Oceanologia No. 66 (3) / 24


Original research article


Original research article



Mapping of morphological coastline changes based on aerial photographs and Discrete Fourier Transform, Hel Peninsula, Poland
Oceanologia 2024, 66(3), 66301, 15 pp.
https://doi.org/10.5697/ULWV7710

Barbara Stachurska
Institute of Hydro-Engineering, Polish Academy of Sciences, Kościerska 7, 80–328 Gdańsk, Poland;
e-mail: b.stachurska@ibwpan.gda.pl

Keywords: Aerial photography, Fourier analysis, Hel Peninsula, Coastline changes, Spatial analysis, Spectral analysis

Received 18 November 2022; revised 22 April 2024; accepted 22 May 2024.

Highlights

Abstract

The coast is a dynamic zone where constantly occurring hydrodynamic and morphodynamic processes affect the shape of the shore. The paper presents a method based on spatial and spectral analysis of changes in the coastline position based on data obtained from aerial photographs interpretation and Fourier analysis, on the example of the Hel Peninsula. The Hel Peninsula is one of the most interesting accumulation forms of the Polish Baltic coast, where dynamic changes of the seashore cause the occurrence of time-varying sections of accumulation-abrasion of the coastline. For the purpose of detecting the coastline changes, historical aerial photographs from the years 1947, 1957, 1963, 1991 were used. It was assumed that the over-40-year research period, which includes the obtained series of aerial photographs, would allow for a sufficient study of the long-term shoreline changes, which allow for distinguishing the length of characteristic coastline undulations. The quasi-wave signal of the shoreline changes obtained from the aerial photographs interpretation, after using Fourier analysis, enabled an effective and precise identification of the coastline undulation. The spatial analyses, showed that the Hel Peninsula is clearly divided into a part subjected to accumulation processes and an abraded one. Furthermore, the dynamics of coastline changes was determined, showing that the abrasive processes were intensifying. Moreover, spectral Fourier analysis allowed for the precise identification of coastline undulations with dominant lengths. The obtained results of spatial and spectral analysis indicate that abrasive-accumulation sections with a length of about 0.3–4.5 km dominate on the Hel Peninsula shoreline.

  References   ref

Anders, F., Byrnes, M., 1991. Accuracy of shoreline change rates as determined from maps and aerial photographs, Shore and Beach 59 (1), 17–26.

Appeaning Addo, K., Walkden, M., Mills, J.P., 2008. Detection, measurement, and prediction of shoreline recession in Accra, Ghana, ISPRS J. Photogramm. 63, 543–558. https://doi.org/10.1016/j.isprsjprs.2008.04.001

Basiński, T., Pruszak, Z., Tarnowska, M., Zeidler, R., 1993. Sea coast protection, IHE PAS, Gdańsk, 536 pp., (in Polish).

Boak, E.H. , Turner, I.L., 2005. Shoreline definition and detection: A Review, J. Coastal. Res. 21(4), 688–703. https://doi.org/10.2112/03-0071.1

Cohen, W.B, Kushla, J.D, Ripple, W.J, Garman, S.L., 1996. An introduction to digital methods in remote sensing of forested ecosystems: Focus on the Pacific Northwest, USA, Ecol. Envir. 20, 421–435. https://doi.org/10.1007/BF01203849

Collier P., Inkpen R., Fontana D., 2001. The use of historical photography in environmental studies, Cybergeo: Eur.J. Geogr. 184. https://doi.org/10.4000/cybergeo.4019

Constantino, D., Pepe, M., Dardanelli, G., Baiocchi, V., 2020. Using optical satellite and aerial imagery for automatic coastline mapping, Geographia Tech. 15(2), 171–190. https://doi.org/10.21163/GT_2020.152.17

Cooley, J.W., Tukey, J.W., 1965. An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19, 297–301.

Cracknell, A., 1999. Remote sensing techniques in estuaries and coastal zones – an update, Int. J. Remote Sens. 19(3), 485–496. https://doi.org/10.1080/014311699213280

Davis, J.D., Chojnacki, J.D., 2017. Two-dimensional discrete Fourier transform analysis of karst and coral reef morphologies, T GIS 21(13), 521–545. https://doi.org/10.1111/tgis.12277

Dellepiane, S., Laurentiis, R., Giordano, F., 2004.Coastline extraction from SAR images and a method for the evaluation of the coastline precision, Pattern Recogn. Lett. 25(13), 1461–1470. https://doi.org/10.1016/j.patrec.2004.05.022

Dolan, R., Hayden, B., Heywood, J., 1978. A new photogrammetric method for determining shoreline erosion, Coast. Eng. 2, 21–39. https://doi.org/10.1016/0378-3839(78)90003-0

Dolan, R., Hayden, B., May, S., 1983. Erosion of the US shorelines, [in:] Erosion of the US shorelines, Komar, P.D. (Ed.), CRC Handbook of Coastal Processes and Erosion, CRC Press, Boca Raton FL, 285–299.

Dubrawski, R., 2000. The impact of artificial beach replenishment of sea shores on the coastal zone of the Hel Peninsula in the period 1989–1997, Sci. Publ. Dept. Maritime Institute, Gdańsk-Szczecin, 23–29, (in Polish).

Dudgeon, D.E., Mersereau, R.M., 1983. Multidimensional Digital Signal Processing, Prentice-Hall Signal Processing Ser., Prentice Hall, Englewood Cliffs, 406 pp.

Ferreira, O., Garcia,T., Matias, A., Taborda, R., Dias, J.A., 2006. An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores, Cont. Shelf. Res. 26, 1030–1044. https://doi.org/10.1016/j.csr.2005.12.016

Furmańczyk, K., 1994. Contemporary development of the coastal zone of the tidal sea in the light of remote sensing research on the Baltic coast, Szczecin Univ. Press, Szczecin, 147 pp., (in Polish).

Furmańczyk, K., Musielak, S., 1993. Analysis of changes and forecast of threats to the Hel Peninsula in the light of remote sensing research, Inżynieria Morska i Geotechnika 1/1993, 351–362, (in Polish).

Gehrmann, A., Harding, Ch., 2018. Geomorphological Mapping and Spatial Analyses of an Upper Weichselian Glacitectonic Complex Based on LiDAR Data, Jasmund Peninsula (NE Rügen), Germany, Geosciences 8(208), 2–24. https://doi.org/10.3390/geosciences8060208

Hughes, M.L., McDowell, P.F., Marcus, W.A., 2006. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS, Geomorphology 74, 1–16. https://doi.org/10.1016/j.geomorph.2005.07.001

Idier, D., Falques. A., 2014. How kilometric sandy shoreline undulations correlate with wave and morphology characteristics: Preliminary analysis on the Atlantic coast of Africa, Advances in Geosciences 39, 55–60. https://doi.org/10.5194/adgeo-39-55-2014

Jensen, J., 2000. Remote sensing of the environment: An Earth resource perspective, Prentice-Hall, 592 pp.

Kaczmarek, L., Ostrowski, R., Skaja, M., Szmytkiewicz, M., 1998. Mathematical modeling of seashore changes at the base of the Hel Peninsula, taking into account artificial replenishment, Inżynieria Morska i Geotechnika 1/1998, 13–25, (in Polish).

Khairulbahri, M., 2022. The qualitative analysis of the nexus dynamics in the Pekalongan coastal area, Indonesia, Sci. Rep. 12, 11391. https://doi.org/10.1038/s41598-022-15683-9

Królikowski, L., Strzelecki, W., 1969. Characteristics of the sands of coastal dunes, Sylwian 12, 21–29, (in Polish).

Larson, M., Capobianco, M., Jansen, H., Rózyński, G., Southgate, H.N., Stive, M., Wijnberg, K.M., Hulscher, S., 2003. Analysis and modeling of field data on coastal morphological evolution over yearly and decadal time scales. Part 1: background and linear techniques, J. Coastal. Res. 19(4), 760–775.

List, J., Farris, A., 1999. Large-scale shoreline response to storms and fair weather, Proc. Coastal Sediments 99, Long Island, New York, 1324–1337.

Liu, H., Jezek, C., 2004. Automated Extraction of Coastline from Satellite Imagery by Integrating Canny Edge Detection and Locally Adaptive Thresholding Methods, Int. J. Remote Sens. 25, 937–958. https://doi.org/10.1080/0143116031000139890

Moore, L.J., 2000. Shoreline mapping techniques, J. Coastal Res., 16(1), 111–124.

Morgan, E.L., Gergel, S., Coops, N., 2010. Aerial photography: A rapidly evolving tool for ecological management, Bioscience 60(1), 47–59. https://doi.org/10.1525/bio.2010.60.1.9

Overton, M., Fisher, J., 1996. Shoreline analysis using digital photogrammetry, Proc. 25th Int. Conf. Coastal Eng. (Orlando, Florida), 3750–3761.

Paine, D., Kiser J., 2012. Aerial Photography and Image Interpretation, John Wiley & Sons, 648 pp.

Pelczar, M., Nejczew, P., Mielczarski, A., 1990. Cartometric analysis of the shore-line changes on the eastern part of the Polish Baltic coast in the last century, Rozprawy Hydrotechniczne, vol. 51, 69–113, (in Polish).

Prošek, A., Leskovar, M., 2015. Use of fast Fourier transform for sensitivity analysis, [in:] Fourier Transform – SignalProcessing and Physical Sciences, Salih, S.M. (Ed.), In-Tech Open, London, 227 pp. https://doi.org/10.5772/59769

Rayner, J.N., 1972. The application of harmonic and spectral analysis to the study of terrain, [in:] Spatial Analysis in Geomorphology, Chorley, R.J. (Ed.), Methuen, London, UK, 283–302.

Ricard, Y., Froidevaux, C., Simpson, R., 1987. Spectral analysis of topography and gravity in the Basin and Range Province, Tectonophysics 133, 175–187.

Shoshany, M., Degani, A., 1992. Shoreline detection by digital image processing of aerial photography, J. Coastal Res. 8(1), 29–34.

Stachurska, B., 2012. Analysis of changes in the position of the Hel Peninsula coastline based on aerial photographs from 1947–1991, Inżynieria Morska i Geotechnika 33(4), 541–542, (in Polish).

Spagnolo, M., Bartholomaus, T.C., Clark, C.D., Stokes, C.R., Atkinson, N., Dowdeswell, J.A., Ely, J.C., Graham, A.G.C., Hogan, K.A., King, E.C., Larter R.D., Livingstone S.J., Pritchard H.D., 2017. The periodic topography of ice stream beds: Insights from the Fourier spectra of megascale glacial lineations, J. Geophys. Res.-Earth 122,1355–1373. https://doi.org/10.1002/2016JF004154

Tomczak, A., 1995. Geological structure and evolution of the Polish coastal zone, J. Coastal Res., 22, 15–31. Tuominen, S., Pekkarinen, A., 2004. Local radiometric correction of digital aerial photographs for multisource forest inventory, Remote Sens. Environ. 89, 72–82. https://doi.org/10.1016/j.rse.2003.10.005

Urbański, J., 2001. Cartographic modeling of the coastal zone of the sea, Gdańsk University Press, Gdańsk, (in Polish).

Uścinowicz, Sz., Kramarska, R., Kaulbarsz, D., Jurys, L., Frydel, J., Przezdziecki, P., Jedliński, W., 2014. Baltic Sea coastal erosion; a case study from the Jastrzębia Góra region, Geologos 20(4), 259–268. https://doi.org/10.2478/logos-2014-0018

Yang, J., Seo, D., Lim, H., Choi, Ch., 2010. An analysis of coastal topography and land cover changes at Haeundae Beach, South Korea, Acta Astronaut. 67, 1280–1288. https://doi.org/10.1016/j.actaastro.2010.06.013

Zawadzka-Kahlau, E., 1999. Development tendencies of the Polish shores of the South Baltic Sea, Gdańsk Science Association, Gdańsk, 147 pp., (in Polish).

full, complete article - PDF


Revisiting wave friction factors for rough turbulent flow
Oceanologia 2024, 66(3), 66302, 8 pp.
https://doi.org/10.5697/NMCX3016

Dag Myrhaug1,*, Hong Wang2, Lars Erik Holmedal1
1Department of Marine Technology, Norwegian University of Science and Technology (NTNU), Otto Nielsens vei 10, NO–7491 Trondheim, Norway;
e-mail: dag.myrhaug@ntnu.no (D. Myrhaug)
2Hydrodynamics, MetOcean & SRA, DNV AS, NO–1322 Høvik, Norway
*corresponding author

Keywords: Seabed shear stress, Rough turbulent flow, Ocean surface waves, Coastal zones

Received 3 October 2022; revised 3 May 2024; accepted 22 May 2024.

