Oceanologia No. 53 (1-TI) / 11


Contents


Preface


Papers


Papers



Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics
Oceanologia 2011, 53(1-TI), 193-227
http://dx.doi.org/10.5697/oc.53-1-TI.193

H. E. Markus Meier1,2,*, Anders Höglund1, Ralf Döscher1, Helén Andersson1, Ulrike Löptien1, Erik Kjellström1
1Swedish Meteorological and Hydrological Institute, Research Department,
Norrköping 60176, Sweden;
2Department of Meteorology, Stockholm University,
Stockholm 10691, Sweden;
e-mail: markus.meier@smhi.se
*corresponding author

keywords: regional climate modelling, atmosphere-ocean coupling, climate change, ensemble modelling, Baltic Sea region

Received 6 October 2010, revised 27 January 2011, accepted 28 January 2011.

The work presented in this study was jointly funded by the Swedish Environmental Protection Agency (SEPA), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), and the European Commission within the projects ECOSUPPORT (Advanced modelling tool for scenarios of the Baltic Sea ECOsystem to SUPPORT decision making, ref. no. 08/381), AMBER (Assessment and Modelling Baltic Ecosystem Response, ref. no. 08/390) and INFLOW (Holocene saline water inflow changes into the Baltic Sea, ecosystem responses and future scenarios, ref. no. 2008-1885). All three projects are part of the BONUS+ program (http://www.bonusportal.org).

Abstract

Climate model results for the Baltic Sea region from an ensemble of eight simulations using the Rossby Centre Atmosphere model version 3 (RCA3) driven with lateral boundary data from global climate models (GCMs) are compared with results from a downscaled ERA40 simulation and gridded observations from 1980-2006. The results showed that data from RCA3 scenario simulations should not be used as forcing for Baltic Sea models in climate change impact studies because biases of the control climate significantly affect the simulated changes of future projections. For instance, biases of the sea ice cover in RCA3 in the present climate affect the sensitivity of the model's response to changing climate due to the ice-albedo feedback. From the large ensemble of available RCA3 scenario simulations two GCMs with good performance in downscaling experiments during the control period 1980-2006 were selected. In this study, only the quality of atmospheric surface fields over the Baltic Sea was chosen as a selection criterion. For the greenhouse gas emission scenario A1B two transient simulations for 1961-2100 driven by these two GCMs were performed using the regional, fully coupled atmosphere-ice-ocean model RCAO. It was shown that RCAO has the potential to improve the results in downscaling experiments driven by GCMs considerably, because sea surface temperatures and sea ice concentrations are calculated more realistically with RCAO than when RCA3 has been forced with surface boundary data from GCMs. For instance, the seasonal 2 m air temperature cycle is closer to observations in RCAO than in RCA3 downscaling simulations. However, the parameterizations of air-sea fluxes in RCAO need to be improved.

  References logo

BACC - BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud. Ser., Springer, Berlin, Heidelberg, 474 pp.
Brasseur O., 2001, Development and application of a physical approach to estimating wind gusts, Mon. Weather Rev., 129 (1), 5-25. http://dx.doi.org/10.1175/1520-0493(2001)129<0005:DAAOAP>2.0.CO;2

Bumke K., Hasse L., 1989, An analysis scheme for the determination of true surface winds at sea from ship synoptic wind and pressure observations, Bound.-Lay. Meteorol., 47 (1-4), 295-308. http://dx.doi.org/10.1007/BF00122335

Davis F.K., Newstein H., 1968, The variation of gust factors with mean wind speed and with height, J. Appl. Meteorol., 7 (3), 372-378. http://dx.doi.org/10.1175/1520-0450(1968)007<0372:TVOGFW>2.0.CO;2

Döscher R., Willén U., Jones C., Rutgersson A., Meier H.E.M., Hansson U., Graham L.P., 2002, The development of the regional coupled ocean-atmosphere model RCAO, Boreal Environ. Res., 7, 183-192.

Döscher R., Wyser K., Meier H. E. M., Qian M., Redler R., 2010, Quantifying Arctic contributions to climate predictability in a regional coupled ocean-iceatmosphere model, Clim. Dynam., 34 (7-8), 1157-1176. http://dx.doi.org/10.1007/s00382-009-0567-y

Gustafsson B.G., Andersson H.C., 2001, Modeling the exchange of the Baltic Sea from the meridional atmospheric pressure difference across the North Sea, J. Geophys. Res., 106 (C9), 19731-19744. http://dx.doi.org/10.1029/2000JC000593

Hay L.E., Wilby R. L., Leavesley G.H., 2000, A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States, J. Am. Water Resour. As., 36 (2), 387-398. http://dx.doi.org/10.1111/j.1752-1688.2000.tb04276.x

Höglund A., Meier H.E.M., Broman B., Kriezi E., 2009, Validation and correction of regionalised ERA-40 wind fields over the Baltic Sea using the Rossby Centre Atmosphere model RCA3.0., Rap. Oceanogr. No. 97, SMHI, Norrköping, 29 pp.

Jones C.G., Willén U., Ullerstig A., Hansson U., 2004, The Rossby Centre regional atmospheric climate model (RCA). Part I: Model climatology and performance characteristics for present climate over Europe, AMBIO, 33 (4-5), 199-210.   PMid:15264598

Kauker F., Meier H.E.M., 2003, Modeling decadal variability of the Baltic Sea: 1. Reconstructing atmospheric surface data for the period 1902-1998, J. Geophys. Res., 108 (C8), 3267, doi: 10.1029/2003JC001797. http://dx.doi.org/10.1029/2003JC001797

Kjellström, E., Döscher R., Meier H.E.M., 2005, Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments, Nord. Hydrol., 36 (4-5), 397-409.

Kjellström E., Lind P., 2009, Changes in the water budget in the Baltic Sea drainage basin in future warmer climates as simulated by the regional climate model RCA3, Boreal Environ. Res., 14 (1), 114-124.

Kjellström E., Nikulin G., Hansson U., Strandberg G., Ullerstig A., 2011, 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations, Tellus A, 63 (1), 24-40. http://dx.doi.org/10.1111/j.1600-0870.2010.00475.x

Lind P., Kjellström E., 2009, Water budget in the Baltic Sea drainage basin: evolution of simulated fluxes in a regional climate model, Boreal Environ Res., 14 (1), 56-67.

Ljungemyr P., Gustafsson N., Omstedt A., 1996, Parameterization of lake thermodynamics in a high resolution weather forecasting model, Tellus A, 48 (5), 608-621. http://dx.doi.org/10.1034/j.1600-0870.1996.t01-4-00002.x

MacKenzie B.R., Gislason H., Möllmann C., Köster F.W., 2007, Impact of 21st century climate change on the Baltic Sea fish community and fisheries, Glob. Change Biol., 13 (7), 1348-1367. http://dx.doi.org/10.1111/j.1365-2486.2007.01369.x

Meier H.E.M., 2006, Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios, Clim. Dynam., 27 (1), 39-68.
http://dx.doi.org/10.1007/s00382-006-0124-x

Meier H.E.M., Andréasson J., Broman B., Graham L.P., Kjellström E., Persson G., Viehhauser M., 2006, Climate change scenario simulations of wind, sea level, and river discharge in the Baltic Sea and Lake Mälaren region - a dynamical downscaling approach from global to local scales, Rep. Meteorol. Climat. No. 109, SMHI, Norrköping, 52 pp.

Meier H.E.M., Döscher R., 2002, Simulated water and heat cycles of the Baltic Sea using a 3D coupled atmosphere-ice-ocean model, Boreal Environ. Res., 7 (4), 327-334.

Meier H.E.M., Döscher R., Faxén T., 2003, A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow, J. Geophys. Res., 108 (C8), 3273, doi: 10.1029/2000JC000521. http://dx.doi.org/10.1029/2000JC000521

Meier H.E.M., Eilola K., Almroth E., 2011, Climate-related changes in marine ecosystems simulated with a three-dimensional coupled biogeochemical-physical model of the Baltic Sea, Clim. Res., (in press). http://dx.doi.org/10.3354/cr00968

Nakićenović N., Alcamo J., Davis G., de Vries B., Fenhann J., Gaffin S., Gregory K., Grübler A., Jung T.Y., Kram T., La Rovére E.L., Michaelis L., Mori S., Morita T., Pepper W., Pitcher H., Price L., Keywan R., Roehrl A., Rogner H.-H., Sankovski A., Schlesinger M., Shukla P., Smith S., Swart R., van Rooijen S., Victor N., Dadi Z., 2000, Emission scenarios, A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, N.Y., 599 pp.

Nordström M., 2006, Estimation of gusty winds in RCA, Uppsala Univ., M. Sc. thesis No. 101 (ISSN 1650-6553), 42 pp.

Omstedt A., Chen Y., Wesslander K., 2005, A comparison between the ERA40 and the SMHI gridded meteorological databases as applied to Baltic Sea modelling, Nord. Hydrol., 36 (4-5), 369-380.

Räisänen J., Hansson U., Ullerstig A., Döscher R., Graham L.P., Jones C., Meier H.E.M., Samuelsson P., Willén U., 2004, European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios, Clim. Dynam., 22 (1), 13-31.
http://dx.doi.org/10.1007/s00382-003-0365-x

Rockel, B. Woth K., 2007, Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations, Climatic Change, 81 (S1), 267-280. http://dx.doi.org/10.1007/s10584-006-9227-y

Rubel F., Hantel M., 2001, BALTEX 1/6-degree daily precipitation climatology, Meteorol. Atmos. Phys., 77 (1-4), 155-166. http://dx.doi.org/10.1007/s007030170024

Samuelsson P., Gollvik S., Ullerstig A., 2006, The land-surface scheme of the Rossby Centre Regional Atmospheric Climate Model (RCA3), Rep. Meteorol. No. 122, SMHI, Norrköping, 25 pp.

Samuelsson P., Jones C., Willén U., Ullerstig A., Gollvik S., Hansson U., Jansson C., Kjellström E., Nikulin G., Wyser K., 2011, The Rossby Centre Regional Climate Model RCA3: model description and performance, Tellus A, 63 (1), 4-23. http://dx.doi.org/10.1111/j.1600-0870.2010.00478.x

Savchuk O.P., Wulff F., 2007, Modeling the Baltic Sea eutrophication in a decision support system, AMBIO, 36 (2-3), 141-148. http://dx.doi.org/10.1579/0044-7447(2007)36[141:MTBSEI]2.0.CO;2

Savchuk O.P., Wulff F., 2009, Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea, Hydrobiologia, 629 (1), 209-224.
http://dx.doi.org/10.1007/s10750-009-9775-z

Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H. L. (eds.), 2007, Climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York, N.Y., 847-940.

Udin I., Sahlberg J., Lundqvist J.-E., Uusitalo S., Seinä A., Leppäranta M., 1981, BASIS: a data bank for Baltic sea ice and sea surface temperatures, Res. Rep. No. 34, Winter Nav. Res. Board, Swedish Administration of Shipping Navigation and Finnish Board of Navigation, Norrköping, 23 pp.

