance of vertical permeable
structures. Coast. Eng. 46(4), 249–276.
https://doi.org/10.1016/S0378-3839(02)00072-8
Saket, A., Etemad-Shahidi, A., 2012.
Wave energy potential
along the northern coasts of the Gulf of Oman, Iran.
Renew. Energ. 40(1), 90–97.
https://doi.org/10.1016/j.renene.2011.09.024
Salauddin, M., Pearson, J.M., 2020.
Laboratory investigation
of overtopping at a sloping structure with permeable
shingle foreshore. Ocean. Eng. 197, 106866.
https://doi.org/10.1016/j.oceaneng.2019.106866
Samiksha, S.V., Vinodkumar, K., Vethamony, P., 2014.
Impact
of shamal winds and swells on the coastal currents
along the west coast of India. Indian J. Geo.-Mar. Sci.
43(7), 1236–1240.
Sanil Kumar, V., Singh, J., Pednekar, P., Gowthaman, R., 2011.
Waves in the nearshore waters of northern Arabian Sea
during the summer monsoon. Ocean. Eng. 38(2–3),
382–388.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2010.11.009
Seelig, W.N., Ahrens, J.P., 1981.
Estimation of wave reflection
and energy dissipation coefficients for beaches, revetments,
and breakwaters. U.S. Army Coastal Engineering
Research Center Technical Paper, 81-1.
Shamji, V.R., 2021.
Beach classifications in response to southwest
monsoon waves: A case study. Indian J. Geo.-Mar.
Sci. 50, 14–20.
http://nopr.niscpr.res.in/handle/123456789/56099
Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002.
The monsoon currents in the north Indian Ocean. Prog.
Oceanogr. 52(1), 63–120.
https://doi.org/https://doi.org/10.1016/S0079-6611(02)00024-1
Sierra, J.P., 2019.
Economic Impact of Overtopping and
Adaptation Measures in Catalan Ports Due to Sea Level
Rise. Water 11(7), 1440.
https://www.mdpi.com/2073-4441/11/7/1440
Sinha, M., Jha, S., Chakraborty, P., 2020.
Indian Ocean wind
speed variability and global teleconnection patterns.
Oceanologia 62(2), 126–138.
https://doi.org/10.1016/j.oceano.2019.10.002
Smith, S. L., Criales, M.M., Schack, C., 2020.
The large-bodied
copepods off Masirah Island, Oman: An investigation of
Southwest Monsoon onset and die-off. J. Marine Syst.
204, 103289.
https://doi.org/https://doi.org/10.1016/j.jmarsys.2019.103289
Smitha, A., Sankar, S., Satheesan, K., 2023.
Impact of tropical
Indian Ocean warming on the surface phytoplankton
biomass at two significant coastal upwelling zones in
the Arabian Sea. Dynam. Atmos. Oceans 104, 101401.
https://doi.org/https://doi.org/10.1016/j.dynatmoce.2023.101401
Sollitt, C.K., Cross, R.H., 1972.
Wave Transmission through
Permeable Breakwaters. 13th Conference on Coastal
Engineering, Vancouver, Canada.
Sreelakshmi, S., Bhaskaran, P.K., 2020.
Wind-generated
wave climate variability in the Indian Ocean using ERA-
5 dataset. Ocean Eng. 209, 107486.
https://doi.org/10.1016/j.oceaneng.2020.107486
Stagnitti, M., Lara, J.L., Musumeci, R.E., Foti, E., 2023.
Numerical
Modeling of Wave Overtopping of Damaged
And Upgraded Rubble-Mound Breakwaters. Ocean Eng.
280, 114798.
https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.114798
Sulisz, W., McDougal, W.G., Sollitt, C.K., 1989.
Wave interaction
with rubble toe protection. Ocean Eng. 16(5–6),
463–473.
https://doi.org/10.1016/0029-8018(89)90047-4
Uścinowicz, G., Uścinowicz, S., Szarafin, T., Maszloch, E.,
Wirkus, K., 2023.