Highlights

Abstract

The wave friction factor 𝑓𝑤 and the phase lead of the seabed shear stress over the free stream velocity 𝜑 for rough turbulent flow are revisited by utilizing the similarity theory used by Myrhaug (1989). Results are obtained for 𝑓𝑤 and 𝜑 by determining the similarity coefficients using the Dixen et al. (2008) data for large bed roughness. Comparisons are made with other experimental data and wave friction factor formulae. As a result, an approximation for 𝑓𝑤 by disregarding the phase 𝜑 is recommended covering a wide range of amplitude-to-roughness ratios.

  References   ref

Bagnold, R.A., 1946. Motion of waves in shallow water. Interaction between waves and sand bottoms, Proc. R. Soc., Ser. A 187, 1–15. https://doi.org/10.1098/rspa.1946.0062

Christoffersen, J.B., Jonsson, I.G., 1985. Bed friction and dissipation in a combined current and wave motion, Ocean Eng. 12(5), 387–423. https://doi.org/10.1016/0029-8018(85)90002-2

Dixen, M., Hatipoglu, F., Sumer, B.M., Fredsøe, J., 2008. Wave boundary layer over a stone-covered bed, Coast. Eng. 55(1), 1–20. https://doi.org/10.1016/j.coastaleng.2007.06.005

Fredsøe, J., Deigaard, R., 1992. Mechanics of Coastal Sediment Transport, World Scientific, Singapore, 369 pp.

Fuhrman, D.R., Schløer, S., Sterner, J., 2013. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes, Coast. Eng. 73, 151–166. https://doi.org/10.1016/j.coastaleng.2012.11.001

Gill, A.E., 1982. Atmosphere – Ocean Dynamics, Academic Press, New York, 662 pp.

Grant, W.D., Madsen, O.S., 1986. The continental–shelf bottom boundary layer, Annu. Rev. Fluid Mech. 18, 265–305. https://doi.org/10.1146/annurev.fl.18.010186.001405

Jensen, B.L., Sumer, B.M., Fredsøe, J., 1989. Turbulent oscillatory boundary layers at high Reynolds numbers, J. Fluid Mech. 206, 265–297. https://doi.org/10.1017/S0022112089002302

Jonsson, I.G., Carlsen, N.A., 1976. Experimental and theoretical investigation in an oscillatory turbulent boundary layer, J. Hydraulic Res. 14(1), 45–60. https://doi.org/10.1080/00221687609499687

Kamphuis, J.W., 1975. Friction factor under oscillatory waves, ASCE J. Waterw., Harbors, Coastal Eng. Div. 101(WW2), 135–144. https://doi.org/10.1061/AWHCAR.0000276

Myrhaug, D., 1989. A rational approach to wave friction coefficients for rough, smooth and transitional turbulent flow, Coast. Eng. 13(1), 11–21. https://doi.org/10.1016/0378-3839(89)90030-6

Myrhaug, D., Fyfe, A.J., Reed, K., 1988. Wave boundary layers in large scale laboratory experiments, Ocean Eng. 15(4), 373–378. https://doi.org/10.1016/0029-8018(88)90052-2

Myrhaug, D., Lambrakos, K.F., Slaattelid, H., 1992. Wave boundary layer in measurements near the seabed, Coast. Eng. 18(1–2), 153–181. https://doi.org/10.1016/0378-3839(92)90009-1

Nielsen, P., 1992. Coastal Bottom Boundary Layers and Sediment Transport, World Scientific, Singapore, 324 pp.

Schlichting, H., 1979. Boundary – Layer Theory, 7th edn., Mc Graw-Hill, New York, N.Y., 817 pp.

Simons, R., Myrhaug, D., Thais, L., Chapalain, G., Holmedal, L.E., MacIver, R., 2000. Bed friction in combined wavecurrent flows, Proc. 27th Int. Conf. Coast. Eng., Sydney, Australia.

Sleath, J.F.A., 1987. Turbulent oscillatory flow over rough beds, J. Fluid Mech. 182, 369–409. https://doi.org/10.1017/S0022112087002374

Sleath, J.F.A., 1991. Velocities and shear stresses in wavecurrent flows, J. Geophys. Res. 96(C8), 15237–15244. https://doi.org/10.1019/91JC01458

Soulsby, R.L., 1983. The bottom boundary layer of shelf seas, [in:] Physical oceanography of coastal and shelf seas, B. Johns (ed.), Elsevier, New York, N.Y., 189–266.

Soulsby, R., 1997. Dynamics of Marine Sands: A Manuel for Practical Applications, Thomas Telford, London, UK, 249 pp.

Sumer, B.M., Fuhrman, D.R., 2020. Turbulence in Coastal and Civil Engineering, World Scientific, Singapore, 731 pp.

Sumer, B.M., Jensen, B.L., Fredsøe, J., 1987. Turbulence in oscillatory boundary layers, [in:] Advances in Turbulence, Comte-Bellot and Mathieu (eds.), Springer- Verlag, Berlin, 556–567.

Swart, D.H., 1974. Offshore sediment transport and equilibrium beach profiles, Delft Hydraulics Laboratory, Publ. No. 131, Delft, The Netherlands.
full, complete article - PDF


Long-term responses of phytoplankton biomass to the ocean surface variables in the central parts of the Arabian Sea and the Bay of Bengal
Oceanologia 2024, 66(3), 66303, 20 pp.
https://doi.org/10.5697/DMDO7507

Chinnadurai Karnan*, Sreedharan Gautham, Soolamkandath Variem Sandhya, Shajahan Shahin
CSIR – National Institute of Oceanography, Dona Paula, Goa, India;
e-mail: karnanc@nio.org (C. Karnan)
*corresponding author

Keywords: Chlorophyll a, Sea surface temperature, Sea level anomaly, Meridional currents, Arabian Sea, Bay of Bengal

Received 8 February 2023; revised 12 May 2024; accepted 22 May 2024.

Highlights

Abstract

The northern Indian Ocean has been warming steadily for over a half-century, especially the north-western Indian Ocean. It is widely reported that the increasing sea surface temperature in the global oceans decreases phytoplankton biomass and productivity. The impacts of long-term variations in the sea surface properties on the phytoplankton biomass (chlorophyll a) are least studied in the northern Indian Ocean. In this study, we have retrieved satellite, model, and ARGO float data sets to investigate the long-term variations in the distributions and trends of major oceanic variables for a better understanding of the respective changes that occurred in chlorophyll a concentration in the central regions of the Arabian Sea (AS) and the Bay of Bengal (BB). We have selected variables such as sea surface temperature (SST), sea surface salinity (SSS), photosynthetically available radiation (PAR), euphotic depth (ZEU), mixed layer depth (MLD), wind speed, mean sea level anomaly (MSLA), surface currents, etc., to relate with chlorophyll a. We found significant increasing trends in SST and positive-MSLA in both basins, and the chlorophyll a was decreased in the AS but contrastingly increased in the BB. Further data analysis revealed the possible reasons, such as seasonal changes in mean sea level anomaly and meridional currents, for the increasing trend of chlorophyll a in the central Bay of Bengal. The northward flow of the meridional currents during the southwest monsoon (SWM), transports the nutrient-rich water from the coastal upwelling zone of the southwest coast of India to the southern and central BB, and enhances chlorophyll a. Contrastingly, the southward flow of low-saline and nutrient-depleted Bay of Bengal water reduces the chlorophyll a. In addition, the large area of cold-core eddies found during the NEM enhanced the chlorophyll a in the central BB. Though contrasting trends between both basins in chlorophyll a distribution were found, the mean concentration of chlorophyll a in the northern Indian Ocean decreases. The present study signifies the importance of monsoon currents and eddies in regulating the chlorophyll a biomass and primary productivity in the AS and BB.

  References   ref

Aksnes, D.L., Ohman, M.D., 2009. Multi-decadal shoaling of the euphotic zone in the southern sector of the California Current System, Limnol. Oceanogr. 54, 1272–1281.

Albin, K.J., Jyothibabu, R., Alok, K.T., Santhikrishnan, S., Sarath, S., Sudheesh, V., Sherin, C.K., Balachandran, K.K., Devi, C.R.A., Gupta, G.V.M., 2022. Distinctive phytoplankton size responses to the nutrient enrichment ofcoastal upwelling and winter convection in the eastern Arabian Sea. Prog. Oceanogr. 203, 102779.

Anil, A.C., Desai, D.V., Khandeparker, L., Krishnamurthy, V., Mapari, K., Mitbavkar, S., Patil, J.S., Sarma, V., Sawant, S.S., 2021. Short term response of plankton community to nutrient enrichment in central eastern Arabian Sea: Elucidation through mesocosm experiments, J. Environ. Manage. 288, 112390.

Araujo, M.B., Rahbek, C., 2006. How does climate change affect biodiversity?, Science 313, 1396–1397. Banse, K., 1968. Hydrography of the Arabian Sea Shelf of India and Pakistan and effects on demersal fishes, Deep- Sea Res. 15, 45–79. https://doi.org/10.1016/0011-7471(68)90028-4

Batten, S.D., Crawford, W.R., 2005. The influence of coastal origin eddies on oceanic plankton distributions in the eastern Gulf of Alaska, Deep-Sea Res. Pt II 52, 991–1009.

Behrenfeld, M.J., Boss, E., Siegel, D.A., Shea, D.M., 2005. Carbon-based ocean productivity and phytoplankton physiology from space, Glob. Biogeochem. Cy. 19.

Behrenfeld, M.J., O’Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., Milligan, A.J., Falkowski, P.G., Letelier, R.M., Boss, E.S., 2006. Climate-driven trends in contemporary ocean productivity, Nature 444, 752–755.

Boyce, D.G., Lewis, M.R., Worm, B., 2010. Global phytoplankton decline over the past century, Nature 466, 591–596.

Calbet, A., Sazhin, A.F., Nejstgaard, J.C., Berger, S.A., Tait, Z.S., Olmos, L., Sousoni, D., Isari, S., Martinez, R.A., Bouquet, J.-M., 2014. Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency, PloS One 9, e94388.

Chen, X., Pan, D., Bai, Y., He, X., Wang, T., 2014. Are the trends in the surface chlorophyll opposite between the South China Sea and the Bay of Bengal?, [in:] Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions Conference Proceedings 2014, SPIE, 270–277.

Chinnadurai, K., Retnamma, J., Nagarathinam, A., Subramanian, P.R., Singaram, P., Shoba, S., 2021. Microplankton size structure induced by a warm-core eddy in the western Bay of Bengal: Role of Trichodesmium abundance, Oceanologia 63(3), 283–300. https://doi.org/10.1016/j.oceano.2021.02.003

Chowdhury, M., Biswas, H., Mitra, A., Silori, S., Sharma, D., Bandyopadhyay, D., Shaik, A.U.R., Fernandes, V., Narvekar, J., 2021. Southwest monsoon-driven changes in the phytoplankton community structure in the central Arabian Sea (2017–2018): After two decades of JGOFS, Prog. Oceanogr. 197, 102654.

Coghlan, A., 2018. A little book of R for time series, Available online at: https://buildmedia.readthedocs.org/media/pdf/a-little-book-of-r-for-time-series/latest/a-little-book-of-r-for-time-series.pdf

Dalpadado, P., Arrigo, K.R., van Dijken, G.L., Gunasekara, S.S., Ostrowski, M., Bianchi, G., Sperfeld, E., 2021. Warming of the Indian Ocean and its impact on temporal and spatial dynamics of primary production, Prog. Oceanogr. 198, 102688.

Dandapat, S., Chakraborty, A., 2016. Mesoscale eddies in the Western Bay of Bengal as observed from satellite altimetry in 1993–2014: statistical characteristics, variability and three-dimensional properties, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 5044–5054.

Doney, S.C., 2006. Plankton in a warmer world, Nature 444, 695–696.

Falkowski, P.G., Fenchel, T., Delong, E.F., 2008. The microbial engines that drive Earth’s biogeochemical cycles, Science 320, 1034–1039.

Feng, M., Majewski, L.J., Fandry, C.B., Waite, A.M., 2007. Characteristics of two counter-rotating eddies in the Leeuwin Current system off the Western Australian coast, Deep Sea Res. Pt. II 54, 961–980. https://doi.org/10.1016/j.dsr2.2006.11.022

Friendly, M., 2002. Corrgrams: Exploratory displays for correlation matrices, Am. Stat. 56, 316–324. Giorgi, F., 2005. Climate change prediction, Clim. Change 73, 239–265.