Uppala S.M., Källberg P.W., Simmons A. J., Andrae U., Da Costa Bechtold V., Fiorino M., Gibson J.K., Haseler J., Hernandez A., Kelly G.A., Li X., Onogi K., Saarinen S., Sokka N., Allan R.P., Andersson E., Arpe K., Balmaseda M.A., Beljaars A.C.M., Van De Berg L., Bidlot J., Bormann N., Caires S., Chevallier F., Dethof A., Dragosavac M., Fisher M., Fuentes M., Hagemann S., Hólm E., Hoskins B. J., Isaksen L., Janssen P.A.E.M., Jenne R., Mcnally A.P., Mahfouf J.-F., Morcrette J.-J., Rayner N.A., Saunders R.W., Simon P., Ster A., Trenberth K.E., Untch A., Vasiljevic D., Viterbo P., Woollen J., 2005, The ERA-40 re-analysis, Q. J. Roy. Meteor. Soc., 131 (612), 2961-3012.
http://dx.doi.org/10.1256/qj.04.176

Wulff F., Bonsdorff E., Gren I.-M., Johansson S., Stigebrandt A., 2001, Giving advice on cost effective measures for a cleaner Baltic Sea: a challenge for science, AMBIO, 30 (4-5), 254-259.   PMid:11697258

full, complete article (PDF - compatibile with Acrobat 4.0), 4.60 MB


A comparison of ASCAT wind measurements and the HIRLAM model over the Baltic Sea
Oceanologia 2011, 53(1-TI), 229-244
http://dx.doi.org/10.5697/oc.53-1-TI.229

Jekaterina Služenikina1,2,*, Aarne Männik2,3
1Tallinn University of Technology,
Ehitajate tee 5, Tallinn 19086, Estonia
2Estonian Meteorological and Hydrological Institute,
Toompuiestee 24, Tallinn 10149, Estonia;
e-mail: jekaterina.sluzenikina@emhi.ee
*corresponding author
3University of Tartu,
Ülikooli 18, Tartu 50090, Estonia

keywords: ASCAT, scatterometer winds, HIRLAM model, Baltic Sea, numerical weather prediction

Received 6 October 2010, revised 14 February 2011, accepted 15 February 2011.

This research is supported by European Social Fund's Doctoral Studies and Internationalization Programme DoRa and the Estonian Ministry of Education and Science research targeted financing theme SF0180038s08. The EARS ASCAT data used in this research was provided by the EUMETCast service of EUMETSAT OSI SAF project, and the software used in this work was developed at KNMI.

Abstract

This paper presents a comparison of the wind data measured by the ASCAT polar-orbiting satellite scatterometer and winds forecast by the numerical weather prediction model HIRLAM in the Baltic Sea region during the stormy season in 2009. Two different resolution models were used in the comparison. Mutual quality and uncertainty characteristics of the measurements and predictions are determined. The results of the study show that the ASCAT wind data are well correlated with the HIRLAM predicted winds, which raises the credibility of both data sources in operational and hindcasting applications over the Baltic Sea. A case of phase error in a HIRLAM forecast of cyclonic activity over the Baltic Sea is discussed.

  References logo

Atlas R., Hoffman R.N., Leidner S.M., Sienkiewicz J., Yu T.-W., Bloom S.C., Brin E., Ardizzone J., Terry J., Bungato D., Jusem J.C., 2001, The effects of marine winds from scatterometer data on weather analysis and forecasting, Bull. Am. Meteorol. Soc., 82, 1965-1990. http://dx.doi.org/10.1175/1520-0477(2001)082<1965:TEOMWF>2.3.CO;2

Bentamy A., Croize-Fillon D., Perigaud C., 2008, Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations, Ocean Sci., 4 (4), 265–274. http://dx.doi.org/10.5194/os-4-265-2008

Chelton D.B., Freilich M.H., 2005, Scatterometer-Based Assessment of 10-m Wind Analyses from the Operational ECMWF and NCEP Numerical Weather Prediction Models, Mon. Weather Rev., 133 (2), 409–429. http://dx.doi.org/10.1175/MWR-2861.1

Figa-Salda~na J., Wilson J.W., Attema E., Gelsthorpe R., Drinkwater M.R., Stoffelen A., 2002, The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for the European wind scatterometers, Can. J. Remote Sens., 28 (3), 404–412.

Funkquist L., Kleine E., 2000, An introduction to HIROMB, an operational baroclinic model for the Baltic Sea, Tech. Rep. SMHI., Norrköping.

Geernaert G. L., Katsaros K.B., 1986, Incorporation of stratification effects on the oceanic roughness length in the derivation of the neutral drag coefficient, J. Phys. Oceanogr., 16 (9), 1580–1584. http://dx.doi.org/10.1175/1520-0485(1986)016<1580:IOSEOT>2.0.CO;2

Gelsthorpe R.V., Schied E., Wilson J. J.W., 2000, ASCAT-MetOpés advanced scatterometer, ESA Bull. 102, [http://esapub.esrin.esa.it/bulletin/bullet102_htm].

Hersbach H., 2010, Assimilation of scatterometer data as equivalent-neutral wind, Tech. Memo., ECMWF, [http://www.ecmwf.int/publications/library/ecpublications/ pdf/tm/601-700/tm629.pdf].

Keevallik S., Männik A., Hinnov J., 2010, Comparison of HIRLAM wind data with measurements at Estonian coastal meteorological station, Est. J. Earth Sci., 59 (1), 90–99. http://dx.doi.org/10.3176/earth.2010.1.07

Portabella M., 2002, Wind field retrieval from satellite radar systems, Thesis, Univ. Barcelona, 207 pp., [http://www.knmi.nl/publications/fulltexts/phd thesis. pdf].

Stoffelen A., 1998, Scatterometry, Thesis, Univ. Utrecht., [http://igitur-archive.library.uu.nl/dissertations/01840669/inhoud.htm].

Stoffelen A., Portabella M., Verhoef A., Verspeek J., Vogelzang J., 2006, Mesoscale winds from the new ASCAT scatterometer, KNMI Res. Biennial Rep. 2005–2006, [http://www.knmi.nl/research/biennial/05-06ASCAT.pdf].

Stoffelen A., Vogelzang J., Verhoef A., 2010, Verification of scatterometer winds, 10th Int. Winds Workshop, [http://www.knmi.nl/publications/fulltexts/scat iww10.pdf].

Undén P., Rontu L., Järvinen H., Lynch P., Calvo J., Cats G., Cuxart J., Eerola K., Fortelius C., Garcia-Moya J.A., Jones C., Lenderink G., McDonald A., McGrath R., Navascues B., Nielsen N.W., Ødegaard V., Rodrigues E., Rummukainen M., Rõõm R., Sattler K., Sass B.H., Savijärvi H., Schreur B.W., Sigg R., The H., Tijm A., 2002, HIRLAM-5 scientific documentation, [http://www.hirlam.org/].

Verhoef A., Stoffelen A., 2009, Validation of ASCAT 12.5-km winds, version 1.2., SAF/OSI/CDOP/KNMI/TEC/RP/147, EUMETSAT Tech. Rep., [http://www.knmi.nl/scatterometer/publications/].

Verhoef A., Stoffelen A., 2010, ASCAT wind product user manual version 1.8, SAF/OSI/CDOP/KNMI/TEC/MA/126, EUMETSAT, [http://www.knmi.nl/scatterometer/publications/].

Verspeek J., Portabella M., Stoffelen A., Verhoef A., 2008, Calibration and validation of ASCAT winds, version 4.0, Doc. Extern. Proj., SAF/OSI/KNMI/TEC/TN/163, EUMETSAT.

Von Ahn J., Sienkiewicz J.M., Chang P., 2006, Operational impact of QuikSCAT winds at the NOAA Ocean Prediction Center, Weather Forecast., 21 (4), 523–539. http://dx.doi.org/10.1175/WAF934.1

full, complete article (PDF - compatibile with Acrobat 4.0), 3.28 MB


Temporal variability of precipitation extremes in Estonia 1961-2008
Oceanologia 2011, 53(1-TI), 245-257
http://dx.doi.org/10.5697/oc.53-1-TI.245

Kalev Päädam*, Piia Post
Institute of Physics, University of Tartu,
Ülikooli 18, Tartu 50090, Estonia;
e-mail: kalevai@gmail.com
*corresponding author

keywords: precipitation extremes, temporal variability, Estonia

Received 6 October 2010, revised 1 February 2011, accepted 2 February 2011.

Supported by Estonian Science Foundation grants 7510, 7526 and the Estonian National Targeted Financing Project SF0180038s08.

Abstract

Daily precipitation data from 40 stations are used to investigate the temporal variability of precipitation extremes in Estonia. The period covered is 1961-2008, characterized by a uniformity of observational practice. Precipitation extremes are quantified by yearly and seasonal values of two different parameters: day-count indices based on 95th and 99th percentile thresholds. Trend significance was assessed with the Mann-Kendall test. Results show that the frequency of both indices has increased. No significant negative trends were found. An increase of 15.8 events over the 99th percentile per decade was observed for Estonia. The indices selected for this study may be called "soft" climate extremes, but the number of such events is large enough to allow for meaningful trend analysis in a roughly half-century long time series.

  References logo

Alpert P., Ben-Gai T., Baharad A., Benjamini Y., Yekutieli D., Colacino M., Diodato L., Ramis C., Homar V., Romero R., Michaelides S., Manes A., 2002, The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values, Geophys. Res. Lett., 29 (11), 1536. http://dx.doi.org/10.1029/2001GL013554

Easterling D.R., Evans J.-L., Groisman P.Y., Karl T.R., Kunkel K., 2000, Observed variability and trends in extreme climate events: A brief review, Bull. Am. Meteorol. Soc., 81 (3), 417-425. http://dx.doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2

Groisman P.Y., Karl T.R., Easterling D.R., Knight R.W., Jamason P. F., Hennessy K. J., Suppiah R., Page C.M., Wibig J., Fortuniak K., Razuvaev V.N., Douglas A., Forland E., Zhai P., 1999, Changes in the probability of heavy precipitation: Important indicators of climatic change, Climatic Change, 42 (1), 243-283. http://dx.doi.org/10.1023/A:1005432803188

Groisman P.Y., Knight R.W., Easterling D.R., Karl T.R., Hegerl G.C., Razuvaev V.N., 2005, Trends in intense precipitation in the climate record, J. Climate, 18 (9), 1326-1350.
http://dx.doi.org/10.1175/JCLI3339.1

Hennessy K. J., Gregory J.M., Mitchell J. F.B., 1997, Changes in daily precipitation under enhanced greenhouse conditions, Clim. Dynam., 13 (9), 667-680. http://dx.doi.org/10.1007/s003820050189

Jaagus J., 2006, Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation, Theor. Appl. Climatol., 83 (1), 77-88. http://dx.doi.org/10.1007/s00704-005-0161-0

Jaagus J., Briede A., Rimkus E., Remm K., 2010, Precipitation pattern in the Baltic countries under the influence of large-scale atmospheric circulation and local landscape factors, Int. J. Climatol., 30 (5), 705-720.