Rapid coastal erosion, its dynamics
and cause–an erosional hot spot on the southern Baltic
Sea coast. Oceanologia 66(2), 250–266.
https://doi.org/10.1016/j.oceano.2023.12.002
Van der Meer, J.W., 1992.
Conceptual Design of Rubble
Mound Breakwaters. Design and Reliability of Coastal
Structures, 23rd ICCE in Venice, Venice, Italy.
Van der Meer, J.W., 1997.
Golfoploop en golfoverslag bij
dijken. Hydraulic Engineering Reports, H2458/H3051,
Delft Hydraulics, The Netherlands.
Van der Meer, J.W., Briganti, R., Zanuttigh, B., Wang, B.,
2005.
Wave transmission and reflection at low-crested
structures: Design formulae, oblique wave attack and
spectral change. Coast. Eng. 52(10–11), 915–929.
https://doi.org/10.1016/j.coastaleng.2005.09.005
Van der Meer, J.W., Daemen, I.F.R., 1994.
Stability and Wave
Transmission at Low-Crested Rubble-Mound Structures.
J. Waterw. Port Coast. Ocean Eng. 120(1).
https://doi.org/10.1061/(asce)0733-950x(1994)120:1(1)
Van Gent, M.R.A., 1999.
Wave run-up and wave overtopping
for double peaked wave energy spectra. Hydraulic Engineering
Reports, No. H3351, University of Technology,
Delft, The Netherlands.
Van Gent, M.R.A., 2001.
Wave Runup on Dikes with Shallow
Foreshores. J. Waterw. Port Coast. Ocean Eng. 127(5),
254–262.
https://doi.org/doi:10.1061/(ASCE)0733-950X(2001)127:5(254)
Van Gent, M.R.A., Buis, L., Van den Bos, J.P., Wüthrich, D.,
2023.
Wave transmission at submerged coastal structures
and artificial reefs. Coast. Eng. 184, 104344.
https://doi.org/10.1016/j.coastaleng.2023.104344
Vinod Kumar, K., Seemanth, M., Vethamony, P., Aboobacker,
V.M., 2014.
On the spatial structure and time evolution
of shamal winds over the Arabian Sea - a case study
through numerical modelling. Int. J. Climatol. 34(6),
2122–2128.
https://doi.org/10.1002/joc.3819
Wang, Y., Jiang, D., Li, Y., 2022.
Numerical research of harbor
oscillation influenced by vegetation. Ocean Eng. 244,
110255.
Wilson, K.W., Cross, R.H., 1972.
Scale Effects In Rubble-
Mound Breakwaters. 13th Conference on Coastal Engineering,
Vancouver, Canada.
Zanuttigh, B., Van der Meer, J.W., 2008.
Wave reflection
from coastal structures in design conditions. Coast. Eng.
55(10), 771–779.
https://doi.org/10.1016/j.coastaleng.2008.02.009
Zanuttigh, B., Van der Meer, J.W., Andersen, T.L., Lara, J.L.,
Losada, I.J., 2008.
Analysis of wave reflection from structures
with berms through an extensive database and
2DV numerical modelling. 31st International Conference
of Coastal Engineering, Hamburg, Germany.
Zhang, Y., Li, M., Zhao, X., Chen, L., 2020.
The effect of
the coastal reflection on the performance of a floating
breakwater-WEC system. Appl. Ocean. Res. 100,
102117.
https://doi.org/10.1016/j.apor.2020.102117
Zhao, W., Wei, K., Zhong, X., 2023.
Estimation of breaking
wave region based on coupled wave and storm surge
simulations of historical typhoons: A case study of Hangzhou
Bay. Ocean. Eng. 286 (Part 1), 115596.
https://doi.org/10.1016/J.OCEANENG.2023.115596
Zhao, Z., Wu, W., Wang, M., Du, Y., 2023.
Circulation structure
and dynamic characteristics of Western Tropical Indian
Ocean associated with monsoon transitions. Deep-Sea Res. Pt. I 191, 103943.
https://doi.org/10.1016/j.dsr.2022.103943