Goes, J.I., Thoppil, P.G., Gomes, H. do R., Fasullo, J.T., 2005. Warming of the Eurasian landmass is making the Arabian Sea more productive, Science 308, 545–547.

Gopalakrishna, V.V., Murty, V.S.N., Sengupta, D., Shenoy, S., Araligidad, N., 2002. Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991, Cont. Shelf Res. 22, 791–802. https://doi.org/10.1016/S0278-4343(01)00084-X

Gregg, W.W., Casey, N.W., 2007. Modeling coccolithophores in the global oceans, Deep Sea Res. Pt. II 54, 447–477. https://doi.org/10.1016/j.dsr2.2006.12.007

Gregg, W.W., Rousseaux, C.S., 2019. Global ocean primary production trends in the modern ocean color satellite record (1998–2015), Environ. Res. Lett. 14, 124011.

Guinehut, S., Le Traon, P.Y., Larnicol, G., Philipps, S., 2004. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields-a first approach based on simulated observations, J. Marine Syst. 46, 85–98.

Hosoda, S., Ohira, T., Sato, K., Suga, T., 2010. Improved description of global mixed-layer depth using Argo profiling floats, J. Oceanogr. 66, 773–787. https://doi.org/10.1007/s10872-010-0063-3

Huot, Y., Brown, C.A., Cullen, J.J., 2005. New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products, Limnol. Oceanogr. Methods 3, 108–130.

Jiang, R., Wang, Y.-S., 2018. Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea, Oceanologia 60 (1), 32–51.

Jorgensen, E.G., 1968. The adaptation of plankton algae: II. Aspects of the temperature adaptation of Skeletonema costatum, Physiol. Plant. 21, 423–427.

Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Karnan, C., Lallu, K.R., Vinayachandran, P.N., 2018. Response of phytoplankton to heavy cloud cover and turbidity in the northern Bay of Bengal, Nature Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-29586-1

Jyothibabu, R., Karnan, C., Arunpandi, N., Santhi Krishnan, S., Balachandran, K.K., Sahu, K.C., 2021. Significantly dominant warm-core eddies: An ecological indicator of the basin-scale low biological production in the Bay of Bengal, Ecol. Indic. 121, 107016. https://doi.org/10.1016/j.ecolind.2020.107016

Jyothibabu, R., Madhu, N.V., Habeebrehman, H., Jayalakshmy, K.V., Nair, K.K.C., Achuthankutty, C.T., 2010. Reevaluation of “paradox of mesozooplankton” in the eastern Arabian Sea based on ship and satellite observations, J. Marine Syst. 81, 235–251.

Jyothibabu, R., Vinayachandran, P.N., Madhu, N.V., Robin, R.S., Karnan, C., Jagadeesan, L., Anjusha, A., 2015. Phytoplankton size structure in the southern Bay of Bengal modified by the Summer Monsoon Current and associated eddies: Implications on the vertical biogenic flux, J. Marine Syst. 143, 98–119. https://doi.org/10.1016/j.jmarsys.2014.10.018

Keen, T.R., Kindle, J.C., Young, D.K., 1997. The interaction of southwest monsoon upwelling, advection and primary production in the northwest Arabian Sea, J. Marine Syst. 13, 61–82.

Kerr, R.A., 2012. Experts agree global warming is melting the world rapidly, Science 338, 1138.

Khan, T.M.A., Quadir, D.A., Murty, T.S., Sarker, M.A., 2004. Seasonal and interannual sea surface temperature variability in the coastal cities of Arabian Sea and Bay of Bengal, Nat. Hazards 31, 549–560.

Killick, R., Fearnhead, P., Eckley, I.A., 2012. Optimal detection of changepoints with a linear computational cost, J. Am. Stat. Assoc. 107, 1590–1598.

Kumar, G.S., Prakash, S., Ravichandran, M., Narayana, A.C., 2016. Trends and relationship between chlorophyll-a and sea surface temperature in the central equatorial Indian Ocean, Remote Sens. Lett. 7, 1093–1101. https://doi.org/10.1080/2150704X.2016.1210835

Lee, Z., Weidemann, A., Kindle, J., Arnone, R., Carder, K.L., Davis, C., 2007. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing, J. Geophys. Res.-Oceans 112. https://doi.org/10.1029/2006JC003802

Lewandowska, A.M., Hillebrand, H., Lengfellner, K., Sommer, U., 2014. Temperature effects on phytoplankton diversity – the zooplankton link, J. Sea Res. 85, 359–364.

Li, H., Xu, F., Zhou, W., Wang, D., Wright, J.S., Liu, Z., Lin, Y., 2017. Development of a global gridded Argo data set with Barnes successive corrections, J. Geophys. Res.-Oceans 122, 866–889. https://doi.org/10.1002/2016JC012285

Liu, M., Liu, X., Ma, A., Li, T., Du, Z., 2014. Spatio-temporal stability and abnormality of chlorophyll-a in the Northern South China Sea during 2002–2012 from MODIS images using wavelet analysis, Cont. Shelf Res. 75, 15–27.

Lotliker, A.A., Baliarsingh, S.K., Sahu, K.C., Kumar, T.S., 2020. Long-term chlorophyll-a dynamics in tropical coastal waters of the western Bay of Bengal, Environ. Sci. Pollut. Res. 27, 6411–6419.

Luo, J.-J., Sasaki, W., Masumoto, Y., 2012. Indian Ocean warming modulates Pacific climate change, Proc. Natl. Acad. Sci. 109, 18701–18706.

Ma, C., Zhao, J., Ai, B., Sun, S., Zhang, G., Huang, W., Wang, G., 2021. Assessing responses of phytoplankton to consecutive typhoons by combining Argo, remote sensing and numerical simulation data, Sci. Total Environ. 790, 148086.

Madhupratap, M., Gopalakrishnan, T.C., Haridas, P., Nair, K.K.C., Aravindakshan, P.N., Padmavati, G., Paul, S., 1996. Lack of seasonal and geographic variation in mesozooplankton biomass in the Arabian Sea and its structure in the mixed layer, Curr. Sci. 17(11), 863–868.

Mahadevan, A., Jaeger, G.S., Freilich, M., Omand, M.M., Shroyer, E.L., Sengupta, D., 2016. Freshwater in the Bay of Bengal: Its fate and role in air-sea heat exchange, Oceanography 29, 72–81.

McCulloch, M.T., Winter, A., Sherman, C.E., Trotter, J.A., 2024. 300 years of sclerosponge thermometry shows global warming has exceeded 1.5°C, Nat. Clim. Change° 14, 171–177. https://doi.org/10.1038/s41558-023-01919-7

Miranda, J., Baliarsingh, S.K., Lotliker, A.A., Sahoo, S., Sahu, K.C., Kumar, T.S., 2020. Long-term trend and environmental determinants of phytoplankton biomass in coastal waters of northwestern Bay of Bengal, Environ. Monit. Assess. 192, 1–13.

Mishra, A.K., Dwivedi, S., Das, S., 2019. Role of Arabian Sea warming on the Indian summer monsoon rainfall in a regional climate model, Int. J. Climatol. 40, 2226–2238.

Mohan, S., Mishra, S.K., Sahany, S., Behera, S., 2021. Longterm variability of Sea Surface Temperature in the Tropical Indian Ocean in relation to climate change and variability, Glob. Planet. Change 199, 103436.

Montagnes, D.J.S., Franklin, M., 2001. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms, Limnol. Oceanogr. 46, 2008–2018.

Murphy, G.E.P., Romanuk, T.N., Worm, B., 2019. Cascading effects of climate change on plankton community structure, Ecol. Evol. 10, 2170–2181.

Prakash, P., Prakash, S., Rahaman, H., Ravichandran, M., Nayak, S., 2012. Is the trend in chlorophyll-a in the Arabian Sea decreasing?, Geophys. Res. Lett. 39.

Prakash, S., Ramesh, R., 2007. Is the Arabian Sea getting more productive?, Curr. Sci. 667–671.

Pramanik, S., Sil, S., Gangopadhyay, A., Singh, M.K., Behera, N., 2020. Interannual variability of the Chlorophyll a concentration over Sri Lankan Dome in the Bay of Bengal, Int. J. Remote Sens. 41, 5974–5991.

Prasad, T.G., 2004. A comparison of mixed-layer dynamics between the Arabian Sea and Bay of Bengal: Onedimensional model results, J. Geophys. Res.-Oceans 109. https://doi.org/10.1029/2003JC002000

Prasanna Kumar, S., Madhupratap, M., Kumar, M.D., Gauns, M., Muraleedharan, P.M., Sarma, V., De Souza, S.N., 2000. Physical control of primary productivity on a seasonal scale in central and eastern Arabian Sea, J. Earth Syst. Sci. 109, 433–441.

Prasanna Kumar, S., Muraleedharan, P.M., Prasad, T.G., Gauns, M., Ramaiah, N., De Souza, S.N., Sardesai, S., Madhupratap, M., 2002. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea?, Geophys. Res. Lett. 29, 88-1-88-4.

Prasanna Kumar, S., Narvekar, J., Nuncio, M., Kumar, A., Ramaiah, N., Sardessai, S., Gauns, M., Fernandes, V., Paul, J., 2010. Is the biological productivity in the Bay of Bengal light limited?, Curr. Sci. 98, 1331–1339.

Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., De Souza, S.N., Gauns, M., Ramaiah, N., Madhupratap, M., 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?, Geophys. Res. Lett. 31.

Prasanna Kumar, S., Ramaiah, N., Gauns, M., Sarma, V., Muraleedharan, P.M., Raghukumar, S., Kumar, M.D., Madhupratap, M., 2001. Physical forcing of biological productivity in the Northern Arabian Sea during the Northeast Monsoon, Deep Sea Res. Pt. II 48, 1115–1126.

Ravichandran, M., Girishkumar, M.S., Riser, S., 2012. Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea, Deep-Sea Res. Pt. I 65, 15–25.

Raymont, J.E.G., 2014. Plankton & productivity in the oceans. Volume 1: Phytoplankton, Elsevier, 660 pp.

Resplandy, L., Levy, M., Madec, G., Pous, S., Aumont, O., Kumar, D., 2011. Contribution of mesoscale processes to nutrient budgets in the Arabian Sea, J. Geophys. Res.- Oceans 116.

Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D., Feely, R.A., Gulev, S., Johnson, G.C., Josey, S.A., Kostianoy, A., 2013. Observations: Ocean, Cambridge University Press, Cambridge, UK, New York, USA.

Rousseaux, C.S., Gregg, W.W., 2012. Climate variability and phytoplankton composition in the Pacific Ocean, J. Geophys. Res.-Oceans 117. https://doi.org/10.1029/2012JC008083

Roxy, M.K., Modi, A., Murtugudde, R., Valsala, V., Panickal, S., Prasanna Kumar, S., Ravichandran, M., Vichi, M., Levy,M., 2016. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean, Geophys. Res. Lett. 43, 826–833.

Roxy, M.K., Ritika, K., Terray, P., Masson, S., 2014. The curious case of Indian Ocean warming, J. Clim. 27, 8501–8509.

Sarma, V., Rao, G.D., Viswanadham, R., Sherin, C.K., Salisbury, J., Omand, M.M., Mahadevan, A., Murty, V.S.N., Shroyer, E.L., Baumgartner, M., 2016. Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal, Oceanography 29, 222–231.

Sarma, V.V.S.S., Rajula, G.R., Durgadevi, D.S.L., Kumar, G.S., Loganathan, J., 2020. Influence of eddies on phytoplankton composition in the Bay of Bengal, Cont. Shelf Res. 208, 104241. https://doi.org/10.1016/j.csr.2020.104241

Sarma, V.V.S.S., Rao, D.N., Rajula, G.R., Dalabehera, H.B., Yadav, K., 2019. Organic Nutrients Support High Primary Production in the Bay of Bengal, Geophys. Res. Lett. 46, 6706–6715. https://doi.org/10.1029/2019GL082262

Sarmiento, J.L., Slater, R., Barber, R., Bopp, L., Doney, S.C., Hirst, A.C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., 2004. Response of ocean ecosystems to climate warming, Glob. Biogeochem. Cy. 18.

Schaum, C.E., Barton, S., Bestion, E., Buckling, A., Garcia- Carreras, B., Lopez, P., Lowe, C., Pawar, S., Smirnoff, N., Trimmer, M., 2017. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis, Nat. Ecol. Evol. 1, 1–7.

Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean, Prog. Oceanogr. 52, 63–120.