Karagiannidis A., Karacostas T., Maheras P., Makrogiannis T., 2009, Trends and seasonality of extreme precipitation characteristics related to mid-latitude cyclones in Europe, Adv. Geosci., 20, 39-43.
http://dx.doi.org/10.5194/adgeo-20-39-2009

Karl T.R., Knight R.W., 1998, Secular trends of precipitation amount, frequency, and intensity in the United States, Bull. Am. Meteorol. Soc., 79 (2), 231-241. http://dx.doi.org/10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2

Klein Tank A.M.G., Können G. P., 2003, Trends in indices of daily temperature and precipitation extremes in Europe, 1946-99, J. Climate, 16 (22), 3665-3680. http://dx.doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2

Klein Tank A.M.G., Wijngaard J.B., Können G.P., Böhm R., Demarée G., Gocheva A., Mileta M., Pashiardis S., Hejkrlik L., Kern-Hansen C., Heino R., Bessemoulin P., M¨uller-Westermeier G., TzanakouM., Szalai S., Péalsdóttir T., Fitzgerald D., Rubin S., Capaldo M., Maugeri M., Leitass A., Bukantis A., Aberfeld R., van Engelen A. F.V., Forland E., Mietus M., Coelho F., Mares C., Razuvaev V., Nieplova E., Cegnar T., López J.A., Dahlström B., Moberg A., Kirchhofer W., Ceylan A., Pachaliuk O., Alexander L.V., Petrovic P., 2002, Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22 (12), 1441-1453. http://dx.doi.org/10.1002/joc.773

Mätlik O., Post P., 2008, Synoptic weather types that have caused heavy precipitation in Estonia in the period 1961-2005, Est. J. Eng., 14 (3), 195-208.

Merilain M., Post P., 2006, Heavy rainfall - is it only a feature of recent years' summers in Estonia?, Publ. Geophys. Univ. Tartuensis, 50, 144-154.

Moberg A., Jones P.D., Lister D., Walther A., Brunet M., Jacobeit J., Alexander L.V., Della-Marta P.M., Luterbacher J., Yiou P., Chen D., Klein Tank A.M.G., Saladié O., Sigró J., Aguilar E., Alexandersson H., Almarza C., Auer I., Barriendos M., Begert M., Bergström H., Böhm R., Butler C. J., Caesar J., Drebs A., Founda D., Gerstengarbe F.-W., Micela G., Maugeri M., österle H., Pandzic K., Petrakis M., Srnec L., Tolasz R., Tuomenvirta H., Werner P.C., Linderholm H., Philipp A., Wanner H., Xoplaki E., 2006, Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901-2000, J. Geophys. Res., 111, D22106, doi: 10.1029/2006JD007103. http://dx.doi.org/10.1029/2006JD007103

Nutter F.W., 1999, Global climate change: Why U.S. insurers care, Climatic Change, 42 (1), 45-49. http://dx.doi.org/10.1023/A:1005404013666

Peterson T.C., Folland C., Gruza G., Hogg W., Mokssit A., Plummer N., 2001, Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998-2001, World Climate Data and Monitoring Progr., Geneva, WMO, 47.

Rimkus E., Kažys J., Bukantis A., 2010, Recent dynamics and prediction of heavy precipitation events in Lithuania, 6th Study Conf. BALTEX, Poland.

Salmi T., Määttä A., Anttila P., Ruoho-Airola T., Amnell T., 2002, Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates - the Excel template application MAKESENS, Finnish Meteorol. Inst. Rep., 31.

Tammets T., 2007, Distribution of extreme wet and dry days in Estonia in last 50 years, Proc. Estonian Acad. Sci. Eng., 13 (3), 252-259.

Tebaldi C., Hayhoe K., Arblaster J., Meehl G., 2006, Going to the extremes, Climatic Change, 79 (3), 185-211. http://dx.doi.org/10.1007/s10584-006-9051-4

Trenberth K.E., Dai A.G., Rasmussen R.M., Parsons D.B., 2003, The changing character of precipitation, Bull. Am. Meteorol. Soc., 84 (9), 1205-1217. http://dx.doi.org/10.1175/BAMS-84-9-1205

Trenberth K.E., Jones P.D., Ambenje P., Bojariu R., Easterling D., Klein Tank A.M.G., Parker D., Rahimzadeh F., Renwick J.A., Rusticucci M., Soden B., Zhai P., 2007, Observations: surface and atmospheric climate change, [in:] Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Quin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H. L. Miller & Z. Chen, Cambridge Univ. Press, Cambridge, 236-336.

Venäläinen A., Jylhä K., Kilpeläinen T., Saku S., Tuomenvirta H., Vajda A., Ruosteenoja K., 2009, Recurrence of heavy precipitation, dry spells and deep snow cover in Finland based on observations, Boreal Environ. Res., 14 (1), 166-172.

Watterson I.G., 2005, Simulated changes due to global warming in the variability of precipitation, and their interpretation using a gamma-distributed stochastic model, Adv. Water Resour., 28 (12), 1368-1381. http://dx.doi.org/10.1016/j.advwatres.2004.11.016

Zolina O., Kapala A., Simmer C., Gulev S.K., 2004, Analysis of extreme precipitation over Europe from different reanalyses: a comparative assessment, Global Planet. Change, 44 (1-4), 129-161. http://dx.doi.org/10.1016/j.gloplacha.2004.06.009

Zolina O., Simmer C., Kapala A., Bachner S., Gulev S.K., Maechel H., 2008, Seasonally dependent changes of precipitation extremes over Germany since 1950 from a very dense observational network, J. Geophys. Res., 113, D06110, doi: 10.1029/2007JD008393. http://dx.doi.org/10.1029/2007JD008393

Zolina O., Simmer C., Kapala A., Gulev S.K., 2005, On the robustness of the estimates of centennial-scale variability in heavy precipitation from station data over Europe, Geophys. Res. Lett., 32, L14707, doi: 10.1029/2005GL023231. http://dx.doi.org/10.1029/2005GL023231

full, complete article (PDF - compatibile with Acrobat 4.0), 221 kB


Temporal variation of extreme precipitation events in Lithuania
Oceanologia 2011, 53(1-TI), 259-277
http://dx.doi.org/10.5697/oc.53-1-TI.259

Egidijus Rimkus*, Justas Kažys, Arūnas Bukantis, Aleksandras Krotovas
Department of Hydrology and Climatology, Vilnius University,
M. K. Čiurlionio 21/27, Vilnius 03101, Lithuania;
e-mail: egidijus.rimkus@gf.vu.lt
*corresponding author

keywords: heavy precipitation, atmospheric circulation, regional modelling, CCLM model

Received 15 September 2010, revised 17 February 2011, accepted 24 February 2011.

The study was supported by the Lithuanian State Science and Studies Foundation and by the BSR Interreg IVB Project "Climate Change: Impacts, Costs and Adaptation in the Baltic Sea Region (BaltCICA)".

Abstract

Heavy precipitation events in Lithuania for the period 1961-2008 were analysed. The spatial distribution and dynamics of precipitation extremes were investigated. Positive tendencies and in some cases statistically significant trends were determined for the whole of Lithuania.
   Atmospheric circulation processes were derived using Hess & Brezowski's classification of macrocirculation forms. More than one third of heavy precipitation events (37%) were observed when the atmospheric circulation was zonal. The location of the central part of a cyclone (WZ weather condition subtype) over Lithuania is the most common synoptic situation (27%) during heavy precipitation events.
   Climatic projections according to outputs of the CCLM model are also presented in this research. The analysis shows that the recurrence of heavy precipitation events in the 21st century will increase significantly (by up to 22%) in Lithuania.

  References logo

Avotniece Z., Rodinov V., Lizuma L., Briede A., Kļaviņš M., 2010, Trends in the frequency of extreme climate events in Latvia, Baltica, 23 (2), 135-148.

Beniston M., Stephenson D.B., Christensen O.B., Ferro C.A.T., Frei C., Goyette S., Halsnaes K., Holt T., Jylhä K., Koffi B., Palutikoff J., Schöll R., Semmler T., Woth K., 2007, Future extreme events in European climate; an exploration of Regional Climate Model projections, Climatic Change, 81, 71-95. http://dx.doi.org/10.1007/s10584-006-9226-z

Bogdanova E.G., Gavrilova S.Yu., Il'in B.M., 2010, Variation in the number of days with heavy precipitation on the territory of Russia for the period of 1936 -2000, Russ. Meteorol. Hydrol., 35 (5), 344-348. http://dx.doi.org/10.3103/S1068373910050079

Böhm U., Kücken M., Ahrens W., Block A., Hauffe D., Keuler K., Rockel B., Will A., 2006, CLM - the climate version of LM: brief description and long-term applications, COSMO Newsletter No. 6, 225-235.

Bukantis A., Valiuškevičienė L., 2005, Dynamics of extreme air temperature and precipitation and determining factors in Lithuania in the 20th century, The Geographical Yearbook, 38 (1), 6-17, (in Lithuanian).

Christensen O.B., Christensen J.H., 2004, Intensification of extreme European summer precipitation in a warmer climate, Global Planet. Change, 44 (1-4), 107-117, doi: 10.1016/j.globlacha.2004.06.013. http://dx.doi.org/10.1016/j.gloplacha.2004.06.013

Coles S., 2001, An introduction to statistical modeling of extreme values, Springer, London, 228 pp.

Domms G., Schättler U., 2002, A description of the nonhydrostatic regional model LM. Part I: Dynamics and numerics, Offenbach, Deustcher Wetterdienst, 134 pp., [http://www.cosmo-model.org/content/model/documentation/core/cosmoDyncsNumcs.pdf].

Gerstengarbe F.W., Werner P.C., 2005, Katalog der Grosswetterlagen Europas nach Paul Hess und Helmut Brezowski, (1881-2004), Potsdam Inst. Klimafolgenfors., Potsdam, 153 pp.Groisman P.Ya., Karl T.R., Easterling D.R., Knight R.W., Jamason P. F., Hennessy K. J., Suppiah R., Page C.M., Wibig J., Fortuniak K., Razuvaev V.N., Douglas A., Forland E., Zhai P., 1999, Changes in the probability of heavy precipitation: important indicators of climatic change, Climatic Change, 42 (1), 243-283.

Groisman P.Ya., Knight R.W., Easterling D.R., Karl T.R., Hegerl G.C., Razuvaev V.N., 2005, Trends in intense precipitation in the climate record, J. Climate, 18 (9), 1343-1367. http://dx.doi.org/10.1175/JCLI3339.1

Hanel M., Buishand T.A., 2009, A non-stationary index-flood model for precipitation extremes in transient RCM runs, Geophys. Res. Abstr., 11, EGU2009-4346.

Haylock M.R., Goodess C.M., 2004, Interannual variability of European extreme winter rainfall and links with mean large-scale circulation, Int. J. Climatol., 24 (6), 759-776, doi: 10.1002/joc.1033. http://dx.doi.org/10.1002/joc.1033

Heino R., Bréazdil R., Forland E., Tuomenvirta H., Alexandersson H., Beniston M., Pfister C., Rebetez M., Rosenhagen G., Rösner S., Wibig J., 1999, Progress in the study of climatic extremes in Northern and Central Europe, Climatic Change, 42, 151-181. http://dx.doi.org/10.1023/A:1005420400462

IPCC, 2007, Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H. L. Miller (eds.), Cambridge Univ. Press, Cambridge, 996 pp.

Jutla A., Flores A., Vogel R., Islam S., 2008, On probability distribution of extreme precipitation events, Geophys. Res. Abstr., 10, EGU2008-A-10258.

Kotz S., Nadarajah S., 2000, Extreme value distributions: theory and applications, Imper. Coll. Press, London, 185 pp. http://dx.doi.org/10.1142/9781860944024

Kysely J., Picek J., 2007, Probability estimates of heavy precipitation events in a flood-prone central-European region with enhanced influence of Mediterranean cyclones, Adv. Geosci., 12, 43-50. http://dx.doi.org/10.5194/adgeo-12-43-2007

Libiseller C., 2002, A Program for the Computation of Multivariate and Partial Mann-Kendall Test, Linkoeping Univ., Linkoeping, 18 pp.

Lizuma L., Briede A., Klavins M., 2010, Long-term changes of precipitation in Latvia, Hydrol. Res., 41 (3-4), 241-252. http://dx.doi.org/10.2166/nh.2010.120

Lupikasza E., 2010a, Relationships between occurrence of high precipitation and atmospheric circulation in Poland using different classifications of circulation types, Phys. Chem. Earth., 35 (9-12), 448-455. http://dx.doi.org/10.1016/j.pce.2009.11.012

Lupikasza E., 2010b, Spatial and temporal variability of extreme precipitation in Poland in the period 1951-2006, Int. J. Climatol., 30 (7), 991-1007. http://dx.doi.org/10.1002/joc.1950

Mätlika O., Post P., 2008, Synoptic weather types that have caused heavy precipitation in Estonia in the period 1961-2005, Estonian J. Eng., 14 (3), 195-208.

Nakicenovic N., Alcamo J., Davis G., de Vries B., Fenhann J., Gaffin S., Gregory K., Grübler A., Jung T.Y., Kram T., La Rovere E.L., Michaelis L., Mori S., Morita T., Pepper W., Pitcher H., Price L., Riahi K., Roehrl A., Rogner H.H., Sankovski A., Schlesinger M., Shukla P., Smith S., Swart R., vanRooijen S., Victor N., Dadi Z., 2000, IPCC Special Report on Emissions Scenarios, Cambridge Univ. Press, Cambridge, 599 pp.

Niedźwiedź T., 2003, Extreme precipitation in central Europe and its synoptic background, IGBP Global Change, Warszawa, 10, 15-29.

Oke T.R., 1987, Boundary layer climates, Methuen & Co. Ltd, London, 435 pp.

Pečiūrienė J., 1988, Heavy snowfalls and snowstorms, [in:] Synoptic processes and hazardous weather events in Lithuania and Kaliningrad region, Leningrad, 108-113, (in Russian).

Räisänen J., Hansson U., Ullerstig A., Döscher R., Graham L.P., Jones C., Meier M., Samuelsson P., Willéen U., 2003, GCM Driven Simulations of Recent and Future Climate with the Rossby Centre Coupled Atmosphere - Baltic Sea Regional Climate Model RCAO, SMHI Rep. RMK 101, Swedish Meteorol. Hydrol. Inst., Norrköping, 60 pp.

Räisänen J., Hansson U., Ullerstig A., Döscher R., Graham L.P., Jones C., Meier M., Samuelsson P., Willéen U., 2004, European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios, Clim. Dynam., 22 (1), 13-31. http://dx.doi.org/10.1007/s00382-003-0365-x

Rimkus E., Kažys J., Junevičiūtė J., Stonevičius E., 2007, Climate change predictions for the 21st century in Lithuania, Geography, 43 (2), 37-47, (in Lithuanian).

Roesch A., Jaeger E.B., Lüthi D., Seneviratne S. I., 2008, Analysis of CCLM model biases in relation to intra-ensemble model variability, Meteorol. Z., 17 (4), 369-382. http://dx.doi.org/10.1127/0941-2948/2008/0307

Steppeler J., Domms G., Schättler U., Bitzer H.W., Gassmann A., Damrath U., Gregoric G., 2003, Mesogamma scale forecasts using the nonhydrostatic model LM, Meteorol. Atmos. Phys., 82 (1-4), 75-96, doi: 10.1007/s007803-001-0592-9. http://dx.doi.org/10.1007/s00703-001-0592-9

Tammets T., 2007, Distribution of extreme wet and dry days in Estonia in last 50 years, Proc. Estonian Acad. Sci. Eng., 13 (3), 252-259.

Tammets T., 2010, Estimation of extreme wet and dry days through moving totals in precipitation time series and some possibilities for their consideration in agrometeorological studies, Agron. Res., 8 (Spec. Iss. II), 433-438.

Top Karten Kartenarchiv, 2010, Wetterzentrale, Germany, [http://www.wetterzentrale.de/topkarten].

Tylienė J., 1988, Heavy rains and conditions of their formation, [in:] Synoptic processes and hazardous weather events in Lithuania and Kaliningrad region, Leningrad, 102-107, (in Russian).

Wang J., Zhang X., 2008, Downscaling and projection of winter extreme daily precipitation over North America, J. Climate, 21 (5), 923-937. http://dx.doi.org/10.1175/2007JCLI1671.1

full, complete article (PDF - compatibile with Acrobat 4.0), 1.04 MB


Changes in some elements of the water cycle in the easternmost part of the Baltic Sea Drainage Basin between 1945 and 2010
Oceanologia 2011, 53(1-TI), 279-292
http://dx.doi.org/10.5697/oc.53-1-TI.279

Nina A. Speranskaya
State Hydrological Institute,
St. Petersburg, Russia;
e-mail: speran@mail.rcom.ru
*corresponding author

keywords: soil moisture, pan and visible evaporation, moistening regime changes

Received 6 October 2010, revised 31 January 2011, accepted 10 February 2011.

This research was partly supported by the Russian Foundation for Basic Research within the framework of grant 08-05-00897-a.

Abstract

Soil moisture and evaporation are the most important elements of the terrestrial water cycle. In situ data from 14 stations with soil moisture observations, 13 stations with pan evaporation and 200 stations with precipitation measurements are used to analyse temporal changes in these elements of the terrestrial water cycle over the Russian part of the Baltic Sea Drainage Basin.

  References logo


        It was determined that soil moisture, pan evaporation and visible evaporation have exhibited significant changes during the past 45 years. These changes reflect the non-uniform character of moistening changes over the Russian part of the Baltic Sea region.

BACC - BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud. Ser., Springer, Berlin, Heidelberg, 474 pp.

Baumgartner A., Reichel E., 1975, The world water balance, Elsevier Sci. Publ., Amsterdam, 182 pp.

Bulygina O.N., Razuvaev V.N., Korshunova N.N., 2009, Changes in snow cover over Northern Eurasia in the last few decades, Environ. Res. Lett., 4 (4), doi: 10.1088/1748-9326/4/4/045026. http://dx.doi.org/10.1088/1748-9326/4/4/045026

Golubev V. S., Lawrimore J., Groisman P.Ya., Speranskaya N.A., Zhuravin S.A., Menne M. J., Peterson T.C., Malone R.W., 2001, Evaporation changes over the contiguous United States and the former USSR: A reassessment, Geophys. Res. Lett., 28 (13), 2665-2668. http://dx.doi.org/10.1029/2000GL012851

Groisman P.Y., Gutman G., Reissell A., 2010, Introduction: Climate and land-cover changes in the Arctic, [in:] Arctic land cover and land use in a changing climate: Focus on Eurasia, G. Gutman & A. Reissell (eds.), Springer, Amsterdam, 306 pp.

Guidance for hydrometeorological stations and posts, 1973, Vyp. 11, Gidrometeoiz-dat, Leningrad, 288 pp., (in Russian).

Guidance for hydrometeorological stations and posts. Observations on evaporation from the water surface, 1985, Vyp. 7, Pt. 2, Gidrometeoizdat, Leningrad, 104 pp., (in Russian).

Hagen E., Feistel R., 2005, Climatic turning points and regime shifts in the Baltic Sea region: The Baltic Winter Index (1659-2002), Boreal Environ. Res., 10 (3), 211-224.

Hagen E., Feistel R., 2008, Baltic climate change, [in:] State and evolution of the Baltic Sea, 1952-2005: A detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment, R. Feistel, G. Nausch & N. Wasmund (eds.), John Wiley & Sons, Inc., Hoboken, doi:10.1002/9780470283134.ch5.

HELCOM, 2007, Climate change in the Baltic Sea area - HELCOM thematic assessment in 2007, Baltic Sea Environ. Proc., 111, 49 pp.

IPCC, 2007, Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H. L. Miller (eds.), Cambridge Univ. Press, Cambridge, 996 pp.

Kanamitsu M., Ebisuzaki W., Woollen J., Yang S.-K., Hnilo J. J., Florino M., Potter G. L., 2002, NCEP-DOE AMIP - II reanalysis (R-2), Bull. Am. Meteorol. Soc., 83 (11), 1631-1643. http://dx.doi.org/10.1175/BAMS-83-11-1631

Kistler R., Collins W., Saha S., White G., Woollen J., Kalnay E., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., van den Dool H., Jenne R., Fiorino M., 2001, The NCEP-NCAR 50-year reanalysis: Monthly means, CD-Rom and documentation, Bull. Am. Meteorol. Soc., 82 (2), 247-267. http://dx.doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

Loginov V. F., Volchek A.A., 2006, Water balance of the river basins over Belarus, Tonpic, Minsk, 160 pp., (in Russian).

Meshcherskaya A.V., Iléin B.M., Bogdanova E.G., Golod M.P., Getman I. F., Dragomilova I.V., 2004, Analysis of corrected time series of precipitation in the Volga and Ural basins from 1961 to 1990, Russ. Meteorol. Hydrol., 7, 46-63.

Mikulski Z., 1982, River inflow to the Baltic Sea 1921-1975, PAS, Polish Natl. Committ. IHP, Univ. Warsaw, Fac. Geogr. Reg. Stud., (mimeo).

Robock A., Vinnikov K.Ya., Srinivasan G., Entin J.K., Hollinger S.E., Speranskaya N.A., Liu S., Namkhai A., 2000, The Global Soil Moisture Data Bank, Bull. Am. Meteorol. Soc., 81 (6), 1281-1299. http://dx.doi.org/10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2

Rode A.A., 1965, Basis for the soil moisture study, Gidrometeoizdat, Leningrad, 663 pp., (in Russian).

Shiklomanov I.A., Georgievsky V.Yu., 2002, The influence of anthropogenic climate changes on hydrological regime and water resources, [in:] Climate changes and their consequences, G.V. Menzhulin (ed.), Nauka, St. Petersburg, 202 pp.

The ERA-40 Project Plan, ERA-40 Project Report Series No. 1, 2000, A. J. Simmons & J.K. Gibson (eds.), Eur. Cent. Medium-RangeWeather Forecasts, Reading, 63 pp.