Shetye, S.R., Shenoi, S.S.C., Gouveia, A.D., Michael, G.S., Sundar, D., Nampoothiri, G., 1991. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon, Cont. Shelf Res. 11, 1397–1408.

Singh, G.P., Oh, J., 2007. Impact of Indian Ocean sea-surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model, Int. J. Climatol. RMetS 27, 1455–1465.

Subramanian, V., 1993. Sediment load of Indian rivers, Curr. Sci. 64, 928–930.

Thomas, M.K., Kremer, C.T., Klausmeier, C.A., Litchman, E., 2012. A global pattern of thermal adaptation in marine phytoplankton, Science 338, 1085–1088.

Thompson, B., Gnanaseelan, C., Parekh, A., Salvekar, P.S., 2008. North Indian Ocean warming and sea level rise in an OGCM, J. Earth Syst. Sci. 117, 169–178.

Thushara, V., Vinayachandran, P.N.M., Matthews, A.J., Webber, B.G.M., Queste, B.Y., 2019. Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal, Biogeosciences 16, 1447–1468.

van Leeuwen, S.M., van der Molen, J., Ruardij, P., Fernand, L., Jickells, T., 2013. Modelling the contribution of deep chlorophyll maxima to annual primary production in the North Sea, Biogeochemistry 113, 137–152.

Venrick, E.L., McGowan, J.A., Cayan, D.R., Hayward, T.L., 1987. Climate and chlorophyll a: long-term trends in the central North Pacific Ocean, Science 238, 70–72.

Vinayachandran, P.N., 2009. Impact of physical processes on chlorophyll distribution in the Bay of Bengal, Indian Ocean Biogeochem. Process. Ecol. Var. - Geophys. Monogr. 71–86.

Vinayachandran, P.N., Kurian, J., 2007. Hydrographic observations and model simulation of the Bay of Bengal freshwater plume, Deep-Sea Res. Part Oceanogr. Res. Pap. 54, 471–486.

Wiggert, J.D., Hood, R.R., Banse, K., Kindle, J.C., 2005. Monsoondriven biogeochemical processes in the Arabian Sea, Prog. Oceanogr. 65, 176–213. https://doi.org/10.1016/j.pocean.2005.03.008

Wollrab, S., Izmestyeva, L., Hampton, S.E., Silow, E.A., Litchman, E., Klausmeier, C.A., 2021. Climate Change-Driven Regime Shifts in a Planktonic Food Web, Am. Nat. 197, 281–295.

Xu, Y., Wu, Y., Wang, H., Zhang, Z., Li, J., Zhang, J., 2021. Seasonal and interannual variabilities of chlorophyll across the eastern equatorial Indian Ocean and Bay of Bengal, Prog. Oceanogr. 198, 102661.

Yadav, K., Sarma, V., Rao, D.B., Kumar, M.D., 2016. Influence of atmospheric dry deposition of inorganic nutrients on phytoplankton biomass in the coastal Bay of Bengal, Mar. Chem. 187, 25–34.

Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., Dickinson, R., 2013. The role of satellite remote sensing in climate change studies, Nat. Clim. Change 3, 875–883.

Zlotnik, I., Dubinsky, Z., 1989. The effect of light and temperature on DOC excretion by phytoplankton, Limnol. Oceanogr. 34, 831–839.
full, complete article - PDF


Extreme sea levels and floods: the case study of Klaipėda City, Lithuania
Oceanologia 2024, 66(3), 66304, 15 pp.
https://doi.org/10.5697/RCYK7139

Erika Vasiliauskienė1,*, Gertrūda Pociūtė2, Inga Dailidienė1, Angelija Bučienė3
1Marine Research Institute, Klaipėda University, Klaipėda, H. Manto str. 84, LT–92294, Lithuania;
e-mail: erika.cepiene@ku.lt (E. Vasiliauskienė)
2Faculty of Physics, Vilnius University, Saulėtekio av. 9, LT–10222, Vilnius, Lithuania
3Center for Social Geography and Regional Studies, Faculty of the Social Sciences and Humanities, Klaipėda University, S. Neries g. 5, LT–92227, Klaipėda, Lithuania
*corresponding author

Keywords: Baltic Sea, Coastal river city, Extreme sea levels, Storm surges, Compound flood

Received 28 February 2023; revised 29 October 2023; accepted 29 May 2024.

Highlights

Abstract

Klaipėda City is located in the Southeast Baltic Sea region, where sea level rise has been observed for decades. The Klaipėda Strait, which separates the Baltic Sea and the Curonian Lagoon, where the port is located, is also more prone to sudden extreme changes in water levels, usually caused by windstorms. Extreme sea level changes pose a threat to port operations, technical structures, city residents, buildings, and infrastructure. Fluctuations in sea levels also affect the water level of the Danė River, which enters the Klaipėda Strait and divides the city into two parts. Therefore, this study aims to determine the past extreme sea level events and their influence on floods in the Danė River within Klaipėda City from 1961 to 2022. For this, the impact of meteorological parameters caused dangerous sea level rises in the Klaipėda Strait, and the following rise of the Danė River was studied. The results show that the annual mean, annual mean maximum, and annual mean minimum water levels in the Klaipėda Strait increased from 1961 to 2022. Also, the number of events where the water level in the Klaipėda Strait was ≥ 100 cm in the Baltic Elevation System was increasing. The increasing frequency of extreme water level events in the Klaipėda Strait puts urban areas at greater risk from Danė River compound floods.

  References   ref


BACC I Author Team, 2008. Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer-Verlag, Berlin-Heidelberg, 473 pp. https://doi.org/10.1007/978-3-540-72786-6

BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies, Springer International Publishing. https://doi.org/10.1007/978-3-319-16006-1

Bevacqua, E., Maraun, D., Vousdoukas, M.I., Voukouvalas, E., Vrac, M., Mentaschi, L., Widmann, M., 2019. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci. Adv. 5(9), eaaw5531. https://doi.org/10.1126/sciadv.aaw5531

Borradaile, G.J., 2003. Statistics of earth science data: their distribution in time, space, and orientation. Springer, Berlin, 351 pp.

Čekanavičius, V., Murauskas, G., 2004. Statistika ir jos taikymai. II knyga. Vilnius: TEV.

Čepienė, E., Dailidytė, L., Stonevičius, E., Dailidienė, I., 2022. Sea level rise impact on compound coastal river flood risk in Klaipėda city (Baltic Coast, Lithuania). Water 14(3), 414. https://doi.org/10.3390/w14030414

Dailidienė, I., Davulienė, L., Kelpšaitė, L., Razinkovas, A., 2012. Analysis of the climate change in Lithuanian coastal areas of the Baltic Sea. J. Coastal Res. 28(3), 557–569. https://doi.org/10.2112/JCOASTRES-D-10-00077.1

Dailidienė, I., Davulienė, L., Tilickis, B., Stankevičius, A., Myrberg, K., 2006. Sea level variability at the Lithuanian coast of the Baltic Sea. Boreal Environ. Res. 11, 109–121.

Environmental Protection Agency, 2018. Potvynių Direktyvos įgyvendinimas [Implementation of the Floods Directive]. Available online: https://vanduo.old.gamta.lt/cms/index?rubricId=6d87deab-3ecc-412a-9b66-7fd6361f26ba (accessed on 16 September 2023).

Environmental Protection Agency, 2020. Preliminaraus Potvynių Rizikos Vertinimo Atnaujinimas 2011–2018 m. [Update of the Preliminary Flood Risk Assessment 2011–2018], Aplinkos Apsaugos Agentūra. Available online: https://vanduo.old.gamta.lt/files/Preliminary_flood_risk_assessment_2011_2018.pdf (accessed on 17 September 2023).

Ganguli, P., Merz, B., 2019. Trends in compound flooding in northwestern Europe during 1901–2014. Geophys. Res. Lett. 46(19), 10810–10820.

General Plan of Klaipėda City municipality, 2021. Klaipėdos Miesto Savivaldybės Bendrasis Planas. Sprendiniai. Aiškinamasis Raštas [General Plan of Klaipėda City municipality. Solutions, Explanatory Note]. Administration of Klaipėda City Municipality. Available online: https://www.klaipeda.lt/data/public/uploads/2021/03/klaipedos-bp-aiskinamasis-rastas-2021-03-09.pdf

Gräwe, U., Klingbeil, K., Kelln, J., Dangendorf, S., 2019. Decomposing mean sea level rise in a semi-enclosed basin, the Baltic Sea. J. Climate 32(11), 3089–3108. https://doi.org/10.1175/JCLI-D-18-0174.1

Hieronymus, M., Dieterich, C., Andersson, H., Hordoir, R., 2018. The effects of mean sea level rise and strengthened winds on extreme sea levels in the Baltic Sea. Theoretical and Applied Mechanics Lett. 8(6), 366–371. https://doi.org/10.1016/j.taml.2018.06.008

Hurrell, J., Kushnir, Y., Ottersen, G., Visbeck, M., 2003. An Overview of the North Atlantic Oscillation. [In:] The North Atlantic Oscillation: Climatic Significance and Environmental Impact. Geophys. Monogr. Vol. 134, American Geophysical Union, 1–35.

Hünicke, B., Zorita, E., 2016. Statistical analysis of the acceleration of Baltic mean sea-level rise, 1900–2012. Front. Mar. Sci. 3, 125. https://doi.org/10.3389/fmars.2016.00125

Hünicke, B., Zorita, E., Soomere, T., Madsen, K.S., Johansson, M., Suursaar, Ü., 2015. Recent Change – Sea Level and Wind Waves. [In:] Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. The BACC II Author Team (Eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-16006-1_9

Jarmalavičius, D., Žilinskas, G., Pupienis, D., 2015. Stipraus štormo „Feliksas“ padariniai Lietuvos jūriniame krante. Geologija Geografija 1(1). https://doi.org/10.6001/geol-geogr.v1i1.3068

Katinas, V., Marčiukaitis, M., Gecevičius, G., Markevičius, A., 2017. Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania. Renew. Energ. 113, 190–201. https://doi.org/10.1016/j.renene.2017.05.071

Kirezci, E., Young, I.R., Ranasinghe, R., Muis, S., Nicholls, R.J., Lincke, D., Hinkel, J., 2020. Projections of globalscale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 10(1), 1–12. https://doi.org/10.1038/s41598-020-67736-6

Kowalewska-Kalkowska, H., Wisniewski, B., 2009. Storm surges in the Odra mouth area during the 1997–2006 decade. Boreal Environ. Res. 14(1), 183.

Kowalewska-Kalkowska, H., 2021. Storm-Surge Induced Water Level Changes in the Odra River Mouth Area (Southern Baltic Coast). Atmosphere 12, 1559. https://doi.org/10.3390/atmos12121559

Kulikov, E.A., Fain, I.V., Medvedev, I.P., 2015. Numerical modeling of anemobaric fluctuations of the Baltic Sea level. Russian Meteorol. Hydrol. 40(2), 100–108. https://doi.org/10.3103/S1068373915020053

Meier, H.M., Broman, B., Kjellström, E., 2004. Simulated sea level in past and future climates of the Baltic Sea. Climate Res. 27(1), 59–75. https://doi.org/10.3354/cr027059

Meier, H.E.M., 2015. Projected Change – Marine Physics. [In:] Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. The BACC II Author Team (Eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-16006-1_13

Mühr, B., Eisenstein, L., Pinto, J.G., Knippertz, P., Mohr, S., Kunz, M., 2022. CEDIM Forensic Disaster Analysis Group (FDA): Winter storm series: Ylenia, Zeynep, Antonia (int: Dudley, Eunice, Franklin) – February 2022 (NW & Central Europe). https://doi.org/10.5445/IR/1000143470

Omstedt, A., Pettersen, Ch., Rodhe, J., Winsor, P., 2004. Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Climate Res. 25, 205–216. https://doi.org/10.3354/cr025205

On Approval (...), 2020. Lietuvos Respublikos Aplinkos Ministro Įsakymas dėl Stichinių, Katastrofinių Meteorologinių ir Hidrologinių Reiškinių Rodiklių Patvirtinimo 2011 m. lapkričio 11 d. Nr. D1-870 [On Approval of Indicators of Natural, Catastrophic Meteorological and Hydrological Phenomena. Order of the Minister of the Environment of the Republic of Lithuania. 11 November 2011 No. D1-870]. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.412088/asr (accessed on 5 February 2023).

Owen, L.E., Catto, J.L., Stephenson, D.B., Dunstone, N.J., 2021. Compound precipitation and wind extremes over Europe and their relationship to extratropical cyclones. Weather Clim. Extremes 33, 100342. https://doi.org/10.1016/j.wace.2021.100342

Pepler, A., Dowdy, A., 2021. Fewer deep cyclones projected for the midlatitudes in a warming climate, but with more intense rainfall. Environ. Res. Lett. 16(5), 054044.https://doi.org/10.1088/1748-9326/abf528

Pindsoo, K., Soomere, T., 2020. Basin-wide variations in trends in water level maxima in the Baltic Sea. Cont. Shelf Res. 193, 104029. https://doi.org/10.1016/j.csr.2019.104029

Quinn, T., Bousquet, F., Guerbois, C., Heider, L., Brown, K., 2019. How local water and waterbody meanings shape flood risk perception and risk management preferences. Sustain. Sci. 14, 565–578. https://doi.org/10.1007/s11625-019-00665-0

Rutgersson, A., Kjellström, E., Haapala, J., Stendel, M., Danilovich, I., Drews, M., Jylhä, K., Kujala, P., Larsén, X. G., Halsnæs, K., Lehtonen, I., Luomaranta, A., Nilsson, E., Olsson, T., Särkkä, J., Tuomi, L., Wasmund, N., 2022. Natural hazards and extreme events in the Baltic Sea region, Earth Syst. Dynam. 13, 251–301. https://doi.org/10.5194/esd-13-251-2022

Stonevičius, E., Valiuškevičius, G., Rimkus, E., Kažys, J., 2010. Potvynių Smeltėje Poveikio Švelninimo Ir Adapatacijos Prie Jų Galimybės Atsižvelgiant Į Numatomus Klimato Pokyčius [Possibilities of Mitigation and Adaptation To The Effects Of Floods In Smelte Taking Into Account The Expected Climate Change]. Vilnius University, Vilnius, Lithuania.

Sinay, L., Carter, R.W., 2020. Climate change adaptation options for coastal communities and local governments. Climate 8(1), 7. https://doi.org/10.3390/cli8010007

Šakurova, I., Kondrat, V., Baltranaitė, E., Vasiliauskienė, E., Kelpšaitė-Rimkienė, L., 2023. Assessment of Coastal Morphology on the South-Eastern Baltic Sea Coast: The Case of Lithuania. Water 15(1), 79. https://doi.org/10.3390/w15010079

Vaidogas, E.R., Juocevičius, V., 2011. A critical estimation of data on extreme winds in Lithuania. J. Environ. Eng. Landscape Manage. 19(2), 178–188. https://doi.org/10.3846/16486897.2011.579452

Vautard, R., van Oldenborgh, G.J., Otto, F.E.L., Yiou, P., de Vries, H., van Meijgaard, E., Stepek, A., Soubeyroux, J.- M., Philip, S., Kew, S.F., Costella, C., Singh, R., Tebaldi, C., 2019. Human influence on European winter wind storms such as those of January 2018, Earth Syst. Dynam. 10, 271–286. https://doi.org/10.5194/esd-10-271-2019

Vousdoukas, M.I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Feyen, L., 2017. Extreme sea levels on the rise along Europe’s coasts. Earth’s Future 5(3), 304–323. https://doi.org/10.1002/2016EF000505

Vousdoukas, M.I., Voukouvalas, E., Annunziato, A., Giardino, A., Feyen, L., 2016. Projections of extreme storm surge levels along Europe. Clim. Dynam. 47(9), 3171–3190. https://doi.org/10.1007/s00382-016-3019-5

Weisse, R., Bellafiore, D., Menéndez, M., Méndez, F., Nicholls, R.J., Umgiesser, G., Willems, P., 2014. Changing extreme sea levels along European coasts. Coast. Eng. 87, 4–14. https://doi.org/10.1016/j.coastaleng.2013.10.017

Weisse, R., Dailidienė, I., Hünicke, B., Kahma, K., Madsen, K., Omstedt, A., Parnell, K., Schöne, T., Soomere, T., Zhang, W., Zorita, E., 2021. Sea level dynamics and coastal erosion in the Baltic Sea region, Earth Syst. Dynam. 12, 871–898. https://doi.org/10.5194/esd-12-871-2021

Weisse, R., Weidemann, H., 2017. Baltic Sea extreme sea levels 1948–2011: Contributions from atmospheric forcing. Procedia IUTAM, 25, 65–69. https://doi.org/10.1016/j.piutam.2017.09.010

Wolski, T., Wiśniewski, B., 2021. Characteristics and Long- Term Variability of Occurrences of Storm Surges in theBaltic Sea. Atmosphere 12, 1679. https://doi.org/10.3390/atmos12121679

Wolski, T., Wiśniewski, B., Giza, A., Kowalewska-Kalkowska, H., Boman, H., Grabbi-Kaiv, S., Hammarklint, T., Holfort, J., Lydeikaitė, Ž., 2014. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 56(2), 259–290. https://doi.org/10.5697/oc.56-2.259

Wolski, T., Wiśniewski, B., Musielak, S., 2016. Baltic Sea datums and their unification as a basis for coastal and seabed studies. Oceanol. Hydrobiol. Stud. 45(2), 239– 258. https://doi.org/10.1515/ohs-2016-0022
full, complete article - PDF


Modelling beach volume changes caused by moderate and weak hydrodynamic conditions
Oceanologia 2024, 66(3), 66305, 18 pp.
https://doi.org/10.5697/DPRP2478

Natalia Bugajny
Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16, 70–383 Szczecin, Poland;
e-mail: natalia.bugajny@usz.edu.pl

Keywords: XBeach model, Dune coast, Baltic Sea, Coastal changes, Volume errors

Received 14 April 2023; revised 20 May 2024; accepted 29 May 2024.

Highlights

Abstract

The goals of this study were the calibration of the XBeach model for moderate and weak hydrodynamic conditions in 2D mode and the determination of the volumetric changes induced by them. An evaluation of model performance was made based on the Brier Skill Score (BSS), the visual match of the profile shape (VMS), the absolute volumetric change error (m3/m) and the relative volumetric change error (%). An analysis of accuracy in determining volumetric changes in the dune coast, with XBeach applied, provided an average absolute error in determination of volumetric changes of 4.0 m3/m for a significant storm and 1.5 m3/m for moderate and weak hydrodynamic conditions in a 2D model calibration process. Simulations of morphological changes caused by moderate and weak hydrodynamic conditions for seven timeframes classified into three groups have been run in 2D mode. Within a validation process, the average absolute error in the determination of volumetric changes in the beach was ranging from 0.64 m3/m to 2.42 m3/m depending on the group of hydrodynamic conditions. A high value of the correlation coefficient (R) between the measured and modelled balance of volumetric changes (m3/m) for all timeframes – 0.79 and for the ‘strongest’ group no. 3 – 0.91 were revealed. For the remaining groups, i.e., group no. 1 and no. 2 of hydrodynamic conditions, no such correlation was observed. Furthermore, the temporal analysis of the sum of beach volumes proved that a rising trend was observed over 4 months. Thus, moderate and weak hydrodynamic conditions dominated the accumulation within the area of study. XBeach reflected this trend well, producing a difference between the measured and modelled sum of volumes at the end of the timeframe of 7.27 m3/m, which is close to the volume determination error by the model.

  References   ref

Bruun, P., 1962. Sea level rise as a cause of shore erosion. J. Waterway. Div. ASCE 88(1), 117–130. https://doi.org/10.1061/JWHEAU.0000252

Bugajny, N., Furmańczyk, K., 2014. Dune coast changes caused by weak storm events in Miedzywodzie, Poland. J. Coastal Res., SI 70, 211–216. https://doi.org/10.2112/SI70-036.1

Bugajny, N., Furmańczyk, K., 2017. Comparison of Short- Term Changes Caused by Storms along Natural and Protected Sections of the Dziwnow Spit, Southern Baltic Coast. J. Coastal Res. 33, 77–785. https://doi.org/10.2112/JCOASTRES-D-16-00055.1

Bugajny, N., Furmańczyk, K., 2020. Short-term volumetric changes of the berm and beachface during storm calming. J. Coastal Res., SI 95, 398–402. https://doi.org/10.2112/SI95-077.1a>

Bugajny, N., Furmańczyk, K., 2022. Defining a single set of calibration parameters and prestorm bathymetry in the modeling of volumetric changes on the southern Baltic Sea dune coast. Oceanologia 64(1), 160–175. https://doi.org/10.1016/j.oceano.2021.10.004

Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., 2015. Application of XBeach to model a storm response on a sandy spit at the southern Baltic. Oceanol. Hydrobiol.Stud. 44, 552–562. https://doi.org/10.1515/ohs-2015-0052

Bugajny, N., Furmańczyk, K., Dudzińska-Nowak, J., Paplińska- Swerpel B., 2013. Modelling morphological changes of beach and dune induced by storm on the Southern Baltic coast using XBeach (case study: Dziwnow Spit). J. Coastal Res. 65, 672–677. https://doi.org/10.2112/SI65-114.1

Cherneva, Z., Andreeva, N., Pilar, P., Valchev, N., Petrova, P., Guedes Soares, C., 2008. Validation of the WAMC4 wave model for the Black Sea. Coast. Eng. 55(11), 88–893. https://doi.org/10.1016/j.coastaleng.2008.02.028

Ciavola, P., Ferreira, O., Van Dongeren, A., Van Thiel de Vries, J., Armaroli, C., Harley, M., 2014. Prediction of Storm Impacts on Beach and Dune Systems. [In:] Hydrometeorological Hazards: Interfacing Science and Policy, Quevauviller, P. (Ed.), Wiley-Blackwell, 227–250. https://doi.org/10.1002/9781118629567.ch3d

Cieślikiewicz, W., Herman, A., 2001. Modelowanie falowania wiatrowego Morza Bałtyckiego i Zatoki Gdańskiej. Inżynieria Morska i Geotechnika 22(4), 173–184.

Cieślikiewicz, W., Herman, A., 2002. Wave and current modelling over the Baltic Sea. Proc. 28th Interntl. Conf. Coastal Engng Conf., ICCE 2002, Cardiff, Wales.

Coco, G., Senechal, N., Rejas, A., Bryan, K.R., Capo, S., Parisot, J.P., Brown, J.A., MacMahan, J.H.M., 2014. Beach response to a sequence of extreme storms. Geomorphology, 204, 493–501. https://doi.org/10.1016/j.geomorph.2013.08.028

Dissanayake, P., Brown, J., Karunarathna, H., 2014. Modelling storm-induced beach/dune evolution: Sefton coast, Liverpool Bay, UK. Mar. Geol. 357, 225–242. https://doi.org/10.1016/j.margeo.2014.07.013

Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015a. Effects of storm clustering on beach/dune evolution. Mar. Geol. 370, 63–75. https://doi.org/10.1016/j.margeo.2015.10.010.

Dissanayake, P., Brown, J., Wisse, P., Karunarathna, H., 2015b. Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 164, 301–312. https://doi.org/10.1016/j.ecss.2015.07.040

Dobracki, R., Zachowicz, J., 2005. Mapa Geodynamiczna Polskiej Strefy Brzegowej Bałtyku. Państwowy Instytut Geologiczny, Oddział Pomorski, scale 1:10,000, 2 sheets.

Dodet, G., Castelle, B., Masselink, G., Scott, T., Davidson, M., Floch, F., Jackson, D., Suanez, S., 2019. Beach recovery from extreme storm activity during the 2013–14 winter along the Atlantic coast of Europe. Earth Surf. Process. Landforms 44, 393–401. https://doi.org/10.1002/esp.4500

Dudzińska-Nowak, J., 2006a. Coastline long-term changes of the selected area of the Pomeranian Bay. [In:] Coastal Dynamic, Geomorphology and Protection, Tubielewicz,A. (ed.), Gdańsk University of Technology, Gdańsk, 163–170.

Dudzińska-Nowak, J., 2006b. Wpływ metod ochrony brzegu morskiego na zmiany położenia linii podstawy wydmy na wybranym przykładzie. [In:] Człowiek i środowisko przyrodnicze Pomorza Zachodniego: III. Środowisko przyrodnicze i problemy społeczno-ekonomiczne, Koźmiński Cz., Dutkowski, M., Radziejewska, T. (Eds.), Szczecin, 91–98.

Dudzińska Nowak, J., 2015. Metody ochrony zachodniego wybrzeża Polski i ich wpływ na zmiany brzegu w latach 1938–2015. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.