Vuglinsky V. S., Zhuravin S.A., 2001, Long-term variations of inflow to the Gulf of Finland from the Neva River basin and the Lake Ladoga role in its control, Proc. 3rd Study Conf. BALTEX, Int. BALTEX Sec. Publ., 20, 247-248.

full, complete article (PDF - compatibile with Acrobat 4.0), 525 KB


Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic
Oceanologia 2011, 53(1-TI), 293-308
http://dx.doi.org/10.5697/oc.53-1-TI.293

Inga Dailidienė1,*, Henning Baudler2, Boris Chubarenko3, Svetlana Navrotskaya3
1Geopgysical Sciences Department, Coastal Research and Planning Institute,
Klaipėda University, H. Manto 84, Klaipėda 92294, Lithuania;
e-mail: inga.dailidiene@ku.lt
*corresponding author
2Institute for Biosciences (IFBI), Applied Oecology/Biological Station, Rostock University,
Albert-Einstein Str. 3, Rostock 18057, Germany,
Mühlenstr. 27, Ostseeheilbad Zingst 18374, Germany
3Atlantic Branch, P.P. Shirshov Institute of Oceanology,
Russian Academy of Sciences, Prospekt Mira 1, Kaliningrad 236000, Russia

keywords: Baltic Sea lagoons, water level, sea surface temperature, variability, climate changes

Received 6 October 2010, revised 17 February 2011, accepted 17 February 2011.

Abstract

The paper studies variations in the water level and surface temperature of coastal lagoons along the southern and south-eastern shores of the Baltic Sea: the Curonian Lagoon, Vistula Lagoon, and Darss-Zingst Bodden Chain. Linear regressions for annual mean water level variations showed a positive trend in water level, but at different rates. The highest rate during the period between 1961-2008 was recorded for the Curonian and Vistula lagoons (~ 4 mm year-1), the lowest for the Darss-Zingst Bodden Chain (approximately ~ 1 mm year-1). The warming trend of the mean surface water temperature in the lagoons was 0.03°C year-1 in the period 1961-2008. Moreover, the variability in annual water temperature and sea level as well as their extreme values have increased most dramatically since the 1980s.

  References logo

Climate Atlas of Russian Seas and Key regions of the World Ocean/The Baltic Sea, Obninsk, 2007, (http://data.oceaninfo.ru/atlas/Balt/5-1.html), (in Russian).

BACC - BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud. Ser., Springer, Berlin, Heidelberg, 474 pp.

Bates B.C., Kundzewicz Z.W., Wu S., Palutikof J.P. (eds.), 2008, Climate change and water, IPCC technical paper VI, IPCC Sec., Geneva, 210 pp.

Bukantis A., Gulbinskas Z., Kazakevi.cius S., Kilkus K., Mikelinskienė A., Morkūnaitė R., Rimkus E., Samuila M., Stankūnavi.cius G., Valiuškevi.cius G., .Zaromskis R., 2001, The influence of climatic variations on physical geographical processes in Lithuania, Inst. Geogr., Vilnius Univ., 280 pp., (in Lithuanian with English summary).

Christiansen J., Bartoldy J., Hansen T., Lillie S., Nielsen J., Nielsen N., Pejrup M., 2001, Salt marsh accretion during sea-level rise and outlook on the future, [in:] Climate change research. Danish contributions, A.M. Jorgensen, J. Fenger & K. Halsnas (eds.), Danish Climate Centre, Copenhagen, 263-276.

Chubarenko B., Chubarenko I., Baudler H., 2005, Comparison of Darss-Zingst Bodden Chain and Vistula Lagoon (Baltic Sea) in a view of hydrodynamic numerical modelling, Baltica, 18 (2), 56-67.

Chubarenko B., Margonski P., 2008, The Vistula Lagoon, [in:] Ecology of Baltic coastal waters, U. Schiewer (ed.), Ecol. Stud. 197, 167-195.

Collilieux X., Wöppelmann G., 2011, Global sea-level rise and its relation to the terrestrial reference frame, J. Geodesy, 85 (1), 9-22, doi: 10.1007/s00190-010-0412-4. http://dx.doi.org/10.1007/s00190-010-0412-4

Coppini G., Pinardi N., Marullo S., Loewe P., 2007, Sea surface temperature, Compiled for EEA by the Instituto Nazionale di Geofisica e Vulcanologia (INGV) based on datasets made available by the Hadley Center, HADISST1: http://hadobs.metoffice.com/hadisst/data/download.html.

Dailidienė I., Davulienė L., 2008, Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984.2005, J. Marine Syst., 74 (Suppl. 1), 20-29. http://dx.doi.org/10.1016/j.jmarsys.2008.01.014

Dailidienė I., Davulienė L., Tilickis B., Stankevi.cius A., Myrberg K., 2006, Sea level variability at the Lithuanian coast of the Baltic Sea, Boreal Environ. Res., 11 (2), 109-121.

Ekman M., 2003, The world's longest sea level series and winter oscillation index for Northern Europe 1774.2000, Small Publ. Historical Geophys., 12, 31 pp.

Ekman M., 2009, The changing level of the Baltic Sea during 300 years: a clue to understanding the Earth, Summer Inst. Historical Geophys., Åland Islands, 146 pp.

Fenger J., Buch E., Jacobsen P.R., 2001, Monitoring and impacts of sea level rise at Danish coasts and near shore infrastructures, [in:] Climate change research. Danish contributions, A.M. Jorgensen, J. Fenger & K. Halsnas (eds.), Danish Climate Centre, Copenhagen, 237-254.

Gailiušis B., Jablonskis J., Kovalenkovienė M., 2001, Lithuanian rivers: hydrography and runoff, Lithuanian Energy Inst., Kaunas, 792 pp., (in Lithuanian with English summary).

Gasiūnaite Z.R., Daunys D., Olenin S., Razinkovas A., 2008, The Curonian Lagoon, [in:] Ecology of Baltic coastal waters, U. Schiewer (ed.), Ecol. Stud. 197, 197-216.

Hurrell J.W., 1995, Decadal trends in the North Atlantic Oscillation. Regional temperatures and precipitation, Science, 269 (5224), 676-679. http://dx.doi.org/10.1126/science.269.5224.676   PMid:17758812

IPCC, 2007, Climate change 2007: The physical science basis, Summary for Policymakers, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor & H. L. Miller (eds.), Cambridge Univ. Press, Cambridge, 18 pp.

Jensen J., Mudersbach Ch., 2004, Zeitliche Änderungen in den Wasserstandszeitreihen an den Deutschen Küsten, [in:] KlimaÄnderung und Küstenschutz, G. Gönnert, H. Grasl, D. Kelletat, H. Kunz, B. Probst, H. von Storch & J. Sündermann (eds.), Proc. Unveröffentlichter Tagungsband der Tagung vom 29.30.11.2004, Eigenverlag, Univ. Hamburg, Hamburg.

Johansson M.M., Kahma K.K., Boman H., Launiainen J., 2004, Scenarios for sea level on the Finnish coast, Boreal Environ. Res., 9 (2), 153-166.

Kahma K.K., Boman H., Johansson M.M., Launiainen J., 2003, The North Atlantic oscillation and sea level variations in the Baltic Sea, ICES Mar. Sci., 219, 365-366.

Kalas M., 1993, Characteristic of sea level changes on the Polish Coast of the Baltic Sea in the last forty-five years, Int.Workshop Sea Level Chang.Water Manag., 19-23 April 1993, Noorsdwijerhout, the Netherlands, 51-61.

Lehmann A., Getzlaff K., Herlas J., 2010, Detailed assessment of climate variability of the Baltic Sea area for the period 1958.2009, 6th BALTEX Conf. Proc., M. Reckermann & H.-J. Isemer (eds.), Publ. No. 46 (ISSN 1681-6471), Int. BALTEX Sec., Geesthacht, 28-29.

Schernewski G., Schiewer U., 2002, Status, problems and integrated management of the Baltic Sea ecosystems, [in:] Baltic coastal ecosystems: structure, function and coastal zone management, G. Schernewski & U. Schiewer (eds.), Springer, Berlin, Heidelberg, 1-16.

Schiewer U., 2002, Recent changes in Northern German lagoons with special reference to eutrophication, [in:] Baltic coastal ecosystems: structure, function and coastal zone management, G. Schernewski & U. Schiewer (eds.), Springer, Berlin, Heidelberg, 19-30.

Schlungbaum G., Baudler H., 2000, Struktur und Funktion der KüstengewÄsser, [in:] Aquatische Systeme, R. Guderian & G. Gunkel (eds.), Springer-Verlag, Berlin, Heidelberg, New York, 45-80.

Schumann R., Baudler H., Glass Ä., Dümcke K., Karsten U., 2006, Long-term observations on salinity dynamics in a tideless shallow coastal lagoon of the Southern Baltic Sea coast and their biological relevance, J. Marine Syst., 60 (3.4), 330-344.

Siegel H., Gerth M., Tschersich G., 2006, Sea surface temperature development of the Baltic Sea in the period 1990.2004, Oceanologia, 48 (S), 119-131.

Stigge H. J., 1993, Sea level changes and high-water probability on the German Baltic coast, Int. Workshop Sea Level Chang. Water Manag., 19.23 April 1993, Noorsdwijerhout, the Netherlands, 19-29.

Suursaar Ü., Jaagus J., Kullas T., 2006, Past and future changes in sea level near the Estonian coast in relation to changes in wind climate, Boreal Environ. Res., 11 (2), 123-142.

Vestøl O., 2006, Determination of postglacial land uplift in Fennoscandia from leveling, tide-gauges and continuous GPS stations using least squares collocation, J. Geodesy, 80 (5), 248-258. http://dx.doi.org/10.1007/s00190-006-0063-7

Wöppelmann G., Letretel C., Santamaría A., Bouin M.-N., Collilieux X., Altamimi Z., Williams S., Míguez B.M., 2009, Rates of sea level change over the past century in a geocentric reference frame, Geophys. Res. Lett., 36 (L12607). http://dx.doi.org/10.1029/2009GL038720

Žaromskis R., 1996, Oceans, seas, estuaries, Debesija, Vilnius, 293 pp., (in Lithuanian with English summary).

full, complete article (PDF - compatibile with Acrobat 4.0), 574 KB


The role of the spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment
Oceanologia 2011, 53(1-TI), 309-334
http://dx.doi.org/10.5697/oc.53-1-TI.309

Oleg Andrejev1, Tarmo Soomere2,*, Alexander Sokolov3, Kai Myrberg3
1Finnish Environment Institute, Marine Research Centre,
P.O. Box 140, Helsinki 00251, Finland
2Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, Tallinn 12618, Estonia;
e-mail: soomere@cs.ioc.ee
*corresponding author
3Baltic Nest Institute, Stockholm Resilience Centre, Stockholm University,
Stockholm 10691, Sweden

keywords: ocean modelling, environmental risks, risk modelling, Gulf of Finland, Baltic Sea, pollution propagation, maritime spatial planning

Received 6 October 2010, revised 31 January 2011, accepted 5 February 2011.

This study was supported by funding from the European Community's Seventh Framework Programme (FP/2007-2013) under grant agreement No. 217246 made with the joint Baltic Sea research and development programme BONUS for the BalticWay project, which attempts to reduce the risk of vulnerable sea areas being polluted by placing potentially dangerous activities in specific offshore regions. The research was partially supported by targeted financing from the Estonian Ministry of Education and Science (grants SF0140077s08 and SF0140007s11) and the Estonian Science Foundation (grant No. 7413).

Abstract

The paper addresses the sensitivity of a novel method for quantifying the environmental risks associated with the current-driven transport of adverse impacts released from offshore sources (e.g. ship traffic) with respect to the spatial resolution of the underlying hydrodynamic model. The risk is evaluated as the probability of particles released in different sea areas hitting the coast and in terms of the time after which the hit occurs (particle age) on the basis of a statistical analysis of large sets of 10-day long Lagrangian trajectories calculated for 1987-1991 for the Gulf of Finland, the Baltic Sea. The relevant 2D maps are calculated using the OAAS model with spatial resolutions of 2, 1 and 0.5 nautical miles (nm) and with identical initial, boundary and forcing conditions from the Rossby Centre 3D hydrodynamic model (RCO, Swedish Meteorological and Hydrological Institute). The spatially averaged values of the probability and particle age display hardly any dependence on the resolution. They both reach almost identical stationary levels (0.67-0.69 and ca 5.3 days respectively) after a few years of simulations. Also, the spatial distributions of the relevant fields are qualitatively similar for all resolutions. In contrast, the optimum locations for fairways depend substantially on the resolution, whereas the results for the 2 nm model differ considerably from those obtained using finer-resolution models. It is concluded that eddy-permitting models with a grid step exceeding half the local baroclinic Rossby radius are suitable for a quick check of whether or not any potential gain from this method is feasible, whereas higher-resolution simulations with eddy-resolving models are necessary for detailed planning. The asymptotic values of the average probability and particle age are suggested as an indicator of the potential gain from the method in question and also as a new measure of the vulnerability of the nearshore of water bodies to offshore traffic accidents.

  References logo

Albretsen J., Roed L.P., 2010, Decadal simulations of mesoscale structures in the northern North Sea/Skagerrak using two ocean models, Ocean Dynam., 60 (4), 933–955. http://dx.doi.org/10.1007/s10236-010-0296-0

Alenius P., Nekrasov A., Myrberg K., 2003, Variability of the baroclinic Rossby radius in the Gulf of Finland, Cont. Shelf Res., 23 (6), 563–573.
http://dx.doi.org/10.1016/S0278-4343(03)00004-9

Andrejev O., Myrberg K., Alenius P., Lundberg P.A., 2004a, Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modelling, Boreal nviron. Res., 9 (1), 1–16.

Andrejev O., Myrberg K., Lundberg P.A., 2004b, Age and renewal time of water masses in a semi-enclosed basin – application to the Gulf of Finland, Tellus A, 56 (5), 548–558. http://dx.doi.org/10.1111/j.1600-0870.2004.00067.x

Andrejev O., Sokolov A., 1989, Numerical modelling of the water dynamics and passive pollutant transport in the Neva inlet, Meteorol. Hydrol., 12, 75–85, (in Russian).

Andrejev O., Sokolov A., 1990, 3D baroclinic hydrodynamic model and its applications to Skagerrak circulation modelling, Proc. 17th Conf. Baltic Oceanogr., Norrköping, Sweden, 38–46.

Andrejev O., Sokolov A., Soomere T., Värv R., Viikmäe B., 2010, The use of high-resolution bathymetry for circulation modelling in the Gulf of Finland, Estonian J. Eng., 16 (3), 187–210. http://dx.doi.org/10.3176/eng.2010.3.01

Bergström S., Carlsson B., 1994, River runoff to the Baltic Sea: 1950–1990, Ambio, 23 (4–5), 280–287.

Blanke B., Raynard S., 1997, Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagrangian approach from GCM results, J. Phys. Oceanogr., 27 (6), 1038–1053. http://dx.doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2

de Vries P., Döös K., 2001, Calculating Lagrangian trajectories using time-dependent velocity fields, J. Atmos. Ocean. Tech., 18 (6), 1092–1101. http://dx.doi.org/10.1175/1520-0426(2001)018<1092:CLTUTD>2.0.CO;2

Döös K., 1995, Inter-ocean exchange of water masses, J. Geophys. Res.–Oceans, 100 (C7), 13 499–13 514.

Eide M. S., Endresen O., Brett P.O., Ervik J.L., Roang K., 2007, Intelligent ship traffic monitoring for oil spill prevention: risk based decision support building on AIS, Mar. Pollut. Bull., 54 (2), 145–148. http://dx.doi.org/10.1016/j.marpolbul.2006.11.004   PMid:17178131

Engqvist A., Döös K., Andrejev O., 2006, Modeling water exchange and contaminant transport through a Baltic coastal region, Ambio, 35 (6), 435–447.
http://dx.doi.org/10.1579/0044-7447(2006)35[435:MWEACT]2.0.CO;2

Gästgifvars M., Lauri H., Sarkanen A.-K., Myrberg K., Andrejev O., Ambjörn C., 2006, Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea, Estuar. Coast. Shelf Sci., 70 (4), 567–576. http://dx.doi.org/10.1016/j.ecss.2006.06.010

Havens H., Luther M.E., Meyers S.D., Heil C.A., 2010, Lagrangian particle tracking of a toxic dinoflagellate bloom within the Tampa Bay estuary, Mar. Pollut. Bull., 60 (12), 2233–2241. http://dx.doi.org/10.1016/j.marpolbul.2010.08.013   PMid:20825953

HELCOM, 2009, Ensuring safe shipping in the Baltic, M. Stankiewicz & N. Vlasov (eds.), Helsinki Comm., Helsinki, 18 pp.

Kachel M. J., 2008, Particularly sensitive sea areas, Hamburg Stud. Marit. Aff. Vol. 13, Springer, Berlin, 376 pp. http://dx.doi.org/10.1007/978-3-540-78779-2

Kokkonen T., Ihaksi T., Jolma A., Kuikka S., 2010, Dynamic mapping of nature values to support prioritization of coastal oil combating, Environ. Modell. Softw., 25 (2), 248–257. http://dx.doi.org/10.1016/j.envsoft.2009.07.017

Kurennoy D., Soomere T., Parnell K.E., 2009, Variability in the properties of wakes generated by high-speed ferries, J. Coastal Res., 56 (Spec. Iss.), 519–523.

Lehmann A., 1995, A three-dimensional baroclinic eddy-resolving model of the Baltic Sea, Tellus A, 47 (5), 1013–1031. http://dx.doi.org/10.1034/j.1600-0870.1995.00206.x

Lehmann M.P., Sorg°ard E., 2000, Consequence model for ship accidents, ESREL 2000, SARS and SRA-Europe Annual Conf. 17 May 2000, Edinburgh, UK.

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Praxis, Berlin, Heidelberg, New York, 378 pp.

Meier H.E.M., Döscher R., Faxéen T., 2003, A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow, J. Geophys. Res., 108 (C8), 3273. http://dx.doi.org/10.1029/2000JC000521

Myrberg K., Ryabchenko V., Isaev A., Vankevich R., Andrejev O., Bendtsen J., Erichsen A., Funkquist L., Inkala A., Neelov I., Rasmus K., Rodriguez Medina M., Raudsepp U., Passenko J., Söderkvist J., Sokolov A., Kuosa H., Anderson T.R., Lehmann A., Skogen M.D., 2010, Validation of three-dimensional hydrodynamic models in the Gulf of Finland based on a statistical analysis of a six-model ensemble, Boreal Environ. Res., 15 (5), 453–479.

Parnell K.E., Delpeche N., Didenkulova I., Dolphin T., Erm A., Kask A., Kelpšaitė L., Kurennoy D., Quak E., Räämet A., Soomere T., Terentjeva A., Torsvik T., Zaitseva-Pärnaste I., 2008, Far-field vessel wakes in Tallinn Bay, Estonian J. Eng., 14 (4), 273–302. http://dx.doi.org/10.3176/eng.2008.4.01

Samuelsson P., Jones C.G.,Willéen U., Ullerstig A., Gollvik S., Hansson U., Jansson C., Kjellström E., Nikulin G., Wyser K., 2011, The Rossby Centre Regional Climate Model RCA3: model description and performance, Tellus A, 63 (1), 4–23. http://dx.doi.org/10.1111/j.1600-0870.2010.00478.x

Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea, Baltic Sea Science Congress, Stockholm 25–29 November 2001, Poster No. 147, Abstr. Vol., 2nd edn., [http://www.io-warnemuende. de/iowtopo].

Soomere T., Andrejev O., Sokolov A., Myrberg K., 2011a, The use of Lagrangian trajectories for identification the environmentally safe fairway, Mar. Pollut. Bull., 63. http://dx.doi.org/ 10.1016/j.marpolbul.2011.04.041

Soomere T., Berezovski M., Quak E., Viikmäe B., 2011b, Modeling environment-ally friendly fairways in elongated basins using Lagrangian trajectories: a case study for the Gulf of Finland, the Baltic Sea, Ocean Dynam., 61. http://dx.doi.org/ 10.1007/s10236-011-0439-y

Soomere T., Delpeche N., Viikmäe B., Quak E., Meier H. E.M., Döös K., 2011c, Patterns of current-induced transport in the surface layer of the Gulf of Finland, Boreal Environ. Res., 16 (Suppl. A), 49–63.

334 O. Andrejev, T. Soomere, A. Sokolov, K. Myrberg Soomere T., Myrberg K., Leppäranta M., Nekrasov A., 2008, The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997 –2007, Oceanologia, 50 (3), 287–362.

Soomere T., Quak E., 2007, On the potential of reducing coastal pollution by a proper choice of the fairway, J. Coastal Res., 50 (Spec. Iss.), 678–682.

Soomere T., Viikmäe B., Delpeche N., Myrberg K., 2010, Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea, Proc. Estonian Acad. Sci., 59 (2), 156–165. http://dx.doi.org/10.3176/proc.2010.2.15

Viikmäe B., Soomere T., Viidebaum M., Berezovski A., 2010, Temporal scales for transport patterns in the Gulf of Finland, Estonian J. Eng., 16 (3), 211–227. http://dx.doi.org/10.3176/eng.2010.3.02

full, complete article (PDF - compatibile with Acrobat 4.0), 2.50 MB


Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland
Oceanologia 2011, 53(1-TI), 335-371
http://dx.doi.org/10.5697/oc.53-1-TI.335

Tarmo Soomere*, Andrus Räämet
Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, Tallinn 12618, Estonia;
e-mail: soomere@cs.ioc.ee
*corresponding author

keywords: wind waves, wave modelling, wave observations, wave climate, Baltic Sea

Received 6 October 2010, revised 15 March 2011, accepted 30 March 2011.

This study was supported by the Estonian Science Foundation (grant No. 7413), targeted financing by the Estonian Ministry of Education and Research (grants SF0140077s08 and SF0140007s11) and partially performed within the framework of the BalticWay project, which is supported by funding from the European Community's Seventh Framework Programme (FP/2007-2013) under grant agreement No. 217246 made with the joint Baltic Sea research and development programme BONUS.