Dudzińska-Nowak, J., Wężyk, P., 2014. Volumetric changes of a soft cliff coast 2008–2012 based on DTM from airborne laser scanning (Wolin Island, southern Baltic Sea). J. Coast. Res. 70, 59–64. https://doi.org/10.2112/si70-011.1

Ferreira, O., 2005. Storm groups versus extreme single storms: predicted erosion and management consequences. J. Coastal Res. SI 42, 221–227.

Furmańczyk, K., Dudzińska-Nowak, J., 2009. Effects of extreme storms on coastline changes: A southern Baltic example. J. Coastal Res. 56, 1637–1640.

Harley, M., Armaroli, C., Ciavola, P., 2011. Evaluation of XBeach predictions for a real-time warning system in Emilia-Romagna, Northern Italy. J. Coastal Res. 64, 1861–1865.

Harter, C., Figlus, J., 2017. Numerical modeling of the morphodynamic response of a low-lying barrier island beach and foredune system inundated during Hurricane Ike using. XBeach and CSHORE. Coast. Eng. 120, 64–74. https://doi.org/10.1016/j.coastaleng.2016.11.005

Kombiadou, K., Costas, S., Roelvink, D., 2021. Simulating Destructive and Constructive Morphodynamic Processes in Steep Beaches. J. Mar. Sci. Eng. 9(1), 86. https://doi.org/10.3390/jmse9010086

Masselink, G., Hughes, M.G., Knight, J., 2011. Introduction to Coastal Processes and Geomorphology. Routledge, London, 288 pp.

McCall, R.T., Van Thiel de Vries, J.S.M., Plant, N.G., Van Dongeren, A.R., Roelvink, J.A., Thompson, D.M., Reniers, A.J.H.M., 2010. Two-dimensional time dependent hurricane overwash and erosion modeling at Santa Rosa Island. Coast. Eng. 57, 668–683. https://doi.org/10.1016/j.coastaleng.2010.02.006

Musielak, S. Furmańczyk, K., Bugajny N., 2017. Factors and processes forming the Polish Southern Baltic Sea coast on various temporal and spatial scales. [In:] Coastline changes of the Baltic Sea from South to East: past and future projection, Harff, J., Furmańczyk, K. and von Storch, H. (Eds.), Coastal Res. Library, Vol. 19, 69–86.

Musielak, S., Łabuz, T., Wochna, S., 2007. Procesy morfodynamiczne strefy brzegowej Mierzei Dziwnowskiej. [In:] Geologia i geomorfologia Pobrzeża i Południowego Bałtyku, Florek W. (Ed.), Wydaw. PAP, 63–75.

Paplińska, B., 1999. Wave analysis at Lubiatowo and in the Pomeranian Bay based on measurements from 1997/ 1998 – comparison with modelled data (WAM4 model). Oceanologia 41(2), 241–254.

Paplińska, B., 2001. Specific features of sea waves in the Pomeranian Bay. Arch. Hydro-Eng. Environ. Mech. 48, 55–72.

Paplińska, B., Reda, A., 2001. Regional variability of the wave climate at the Polish coast of the Baltic Sea. [In:] Zastosowania mechaniki w budownictwie lądowym i wodnym, Szmidt, K. (Ed.), Księga Jubileuszowa poświęcona 70-leciu urodzin Profesora Piotra Wilde. Wyd. IBW PAN, Gdańsk, 191–215.

Pender, D., Karunarathna, H., 2013. A statistical-process based approach for modelling beach profile variability. Coast. Eng. 81, 19–29. https://doi.org/10.1016/j.coastaleng.2013.06.006

Phillips, M.S., Blenkinsopp, C.E., Splinter, K.D., Harley, M.D., Turner, I.L., 2019. Modes of berm and beachface recovery following stormreset: Observations using acontinuously scanning lidar. J. Geophys. Res. 124, 720–736. https://doi.org/10.1029/2018JF004895

Phillips, M.S., Harley, M.D., Turner, I.L., Splinter, K.D., Cox, R.J., 2017. Shoreline recovery on wave-dominated sandy coastlines: the role of sandbar morphodynamics and nearshore wave parameters. Mar. Geol. 385, 146–159. https://doi.org/10.1016/j.margeo.2017.01.005

Ponce de León, S., Guedes Soares, C., 2008. Sensitivity of wave model predictions to wind fields in the Western Mediterranean sea. Coast. Eng. 55(11), 920–929.

Roelvink, J.A., Brøker, J., 1993. Cross-shore profile models. Coast. Eng. 21, 163–191.

Roelvink, D., Costas, S., 2019. Coupling nearshore and aeolian processes: XBeach and duna process-based models. Environ. Model. Software 115, 98–112. https://doi.org/10.1016/j.envsoft.2019.02.010

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., Lescinski, J., 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56, 1133–1152. https://doi.org/10.1016/j.coastaleng.2009.08.006

Sallenger, A.H.J., 2000. Storm impact scale for barrier islands. J. Coast. Res. 16, 890–895.

Schambach, L., Grilli, A.R., Grilli, S.T., Hashemi,. M.R., King, J.W., 2018. Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline: Application to the southern Rhode Island coast. Coast. Eng. 133, 26–42. https://doi.org/10.1016/j.coastaleng.2017.12.004

Sutherland, J., Peet, A.H., Soulsby, R.L., 2004. Evaluating the performance of morphological models. Coast. Eng. 51, 917–939. https://doi.org/10.1016/j.coastaleng.2004.07.015

Splinter, K.D., Carley, J.T., Golshani, A., Tomlinson, R., 2014. A relationship to describe the cumulative impact of storm clusters on beach erosion. Coast. Eng. 83, 49–55. https://doi.org/10.1016/j.coastaleng.2013.10.001

Splinter, K.D., Palmsten, M.L., 2012. Modeling dune response to an East Coast Low. Mar. Geol. 329–331, 46–57. https://doi.org/10.1016/j.margeo.2012.09.005

Sztobryn, M., Stigge, H.-J., Wielbińska, D., Weidig, B., Stanisławczyk, I., Kańska, A., Krzysztofik, K., Kowalska, B., Letkiewicz, B., and Mykita, M., 2005. Storm Surges in the Southern Baltic Sea (western and central parts). Rostock Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, vol. 39, 74 pp.

Terefenko, P., Giza, A., Paprotny, D., Kubicki, A., Winowski, M., 2018. Cliff Retreat Induced by Series of Storms at Międzyzdroje (Poland). J. Coastal Res., 85, 181–185. https://doi.org/10.2112/SI85-037.1

Turner, I.L., Harley, M.D., Short, A.D., Simmons, J.A., Bracs, M.A., Phillips, M.S., Splinter, K.D., 2016. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen, Australia. Sci. Data, 3, 13. https://doi.org/10.1038/sdata.2016.24

Valchev, N., Pilar, P., Cherneva, Z., Guedes Soares, C., 2004. Set-up and validation of a third-generation wave model for the Black Sea. Proc. 7th Int. Conf. “BLACK SEA 2004”, Sci. Tech. Univ. Varna, Bulgaria, 273–279.

van Dam, T., 2019. Numerical Modelling of Beach Recovery Following a Storm Event. PhD Thesis, Delft University of Technology. http://repository.tudelft.nl/

van Rijn, L.C., Wasltra, D.J.R., Grasmeijer, B., Sutherland, J., Pan, S., Sierra, J.P., 2003. The predictability of crossshorebed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coast. Eng. 47, 295–327. https://doi.org/10.1016/S0378-3839(02)00120-5

Volpano, Ch.A., Zoet, L.K., Rawling, J.E., Theuerkauf, E.J., 2022. Measuring and modelling nearshore recovery of an eroded beach in Lake Michigan, USA. J. Great Lakes Res. 48(3), 633–644. https://doi.org/10.1016/j.jglr.2022.03.012

Vousdoukas, M., Almeida, L., Ferreira, Ó., 2011. Modelling stor- m-induced beach morphological change in a mesotidal, reflective beach using XBeach. J. Coastal Res. 64, 1916–1920.

Vousdoukas, M.I., Ferreira, Ó., Almeida, L.P., Pacheco, A., 2012. Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational early-warning system. Ocean Dynam. 62, 1001–1015. https://doi.org/10.1007/s10236-012-0544-6

WAMDI Group, 1988. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr. 18, 1775–181.

Williams, J.J., Esteves, L.S., Rochford, L.A., 2015. Modelling storm responses on a high-energy coastline with XBeach. Model. Earth Syst. Environ. 1, 3. https://doi.org/10.1007/s40808-015-0003-8

Zawadzka-Kahlau, E., 1999. Tendencje rozwojowe polskich brzegów Bałtyku południowego, Gdańskie Towarzystwo Naukowe, Gdańsk, 147 pp.
full, complete article - PDF


Monsoonal patterns of wave reflection from rubble mound breakwater of Chabahar Bay
Oceanologia 2024, 66(3), 66306, 23 pp.
https://doi.org/10.5697/ECMX9318

Seyed Masoud Mahmoudof1,*, Amin Eyhavand-Koohzadi1,2, Ali Khosh Kholgh1,*
1Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran;
e-mail: m_mahmoudof@inio.ac.ir (S.M. Mahmoudof), a_khosh@inio.ac.ir (A. Khosh Kholgh)
2School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
*corresponding author

Keywords: Field measurements, Permeable structure, Bimodal wave climate, Seasonal variation, Shahid-Beheshti Port, Makran

Received 30 April 2024; revised 29 June 2024; accepted 3 July 2024.

Highlights

Abstract

This paper presents the results of a one-year field study on the monsoonal reflective response of the rubble mound breakwater (RMB) of Chabahar Bay, located on the northern coast of the Gulf of Oman, Iran. Measurements show that, in general, the correlation between the reflection coefficient and Iribarren number during the winter monsoon period is more remarkable than that of the summer monsoon period. The difference in wave reflection behavior during monsoonal periods is mainly due to the energy proportion of incoming sea and swell waves. Various characteristic wave periods by means of power- and hyperbolic-law prediction functions are explored to enhance the wave reflection prediction, highlighting the significant performance of negative-moment spectral periods Tm−1 and Tm−2 compared with peak and mean spectral periods. Statistical comparison of the performance of Tm−1 and Tm−2 shows that Tm−2 considerably improves the prediction accuracy for moderated energy waves with bimodal sea and swell climates originating from different directions in the winter monsoon and pre-summer monsoon months. However, the prediction improvement is insignificant for unimodal energetic waves observed during the summer monsoon months. Generally, using Tm−2 increases the accuracy of the preexisting equations in predicting the observations of this study.

  References   ref

Aboobacker, V. M., Rashmi, R., Vethamony, P., Menon, H.B., 2011. On the dominance of pre-existing swells over wind seas along the west coast of India, Cont. Shelf. Res., 31(16), 1701–1712. https://doi.org/10.1016/j.csr.2011.07.010

Aboobacker, V.M., Shanas, P.R., 2018. The climatology of shamals in the Arabian Sea – Part 1: Surface winds, Int. J. Climatol. 38(12), 4405–4416. https://doi.org/10.1002/joc.5711

Altomare, C., Suzuki, T., Verwaest, T., 2020. Influence of directional spreading on wave overtopping of sea dikes with gentle and shallow foreshores. Coast. Eng. 157, 103654. https://doi.org/10.1016/j.coastaleng.2020.103654

Amrutha, M.M., Sanil Kumar, V., Sharma, S., Singh, J., Gowthaman, R., Kankara, R.S., 2015. Characteristics of shallow water waves off the central west coast of India before, during and after the onset of the Indian summer monsoon. Ocean Eng. 107, 259–270. https://doi.org/10.1016/j.oceaneng.2015.07.061

Andersen, T.L., 2006. Hydraulic Response of Rubble Mound Breakwaters Scale Effects – Berm Breakwaters. PhD Thesis, Hydraulics and Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University. Aniel-Quiroga, Í., Vidal, C., Lara, J.L., González, M., 2019. Pressures on a rubble-mound breakwater crown-wall for tsunami impact. Coast. Eng. 152, 103522. https://doi.org/10.1016/j.coastaleng.2019.103522

Anoop, T.R., Shanas, P.R., Aboobacker, V.M., Kumar, V.S., Nair, L.S., Prasad, R., Reji, S., 2020. On the generation and propagation of Makran swells in the Arabian Sea. Int. J. Climatol. 40(1), 585–593. https://doi.org/10.1002/joc.6192

Barak, M.S., Kaliraman, V., 2019. Reflection and transmission of elastic waves from an imperfect boundary between micropolar elastic solid half space and fluid saturated porous solid half space. Mech. Adv. Mater. Struc. 26(14), 1226–1233. https://doi.org/10.1080/15376494.2018.1432795

Barak, M.S., Kumari, M., Kumar, M., 2018. Effect of local fluid flow on the propagation of plane waves at an interface of water/double-porosity solid with underlying uniform elastic solid. Ocean Eng. 147, 195–205. https://doi.org/10.1016/j.oceaneng.2017.10.030

Battjes, J.A., 1974. Surf Similarity. 14th ASCE Coast. Eng. Conf., Copenhagen, Denmark.

Bourget, J., Zaragosi, S., Ellouz-Zimmermann, S., Ducassou, E., Prins, M. A., Garlan, T., Lanfumey, V., Schneider, J. L., Rouillard, P., and Giraudeau, J., 2010. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems. Mar. Geol. 274(1–4), 187–208. https://doi.org/10.1016/j.margeo.2010.04.005

Buccino, M., Calabrese, M., 2007. Conceptual Approach for Prediction of Wave Transmission at Low-Crested Breakwaters. J. Waterw. Port Coast. Ocean Eng. 133(3), 213–224. https://doi.org/doi:10.1061/(ASCE)0733-950X(2007)133:3(213)

Bruun, P., Gunbak, A.R., 1976. New Design Principles for Rubble Mound Structures. Coast. Eng. Proc. 1(15), 141. https://doi.org/10.9753/icce.v15.141
Calhoun, R.J., 1971. Field study of wave transmission through a rubble-mound breakwater. Master Thesis, Naval Postgraduate School, Monterey California, Publ. No. AD0721552. https://apps.dtic.mil/sti/citations/AD0721552

Cao, D., Tan, W., Yuan, J., 2022. Assessment of wave overtopping risk for pedestrian visiting the crest area of coastal structure. Appl. Ocean Res. 120, 102985. https://doi.org/10.1016/j.apor.2021.102985

Chaichitehrani, N., Allahdadi, M.N., 2018. Overview of wind climatology for the Gulf of Oman and the northern Arabian Sea. Am. J. Fluid Dynam. 8, 1–9.

Dattatri, J., Raman, H., Shankar, N.J., 1978. Performance Characteristics of Submerged Breakwaters. Coast. Eng. Proc., Hamburg, Germany.

Davidson, M.A., Bird, P.A.D., Bullock, G.N., Huntley, D.A., 1996. A new non-dimensional number for the analysis of wave reflection from rubble mound breakwaters. Coast. Eng. 28(1–4), 93–120. https://doi.org/10.1016/0378-3839(96)00012-9

Dekker, J., Caires, S., Van Gent, M.R.A., 2007. Reflection of non-standard wave spectra by sloping structures. 5th Coastal Structures International Conference, Venice, Italy.

Dı́az-Carrasco, P., 2023. Hydraulic performance analysis for homogeneous mound breakwaters: Application of dimensional analysis and a new experimental technique. Ocean. Eng. 286(Pt. 2), 115598. https://doi.org/10.1016/J.OCEANENG.2023.115598

Dı́az-Carrasco, P., Eldrup, M.R., Lykke Andersen, T., 2021. Advance in wave reflection estimation for rubble mound breakwaters: The importance of the relative water depth. Coast. Eng. 168, 103921. https://doi.org/10.1016/j.coastaleng.2021.103921

Dong, Y., Zheng, Z., Ma, Y., Gao, J., Ma, X., Dong, G., 2023. Numerical investigation on the mitigation of harbor oscillations by periodic undulating topography. Ocean Eng. 279, 114580.

Düing, W., 1970. The Monsoon Regime of the Currents in the Indian Ocean. East-West Center Press, Honolulu, 68 pp.

Eyhavand-Koohzadi, A., Badiei, P., 2021. Laboratory experiments on time-space conversion of wind waves in deep water. Appl. Ocean. Res. 111, 102656. https://doi.org/https://doi.org/10.1016/j.apor.2021.102656

Eyhavand-Koohzadi, A., Badiei, P., 2022. Experimental study on the growth and conversion of duration- and fetchlimited wind waves in water of finite depth. Ocean. Eng. 266, 113020. https://doi.org/10.1016/j.oceaneng.2022.113020

Galiatsatou, P., Makris, C., Prinos, P., 2018. Optimized Reliability Based Upgrading of Rubble Mound Breakwaters in a Changing Climate. J. Mar. Sci. Eng. 6(3), 92. https://www.mdpi.com/2077-1312/6/3/92

Gao, J., Zhou, X., Zang, J., Chen, Q., Zhou, L., 2018. Influence of offshore fringing reefs on infragravity period oscillations within a harbor. Ocean Eng. 158, 286–298.

Gao, J., Zhou, X., Zhou, L., Zang, J., Chen, H., 2019. Numerical investigation on effects of fringing reefs on lowfrequency oscillations within a harbor. Ocean Eng. 172, 86–95.

Gao, J., Ma, X., Dong, G., Chen, H., Liu, Q., Zang, J., 2021. Investigation on the effects of Bragg reflection on harbor oscillations. Coast. Eng. 170, 103977. https://doi.org/https://doi.org/10.1016/j.coastaleng.2021.103977

Gao, J., Shi, H., Zang, J., Liu, Y., 2023. Mechanism analysis on the mitigation of harbor resonance by periodic undulating topography. Ocean Eng. 281, 114923. https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.114923

Gao, J., Hou, L., Liu, Y., Shi, H., 2024. Influences of bragg reflection on harbor resonance triggered by irregular wave groups. Ocean Eng. 305, 117941.

Goda, Y., 2010. Random seas and design of maritime structures. Adv. Ser. Ocean Eng. Vol. 33, World Sci., 732 pp.

Haider, R., Ali, S., Hoffmann, G., Reicherter, K., 2023. A multi-proxy approach to assess tsunami hazard with a preliminary risk assessment: A case study of the Makran Coast, Pakistan. Mar. Geol. 459, 107032. https://doi.org/10.1016/j.margeo.2023.107032

Han, X., Jiang, Y., Dong, S., 2022. Wave forces on crown wall of rubble mound breakwater under swell waves. Ocean. Eng. 259, 111911. https://doi.org/10.1016/j.oceaneng.2022.111911

Harry, M., Zhang, H., Lemckert, C., Colleter, G., Blenkinsopp, C., 2018. Observation of surf zone wave transformation using LiDAR. Appl. Ocean. Res. 78, 88–98. https://doi.org/10.1016/j.apor.2018.05.015

Hofland, B., Chen, X., Altomare, C., Oosterlo, P., 2017. Prediction formula for the spectral wave period Tm-1,0 on mildly sloping shallow foreshores. Coast. Eng. 123, 21–28. https://doi.org/10.1016/j.coastaleng.2017.02.005

Iglesias, G., Rabuñal, J., Losada, M.A., Pachón, H., Castro, A., Carballo, R., 2008. A virtual laboratory for stability tests of rubble-mound breakwaters. Ocean Eng. 35(11–12), 1113–1120. https://doi.org/10.1016/j.oceaneng.2008.04.014

Irı́as Mata, M., Van Gent, M.R.A., 2023. Numerical modelling of wave overtopping discharges at rubble mound breakwaters using OpenFOAM®. Coast. Eng. 181, 104274. https://doi.org/10.1016/j.coastaleng.2022.104274

Kamphuis, J.W., 2010. Introduction to coastal engineering and management. Adv. Ser. Ocean Eng. Vol. 30, World Sci., 564 pp.

Karnan, C., Gautham, S., 2023. Seasonal enhancement of phytoplankton biomass in the southern tropical Indian Ocean: Significance of meteorological and oceanography parameters. Oceanologia 66(2), 196–219. https://doi.org/10.1016/j.oceano.2023.10.003

Kober, F., Zeilinger, G., Ivy-Ochs, S., Dolati, A., Smit, J., and Kubik, P. W., 2013. Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran. Global Planet. Change 111, 133–149. https://doi.org/10.1016/j.gloplacha.2013.09.003

Koley, S., Panduranga, K., Almashan, N., Neelamani, S., and Al-Ragum, A., 2020. Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean. Eng. 218, 108218. https://doi.org/10.1016/j.oceaneng.2020.108218

Kor, K., Ershadifar, H., Ghazilou, A., and Koochaknejad, E., 2021. Seasonal variations, potential bioavailability, and ecological risk of phosphorus species in the coastal sediments of the Makran. Mar. Pollut. Bull. 173, 113125. https://doi.org/10.1016/j.marpolbul.2021.113125

Koutrouveli, T.I., Dimas, A.A., 2020. Wave and hydrodynamic processes in the vicinity of a rubble-mound, permeable, zero-freeboard break water. J. Mar. Sci. Eng. 8(3), 206. https://doi.org/10.3390/jmse8030206

Krishna, P.S., Aboobacker, V.M., Ramesh, M., Nair, L.S., 2023. Remotely induced storm effects on the coastal flooding along the southwest coast of India. Oceanologia 65(3), 503–516. https://doi.org/10.1016/j.oceano.2023.03.003
Kumar, R., Barak, M., 2007. Wave propagation in liquidsaturated porous solid with micropolar elastic skelton at boundary surface. Appl. Math. Mech. 28(3), 337–349. https://doi.org/10.1007/s10483-007-0307-z

Kumar, R., Gupta, V., Pathania, V., Kumar, R., Barak, M.S., 2023. Analysis of Waves at Boundary Surfaces at Distinct Media with Nonlocal Dual-Phase-Lag. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 93(4), 573–585. https://doi.org/10.1007/s40010-023-00850-y

Lahiri, S.P., Vissa, N.K., 2022. Assessment of Indian Ocean upwelling changes and its relationship with the Indian monsoon. Global Plant. Change 208, 103729. https://doi.org/https://doi.org/10.1016/j.gloplacha.2021.103729

Lee, J.I., Shin, S., 2014. Experimental study on the wave reflection of partially perforated wall caissons with single and double chambers. Ocean. Eng. 91, 1–10. https://doi.org/10.1016/j.oceaneng.2014.08.008

Li, A.J., Liu, Y., Fang, H., Liu, X., 2022. Wave scattering by a periodic array of porous breakwaters. Appl. Ocean Res. 127, 103328. https://doi.org/10.1016/j.apor.2022.103328

Li, D., Anis, A., Al Senafi, F., 2020. Physical response of the Northern Arabian Gulf to winter Shamals. J. Marine Syst. 203, 103280. https://doi.org/10.1016/j.jmarsys.2019.103280

Liu, Y., Li, S., Chen, S., Hu, C., Fan, Z., Jin, R., 2020. Random wave overtopping of vertical seawalls on coral reefs. Appl. Ocean Res. 100, 102166. https://doi.org/https://doi.org/10.1016/j.apor.2020.102166

Liu, Y., Li, S., Liao, Z., Liu, K., 2021. Physical and numerical modeling of random wave transformation and overtopping on reef topography. Ocean Eng. 220, 108390. https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.108390

Losada, M.A., Giménez-Curto, L.A., 1980. Flow characteristics on rough, permeable slopes under wave action. Coast. Eng. 4, 187–206. https://doi.org/10.1016/0378-3839(80)90019-8

Lykke Andersen, T., Burcharth, H.F., 2009. Three-dimensional investigations of wave overtopping on rubble mound structures. Coast. Eng. 56(2), 180–189. https://doi.org/10.1016/j.coastaleng.2008.03.007

Mahmoudof, S.M., Azizpour, J., 2020. Field observation of wave reflection from plunging cliff coasts of Chabahar. Appl. Ocean. Res. 95, 102029–102029. https://doi.org/10.1016/J.APOR.2019.102029

Mahmoudof, S.M., Hajivalie, F., 2021. Experimental study of hydraulic response of smooth submerged breakwaters to irregular waves. Oceanologia 63(4), 448–462. https://doi.org/10.1016/j.oceano.2021.05.002

Mahmoudof, S.M., Azizpour, J., Eyhavand-Koohzadi, A., 2021a. Observation of infragravity wave processes near the coastal cliffs of Chabahar (Gulf of Oman). Estuar. Coast. Shelf Sci. 251, 107226. https://doi.org/10.1016/j.ecss.2021.107226

Mahmoudof, S.M., Eyhavand-Koohzadi, A., Bagheri, M., 2021b. Field study of wave reflection from permeable rubble mound breakwater of Chabahar Port. Appl. Ocean Res. 114, 102786–102786. https://doi.org/10.1016/J.APOR.2021.102786

Mahmoudof, S.M., Siadatmousavi, S.M., Seyedalipour, S.A., 2021c. Experimental study of bound triad interactions across a dissipative surf zone under different wave breaking conditions. Ocean Eng. 235, 109427. https://doi.org/10.1016/j.oceaneng.2021.109427