Abstract

We make an attempt to consolidate results from a number of recent studies into spatial patterns of temporal variations in Baltic Sea wave properties. The analysis is based on historically measured and visually observed wave data, which are compared with the results of numerical hindcasts using both simple fetch-based one-point models and contemporary spectral wave models forced with different wind data sets. The focus is on the eastern regions of the Baltic Sea and the Gulf of Finland for which long-term wave data sets are available. We demonstrate that a large part of the mismatches between long-term changes to wave properties at selected sites can be explained by the rich spatial patterns in changes to the Baltic Sea wave fields that are not resolved by the existing wave observation network. The spatial scales of such patterns in the open sea vary from > 500 km for short-term interannual variations down to about 100 km for long-term changes.

  References logo

Alexandersson H., Tuomenvirta H., Schmith T., Iden K., 2000, Trends of storms in NW Europe derived from an updated pressure data set, Clim. Res., 14 (1), 71–73. http://dx.doi.org/10.3354/cr014071

BACC – BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud. Ser., Springer, Berlin, Heidelberg, 473 pp.

Bergström S., Alexandersson H., Carlsson B., Josefsson W., Karlsson K.-G., Westring G., 2001, Climate and hydrology of the Baltic Basin, [in:] A systems analysis of the Baltic Sea, F. Wulff, L. Rahm & P. Larsson (eds.), Ecol. Stud., 148, Springer, Berlin, Heidelberg, 75–112.

Blomgren S., Larson M., Hanson H., 2001, Numerical modeling of the wave climate in the Southern Baltic Sea, J. Coastal Res., 17 (2), 342–352.

Broman B., Hammarklint T., Rannat K., Soomere T., Valdmann A., 2006, Trends and extremes of wave fields in the north-eastern part of the Baltic Proper, Oceanologia, 48 (S), 165–184.

Bumke K., Hasse L., 1989, An analysis scheme for determination of true surface winds at sea from ship synoptic wind and pressure observations, Bound.-Lay. Meteorol., 47 (1–4), 295–308. http://dx.doi.org/10.1007/BF00122335

Cieślikiewicz W., Herman A., 2002, Numerical modelling of waves and currents over the Baltic Sea and the Gulf of Gdańsk, Proc. 5th Int. Conf. Hydro-Sci. Eng., Warsaw, Poland.

Cieślikiewicz W., Paplińska-Swerpel B., 2008, A 44-year hindcast of wind wave fields over the Baltic Sea, Coast. Eng., 55 (11), 894–905. http://dx.doi.org/10.1016/j.coastaleng.2008.02.017

Gulev S.K., Grigorieva V., Sterl A., Woolf D., 2003, Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data, J. Geophys. Res., 108 (C7), 3236. http://dx.doi.org/10.1029/2002JC001437

Gulev S.K., Hasse L., 1998, North Atlantic wind waves and wind stress fields from voluntary observing ship data, J. Phys. Oceanogr., 28 (6), 1107–1130. http://dx.doi.org/10.1175/1520-0485(1998)028<1107:NAWWAW>2.0.CO;2

Gulev S.K., Hasse L., 1999, Changes of wind waves in the North Atlantic over the last 30 years, Int. J. Climatol., 19 (10), 1091–1117. http://dx.doi.org/10.1002/(SICI)1097-0088(199908)19:10<1091::AID-JOC403>3.0.CO;2-U

Häggmark L., Ivarsson K.-I., Gollvik S., Olofsson P.-O., 2000, MESAN, an operational mesoscale analysis system, Tellus A, 52 (1), 2–20. http://dx.doi.org/10.1034/j.1600-0870.2000.520102.x

Jaagus J., 2009, Pikaajalised muutused tuule suundade korduvuses Eesti läänerannikul [Long-term changes in frequencies of wind directions on the western coast of Estonia], Inst. Ecol., Tallinn Univ. Publ., 11, 11–24.

Jönsson A., Broman B., Rahm L., 2002, Variations in the Baltic Sea wave fields, Ocean Eng., 30 (1), 107–126.

Jönsson A., Danielsson å., Rahm L., 2005, Bottom type distribution based on wave friction velocity in the Baltic Sea, Cont. Shelf Res., 25 (3), 419–435. http://dx.doi.org/10.1016/j.csr.2004.09.011

Kahma K., Pettersson H., 1993, Wave statistics from the Gulf of Finland, Int. Rep. 1/1993, Finn. Inst. Mar. Res., Helsinki, (in Finnish with English summary).

Kahma K., Pettersson H., Tuomi L., 2003, Scatter diagram wave statistics from the northern Baltic Sea, MERI – Rep. Ser. Finn. Inst. Mar. Res., 49, 15–32.

Kahma K., Rantanen E., Saarinen J., 1983, Wave data from the southern Bothnian Sea 1973–1975, 1981, Int. Rep. 1/83, Finn. Inst. Mar. Res., 26 pp.

Keevallik S., Soomere T., 2008, Shifts in early spring wind regime in North-East Europe (1955–2007), Clim. Past, 4 (3), 147–152. http://dx.doi.org/10.5194/cp-4-147-2008

Keevallik S., Soomere T., 2010, Towards quantifying variations in wind parameters across the Gulf of Finland, Estonian J. Earth Sci., 59 (4), 288–297.

Kelpšaitė L., Dailidienė I., Soomere T., 2011, Changes in wave dynamics at the south-eastern coast of the Baltic Proper during 1993–2008, Boreal Environ. Res., 16 (Suppl. A), 220–232.

Kelpšaitė L., Herrmann H., Soomere T., 2008, Wave regime differences along the eastern coast of the Baltic Proper, Proc. Estonian Acad. Sci., 57 (4), 225–231. http://dx.doi.org/10.3176/proc.2008.4.04

Kelpšaitė L., Parnell K.E., Soomere T., 2009, Energy pollution: the relative importance of wind-wave and vessel-wake energy in Tallinn Bay, the Baltic Sea, J. Coastal Res., SI 56, 812–816.

Klimienė V., 1999, Meteorological stations in Lithuania 1777–1997, Lithuanian Hydrometeorol. Dept., Vilnius, (in Lithuanian). Komen G. J., Cavaleri L., Donelan M., Hasselmann K., Hasselmann S., Janssen P.A.E.M., 1994, Dynamics and modelling of ocean waves, Cambridge Univ. Press, New York, 554 pp.

Kriezi E.E., Broman B., 2008, Past and future wave climate in the Baltic Sea produced by the SWAN model with forcing from the regional climate model RCA of the Rossby Centre, IEEE/OES US/EU – Baltic Int. Symp., May 27– 29, 2008, Tallinn, Estonia, IEEE, 360–366.

Kull A., 2005, Relationship between interannual variation of wind direction and wind speed, Publ. Inst. Geogr. Univ. Tartuensis, 97, 62–73.

Laanearu J., Koppel T., Soomere T., Davies P.A., 2007, Joint influence of river stream, water level and wind waves on the height of sand bar in a river mouth, Nord. Hydrol., 38 (3), 287–302. http://dx.doi.org/10.2166/nh.2007.012

Laanemets J., Zhurbas V., Elken J., Vahtera E., 2009, Dependence of upwelling-mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments, Boreal Environ. Res., 14 (1), 213–225.

Launiainen J., Laurila T., 1984, Marine wind characteristics in the northern Baltic Sea, Finn. Mar. Res., 250, 52–86.

Leppäranta M., Myrberg K., 2009, Physical oceanography of the Baltic Sea, Springer Praxis, Berlin, Heidelberg, 378 pp.

Lopatukhin L. I., Bukhanovsky A.V., Ivanov S.V., Tshernyshova E. S. (eds.), 2006a, Handbook of wind and wave regimes in the Baltic Sea, North Sea, Black Sea, Azov Sea and the Mediterranean, Russian Shipping Registry, St. Petersburg, 450 pp., (in Russian).

Lopatukhin L. I., Mironov M.E., Pomeranets K. S., Trapeznikov E. S., Tshernõsheva E. S., 2006b, Estimates of extreme wind and wave conditions in the eastern part of the Gulf of Finland, Proc. BNIIG, 245, 145–155, (in Russian).

Mårtensson N., Bergdahl L., 1987, On the wave climate of the Southern Baltic, Rep. Ser. A, 15, Chalmers Univ. Technol., Göteborg.

Mietus M. (ed.), 1998, The climate of the Baltic Sea Basin. Marine meteorology and related oceanographic activities, Rep. No. 41, World Meteorol. Org., Geneva, 64 pp.

Mietus M., von Storch H., 1997, Reconstruction of the wave climate in the Proper Baltic Basin, April 1947–March 1988, GKSS Rep. 97/E/28, Geesthacht.

Myrberg K., Ryabchenko V., Isaev A., Vankevich R., Andrejev O., Bendtsen J., Erichsen A., Funkquist L., Inkala A., Neelov I., Rasmus K., Rodriguez Medina M., Raudsepp U., Passenko J., Söderkvist J., Sokolov A., Kuosa H., Anderson T.R., Lehmann A., Skogen M.D., 2010, Validation of three-dimensional hydrodynamic models of the Gulf of Finland, Boreal Environ. Res., 15 (5), 453–479.

Orlenko L.R., Lopatukhin L. I., Portnova G. L. (eds.), 1984, Studies of the hydrometeorological regime of Tallinn Bay, Gidrometeoizdat, Leningrad, 152 pp., (in Russian).

Orviku K., Jaagus J., Kont A., Ratas U., Rivis R., 2003, Increasing activity of coastal processes associated with climate change in Estonia, J. Coastal Res., 19 (2), 364–375.

Paplińska B., 1999, Wave analysis at Lubiatowo and in the Pomeranian Bay based on measurements from 1997/1998 – comparison with modelled data (WAM4 model), Oceanologia, 41 (2), 241–254.

Paplińska B., 2001, Specific features of sea waves in the Pomeranian Bay, Arch. Hydro-Eng. Environ. Mech., 48 (2), 55–72.

Pettersson H., 1994, Directional wave statistics from the southern Bothnian Sea 1992, Int. Rep., 1994 (5), Finn. Inst. Mar. Res., 23 pp.

Pettersson H., 2001, Directional wave statistics from the Gulf of Finland 1990–1994, MERI – Rep. Ser. Finn. Inst. Mar. Res., 44, 3–37, (in Finnish).

Pettersson H., 2004, Wave growth in a narrow bay, Ph. D. thesis, Finn Inst. Mar. Res., Contrib. No. 9.

Pettersson H., Kahma K.K., Tuomi L., 2010, Predicting wave directions in a narrow bay, J. Phys. Oceanogr., 40 (1), 155–169. http://dx.doi.org/10.1175/2009JPO4220.1

Pryor S.C., Barthelmie R. J., 2003, Long-term trends in near-surface flow over the Baltic, Int. J. Climatol., 23 (3), 271–289. http://dx.doi.org/10.1002/joc.878

Pryor S.C., Barthelmie R. J., 2010, Climate change impacts on wind energy: a review, Renew. Sust. Energ. Rev., 14 (1), 430–437. http://dx.doi.org/10.1016/j.rser.2009.07.028

Räämet A., Soomere T., 2010a, The wave climate and its seasonal variability in the northeastern Baltic Sea, Estonian J. Earth Sci., 59 (1), 100–113.