Mahmoudof, S.M., Takami, M.L., 2022. Numerical study of coastal wave profiles at the sandy beaches of Nowshahr (Southern Caspian Sea). Oceanologia 64(3), 457–472. https://doi.org/https://doi.org/10.1016/j.oceano.2022.03.001

Mahmoudof, S.M., Eyhavand-Koohzadi, A., Kazeminezhad, M.H., 2023. Field investigation of spectral wave period 𝑇Tm−1,0 on shallow and very shallow foreshores of the southern Caspian Sea. Coast. Eng. 181, 104277. https://doi.org/10.1016/j.coastaleng.2023.104277

Masselink, G., 1998. Field investigation of wave propagation over a bar and the consequent generation of secondary waves. Coast. Eng. 33(1), 1–9. https://doi.org/10.1016/S0378-3839(97)00032-X

Morrison, J.M., Codispoti, L.A., Gaurin, S., Jones, B., Manghnani, V., Zheng, Z., 1998. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study. Deep-Sea Res. Pt. II 45(10–11), 2053–2101. https://doi.org/10.1016/S0967- 0645(98)00063-0

Mostaghiman, A., Moghim, M.N., 2022. An experimental study of partly/hardly reshaping mass-armored doubleberm breakwaters. Ocean Eng. 243, 110258. https://doi.org/10.1016/j.oceaneng.2021.110258

Muttray, M., Oumeraci, H., Oever, E.T., 2006. Wave reflection and wave run-up at rubble mound breakwaters. 30th International Conference, San Diego, California, USA. Myrhaug, D., 2020. Some probabilistic properties of surf parameter. Oceanologia 62(3), 395–401. https://doi.org/10.1016/j.oceano.2020.02.003

Nassar, K., Mahmod, W.E., Tawfik, A., Rageh, O., Negm, A., and Fath, H., 2018. Developing empirical formulas for assessing the hydrodynamic behaviour of serrated and slotted seawalls. Ocean Eng. 159, 388–409. https://doi.org/10.1016/j.oceaneng.2018.04.048

Neelamani, S., Al-Salem, K., Rakha, K., 2007. Extreme waves for Kuwaiti territorial waters. Ocean Eng. 34(10), 1496–1504. https://doi.org/10.1016/j.oceaneng.2006.08.013

Nguyen, N.M., Van, D.D., Le, D.T., Cong, S.D., Pham, N.T., Nguyen, Q., Tran, B., Wright, D.P., Tanim, A.H., Anh, D.T., 2022. Wave reduction efficiency for three classes of breakwaters on the coastal Mekong Delta. Appl. Ocean. Res. 129, 103362. https://doi.org/10.1016/j.apor.2022.103362

Numata, A., 1976. Laboratory Formulation For Transmission And Reflection At Permeable Breakwaters Of Artificial Blocks. Coast. Eng. Japan 19(1), 47–58. https://doi.org/10.1080/05785634.1976.11924216

Oumeraci, H., Partenscky, H.W., 1990. Wave-Induced Pore Pressure in Rubble Mound Breakwaters. 22nd International Conference on Coastal Engineering, Delft, The Netherlands, July 2–6, 1990, 1334–1347. https://doi.org/doi:10.1061/9780872627765.102

Peihong, Z., Dapeng, S., Hao, W., Yucheng, L., 2021. Theoretical investigation of wave reflection from partially perforated caisson sitting on a rubble mound foundation. Ocean Eng. 235, 109085. https://doi.org/10.1016/j.oceaneng.2021.109085

Pedersen, T., Lohrmann, A., 2004. Possibilities and limitations of acoustic surface tracking. Oceans ’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No.04CH37600), Kobe, Japan.

Pedersen, T., Siegel, E., Wood, J., 2007. Directional Wave Measurements from a Subsurface Buoy with an Acoustic Wave and Current Profiler (AWAC). Oceans 2007, Vancouver, BC, Canada.

Postma, G.M., 1989. Wave reflection from rock slopes under random wave attack. Master thesis, University of Technology Delft. http://resolver.tudelft.nl/uuid:4c21a913-a78b-40d2-b690-a0184683434b

Pratola, L., Rinaldi, A., Molfetta, M.G., Bruno, M.F., Pasquali, D., Dentale, F., Mossa, M., 2021. Investigation on the reflection coefficient for seawalls protected by a rubble mound structure. J. Mar. Sci. Eng. 9, 937. https://doi.org/10.3390/jmse9090937

Prizomwala, S.P., Vedpathak, C., Tandon, A., Das, A., Makwana, N., Joshi, N., 2022. Geological footprints of the 1945 Makran tsunami from the west coast of India. Mar. Geol. 446(106773). https://doi.org/10.1016/j.margeo.2022.106773

Radfar, S., Shafieefar, M., Akbari, H., Galiatsatou, P.A., Mazyak, A.R., 2021. Design of a rubble mound breakwater under the combined effect of wave heights and water levels, under present and future climate conditions. Appl. Ocean Res. 112, 102711. https://doi.org/10.1016/j.apor.2021.102711

Requejo, S., Vidal, C., and Losada, I.J., 2002. Modelling of wave loads and hydraulic performance of vertical permeable structures. Coast. Eng. 46(4), 249–276. https://doi.org/10.1016/S0378-3839(02)00072-8

Saket, A., Etemad-Shahidi, A., 2012. Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renew. Energ. 40(1), 90–97. https://doi.org/10.1016/j.renene.2011.09.024

Salauddin, M., Pearson, J.M., 2020. Laboratory investigation of overtopping at a sloping structure with permeable shingle foreshore. Ocean. Eng. 197, 106866. https://doi.org/10.1016/j.oceaneng.2019.106866

Samiksha, S.V., Vinodkumar, K., Vethamony, P., 2014. Impact of shamal winds and swells on the coastal currents along the west coast of India. Indian J. Geo.-Mar. Sci. 43(7), 1236–1240.

Sanil Kumar, V., Singh, J., Pednekar, P., Gowthaman, R., 2011. Waves in the nearshore waters of northern Arabian Sea during the summer monsoon. Ocean. Eng. 38(2–3), 382–388. https://doi.org/https://doi.org/10.1016/j.oceaneng.2010.11.009

Seelig, W.N., Ahrens, J.P., 1981. Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters. U.S. Army Coastal Engineering Research Center Technical Paper, 81-1.

Shamji, V.R., 2021. Beach classifications in response to southwest monsoon waves: A case study. Indian J. Geo.-Mar. Sci. 50, 14–20. http://nopr.niscpr.res.in/handle/123456789/56099

Shankar, D., Vinayachandran, P.N., Unnikrishnan, A.S., 2002. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52(1), 63–120. https://doi.org/https://doi.org/10.1016/S0079-6611(02)00024-1

Sierra, J.P., 2019. Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise. Water 11(7), 1440. https://www.mdpi.com/2073-4441/11/7/1440

Sinha, M., Jha, S., Chakraborty, P., 2020. Indian Ocean wind speed variability and global teleconnection patterns. Oceanologia 62(2), 126–138. https://doi.org/10.1016/j.oceano.2019.10.002

Smith, S. L., Criales, M.M., Schack, C., 2020. The large-bodied copepods off Masirah Island, Oman: An investigation of Southwest Monsoon onset and die-off. J. Marine Syst. 204, 103289. https://doi.org/https://doi.org/10.1016/j.jmarsys.2019.103289

Smitha, A., Sankar, S., Satheesan, K., 2023. Impact of tropical Indian Ocean warming on the surface phytoplankton biomass at two significant coastal upwelling zones in the Arabian Sea. Dynam. Atmos. Oceans 104, 101401. https://doi.org/https://doi.org/10.1016/j.dynatmoce.2023.101401

Sollitt, C.K., Cross, R.H., 1972. Wave Transmission through Permeable Breakwaters. 13th Conference on Coastal Engineering, Vancouver, Canada.

Sreelakshmi, S., Bhaskaran, P.K., 2020. Wind-generated wave climate variability in the Indian Ocean using ERA- 5 dataset. Ocean Eng. 209, 107486. https://doi.org/10.1016/j.oceaneng.2020.107486

Stagnitti, M., Lara, J.L., Musumeci, R.E., Foti, E., 2023. Numerical Modeling of Wave Overtopping of Damaged And Upgraded Rubble-Mound Breakwaters. Ocean Eng. 280, 114798. https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.114798

Sulisz, W., McDougal, W.G., Sollitt, C.K., 1989. Wave interaction with rubble toe protection. Ocean Eng. 16(5–6), 463–473. https://doi.org/10.1016/0029-8018(89)90047-4

Uścinowicz, G., Uścinowicz, S., Szarafin, T., Maszloch, E., Wirkus, K., 2023. Rapid coastal erosion, its dynamics and cause–an erosional hot spot on the southern Baltic Sea coast. Oceanologia 66(2), 250–266.https://doi.org/10.1016/j.oceano.2023.12.002

Van der Meer, J.W., 1992. Conceptual Design of Rubble Mound Breakwaters. Design and Reliability of Coastal Structures, 23rd ICCE in Venice, Venice, Italy.

Van der Meer, J.W., 1997. Golfoploop en golfoverslag bij dijken. Hydraulic Engineering Reports, H2458/H3051, Delft Hydraulics, The Netherlands.

Van der Meer, J.W., Briganti, R., Zanuttigh, B., Wang, B., 2005. Wave transmission and reflection at low-crested structures: Design formulae, oblique wave attack and spectral change. Coast. Eng. 52(10–11), 915–929. https://doi.org/10.1016/j.coastaleng.2005.09.005

Van der Meer, J.W., Daemen, I.F.R., 1994. Stability and Wave Transmission at Low-Crested Rubble-Mound Structures. J. Waterw. Port Coast. Ocean Eng. 120(1). https://doi.org/10.1061/(asce)0733-950x(1994)120:1(1)

Van Gent, M.R.A., 1999. Wave run-up and wave overtopping for double peaked wave energy spectra. Hydraulic Engineering Reports, No. H3351, University of Technology, Delft, The Netherlands.

Van Gent, M.R.A., 2001. Wave Runup on Dikes with Shallow Foreshores. J. Waterw. Port Coast. Ocean Eng. 127(5), 254–262. https://doi.org/doi:10.1061/(ASCE)0733-950X(2001)127:5(254)

Van Gent, M.R.A., Buis, L., Van den Bos, J.P., Wüthrich, D., 2023. Wave transmission at submerged coastal structures and artificial reefs. Coast. Eng. 184, 104344. https://doi.org/10.1016/j.coastaleng.2023.104344

Vinod Kumar, K., Seemanth, M., Vethamony, P., Aboobacker, V.M., 2014. On the spatial structure and time evolution of shamal winds over the Arabian Sea - a case study through numerical modelling. Int. J. Climatol. 34(6), 2122–2128. https://doi.org/10.1002/joc.3819

Wang, Y., Jiang, D., Li, Y., 2022. Numerical research of harbor oscillation influenced by vegetation. Ocean Eng. 244, 110255.

Wilson, K.W., Cross, R.H., 1972. Scale Effects In Rubble- Mound Breakwaters. 13th Conference on Coastal Engineering, Vancouver, Canada.

Zanuttigh, B., Van der Meer, J.W., 2008. Wave reflection from coastal structures in design conditions. Coast. Eng. 55(10), 771–779. https://doi.org/10.1016/j.coastaleng.2008.02.009

Zanuttigh, B., Van der Meer, J.W., Andersen, T.L., Lara, J.L., Losada, I.J., 2008. Analysis of wave reflection from structures with berms through an extensive database and 2DV numerical modelling. 31st International Conference of Coastal Engineering, Hamburg, Germany.

Zhang, Y., Li, M., Zhao, X., Chen, L., 2020. The effect of the coastal reflection on the performance of a floating breakwater-WEC system. Appl. Ocean. Res. 100, 102117. https://doi.org/10.1016/j.apor.2020.102117

Zhao, W., Wei, K., Zhong, X., 2023. Estimation of breaking wave region based on coupled wave and storm surge simulations of historical typhoons: A case study of Hangzhou Bay. Ocean. Eng. 286 (Part 1), 115596. https://doi.org/10.1016/J.OCEANENG.2023.115596

Zhao, Z., Wu, W., Wang, M., Du, Y., 2023. Circulation structure and dynamic characteristics of Western Tropical Indian Ocean associated with monsoon transitions. Deep-Sea Res. Pt. I 191, 103943. https://doi.org/10.1016/j.dsr.2022.103943
full, complete article - PDF