Räämet A., Soomere T., 2010b, A reliability study of wave climate modelling in the Baltic Sea, [in:] Proceedings of 6th Study Conference on BALTEX, 14–18 June 2010, Międzyzdroje, Island of Wolin, Poland, M. Reckermann & H.-J. Isemer (eds.), Publ. No. 46 (ISSN 1681-6471), Int. BALTEX Sec., Geesthacht, 71–72.

Räämet A., Soomere T., Zaitseva-Pärnaste I., 2010, Variations in extreme wave heights and wave directions in the north-eastern Baltic Sea, Proc. Estonian Acad. Sci., 59 (2), 182–192. http://dx.doi.org/10.3176/proc.2010.2.18

Räämet A., Suursaar Ü., Kullas T., Soomere T., 2009, Reconsidering uncertainties of wave conditions in the coastal areas of the northern Baltic Sea, J. Coastal Res., SI 56, 257–261.

Rzheplinsky G.V. (ed.), 1965, Wave and wind atlas for the Baltic Sea, Gidrometeoizdat, Leningrad, (in Russian).

Rzheplinsky G.V., Brekhovskikh Yu.P., 1967, Wave atlas for Gulf of Finland, Gidrometeoizdat, Leningrad, (in Russian).

Ryabchuk D., Kolesov A., Chubarenko B., Spiridonov M., Kurennoy D., Soomere T., 2011, Coastal erosion processes in the eastern Gulf of Finland and their links with geological and hydrometeorological factors, Boreal Environ. Res., 16 (Suppl. A), 117–137.

Ryabchuk D., Sukhacheva L., Spiridonov M., Zhamoida V., Kurennoy D., 2009, Coastal processes in the Eastern Gulf of Finland – possible driving forces and connection with the near-shore zone development, Estonian J. Eng., 15 (3), 151–167. http://dx.doi.org/10.3176/eng.2009.3.01

Seymour R. J., 1977, Estimating wave generation in restricted fetches, J. ASME WW2, May 1977, 251–263.

Sooäär J., Jaagus J., 2007, Long-term variability and changes in the sea ice regime in the Baltic Sea near the Estonian coast, Proc. Estonian Acad. Sci. Eng., 13 (3), 189–200.

Soomere T., 2001, Extreme wind speeds and spatially uniform wind events in the Baltic Proper, Proc. Estonian Acad. Sci. Eng., 7 (3), 195–211.

Soomere T., 2003, Anisotropy of wind and wave regimes in the Baltic Proper, J. Sea Res., 49 (4), 305–316. http://dx.doi.org/10.1016/S1385-1101(03)00034-0

Soomere T., 2005, Wind wave statistics in Tallinn Bay, Boreal Environ. Res., 10 (2), 103–118.

Soomere T., 2008, Extremes and decadal variations of the northern Baltic Sea wave conditions, [in:] Extreme ocean waves, E. Pelinovsky & C. Kharif (eds.), Springer, 139–157.

Soomere T., Behrens A., Tuomi L., Nielsen J.W., 2008a, Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun, Nat. Hazard. Earth Sys., 8 (1), 37–46. http://dx.doi.org/10.5194/nhess-8-37-2008

Soomere T., Healy T., 2008, Extreme wave and water level conditions in the Baltic Sea in January 2005 and their reflection in teaching of coastal engineering, [in:] Solutions to coastal disasters 2008, L. Wallendorf, L. Ewing, C. Jones & B. Jaffe (eds.), American Soc. Civil Eng., 129–138.

Soomere T., Keevallik S., 2001, Anisotropy of moderate and strong winds in the Baltic Proper, Proc. Estonian Acad. Sci. Eng., 7 (1), 35–49.

Soomere T., Keevallik S., 2003, Directional and extreme wind properties in the Gulf of Finland, Proc. Estonian Acad. Sci. Eng., 9 (2), 73–90.

Soomere T., Myrberg K., Leppäranta M., Nekrasov A., 2008b, The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007, Oceanologia, 50 (3), 287–362.

Soomere T., Räämet A., 2011, Long-term spatial variations in the Baltic Sea wave fields, Ocean Sci., 7 (1), 141–150. http://dx.doi.org/10.5194/os-7-141-2011

Soomere T., Zaitseva I., 2007, Estimates of wave climate in the northern Baltic Proper derived from visual wave observations at Vilsandi, Proc. Estonian Acad. Sci. Eng., 13 (1), 48–64.

Soomere T., Zaitseva-Pärnaste I., Räämet A., 2011, Variations in wave conditions in Estonian coastal waters from weekly to decadal scales, Boreal Environ. Res., 16 (Suppl. A), 175–190.

Soomere T., Zaitseva-Pärnaste I., Räämet A., Kurennoy D., 2010, Spatio-temporal variations of wave fields in the Gulf of Finland, Fund. Appl. Hydrodyn., 4 (10), 90–101, (in Russian).

Sterl A., Caires S., 2005, Climatology, variability and extrema of ocean waves – the web-based KNMI/ERA-40 wave atlas, Int. J. Climatol., 25 (7), 963–977. http://dx.doi.org/10.1002/joc.1175

Suursaar Ü., 2010, Waves, currents and sea level variations along the Letipea–Sillamäe coastal section of the southern Gulf of Finland, Oceanologia, 52 (3), 391–416.

Suursaar Ü., Kullas T., 2009a, Decadal changes in wave climate and sea level regime: the main causes of the recent intensification of coastal geomorphic processes along the coasts of Western Estonia?, Coastal Proc., WIT Trans. Ecol. Environ., Vol. 126, 105–116.

Suursaar Ü., Kullas T., 2009b, Decadal variations in wave heights near the Cape Kelba, Saaremaa Island, and their relationships with changes in wind climate, Oceanologia, 51 (1), 39–61.

Tuomi L., Pettersson H., Kahma K., 1999, Preliminary results from the WAM wave model forced by the mesoscale EUR-HIRLAM atmospheric model, Rep. Ser. Finn. Inst. Mar. Res., 40, 19–23.

Zaitseva-Pärnaste I., Suursaar Ü., Kullas T., Lapimaa S., Soomere T., 2009, Seasonal and long-term variations of wave conditions in the northern Baltic Sea, J. Coastal Res., S I 56, 277–281.

Weisse R., Günther H., 2007,Wave climate and long-term changes for the Southern North Sea obtained from a high-resolution hindcast 1958–2002, Ocean Dynam., 57 (3), 161–172. http://dx.doi.org/10.1007/s10236-006-0094-x

Weisse R., von Storch H., 2010, Marine climate and climate change. Storms, wind waves and storm surges, Springer, Berlin, Heidelberg, 220 pp.

WMO, 2001, WMO guide to the applications to marine climatology 2001, WMO Publ. No. 781, Geneva.

full, complete article (PDF - compatibile with Acrobat 4.0), 2.62 MB


Physical aspects of extreme storm surges and falls on the Polish coast
Oceanologia 2011, 53(1-TI), 373-390
http://dx.doi.org/10.5697/oc.53-1-TI.373

Bernard Wiśniewski1, Tomasz Wolski2,*
1Faculty of Navigation, Maritime University of Szczecin,
Wały Chrobrego 1-2, Szczecin 70-500, Poland
2Faculty of Geosciences, University of Szczecin,
al. Wojska Polskiego 107/109, Szczecin 70-483, Poland;
e-mail: natal@univ.szczecin.pl
*corresponding author

keywords: Polish coast, extreme sea levels, storm surges, storm falls

Received 6 October 2010, revised 2 March 2011, accepted 8 March 2011.

Abstract

Extreme sea levels – storm-generated surges and falls - on the Polish coast are usually the effects of three components: the volume of water in the southern Baltic (the initial level preceding a given extreme situation), the action of tangential wind stresses in the area (wind directions: whether shore- or seaward; wind velocities; and wind action duration), and the sea surface deformation produced by deep, mesoscale baric lows moving rapidly over the southern and central Baltic that generate the so-called baric wave. Among these factors, the baric wave is particularly important for, i.e. the water cushion underneath the baric depression, moving along the actual atmospheric pressure system over the sea surface.

  References logo

Averkiev A. S., Klevanny K.A., 2007, Determining cyclone trajectories and velocities leading to extreme sea level rises in the Gulf of Finland, Russ. Meteorol. Hydrol., 32 (8), 514–519. http://dx.doi.org/10.3103/S1068373907080067

Carlsson M., 1998, A coupled three-basin sea level model for the Baltic Sea, Cont. Shelf Res., 18 (9), 1015–1038. http://dx.doi.org/10.1016/S0278-4343(98)00025-9

The environmental conditions in the Polish zone of the southern Baltic Sea (1991–2001), [Warunki środowiskowe polskiej strefy południowego Bałtyku (1991–2001)], Wyd. IMGW, Gdynia, (in Polish).

Heyen H., Zorita E., von Storch H., 1996, Statistical downscaling of monthly mean North Atlantic air-pressure to sea-level anomalies in the Baltic Sea, Tellus A, 48 (2), 312–323. http://dx.doi.org/10.1034/j.1600-0870.1996.t01-1-00008.x

Hydrographic year-book for the Baltic Sea (1946–1960), [Rocznik hydrograficzny Morza Bałtyckiego (1946–1960)], PIHM, Warszawa, (in Polish).

IMGW, 2009, Archives data of the Institute of Meteorology and Water Management placed on the geosserver of the Silesian University for the research project: Extreme meteorological and hydrological events in Poland.

Jasińska E., Massel S.R., 2007,Water dynamics in estuaries along the Polish Baltic coast, Oceanol. Hydrobiol. Stud., 36 (2), 101–133, doi: 10.2478/v10009-007-00047. http://dx.doi.org/10.2478/v10009-007-0004-7

Lisowski K., 1960, Badania zjawisk hydrometeorologicznych na Bałtyku, [Research of hydrometeorological phenomena in the Baltic], Pomorze Zach., 1–2, 95–108.

Lisowski K., 1961, Nieokresowe wahania poziomu Bałtyku pod wpływem czynników anemobarycznych, [Aperiodic fluctuations of the level of Baltic under the influence of anemobaric factors], Arch. Hydrotech., 8 (1), 17–42.

Lisowski K., 1963, Zjawiska sztormowe w lutym 1962 i ich skutki, [Storm phenomena in February 1962 and their consequences], Zesz. Nauk. PS, Szczecin, 39, 7–30.

Majewski A., 1986, Skrajne wahania poziomu wody u polskich wybrzeży Bałtyku, [Extreme fluctuations of the water level on the Polish Baltic coast], Inż. Mors., 2, 46–50.

Majewski A., 1989, Niezwykłe krótkotrwałe wezbrania morza u południowych i wschodnich brzegów Bałtyku, [Unusually short-lived sea water level oscillations on the southern and eastern coasts of the Baltic Sea], Prz. Geofiz., 34 (2), 191–199.

Majewski A., 1997, Problem zmian poziomu Morza Bałtyckiego w opinii uczonych europejskich w XVIII–XX w., [The problem of sea level changes in the Baltic Sea in the opinions of European scientists in the 18th–20th centuries], Gaz. Obserw. IMGW, 3, 20–23.

Majewski A., 1998a, Katastrofalne sztormy i powodzie u południowych brzegów Morza Bałtyckiego, [Catastrophic storms and floods on the southern coasts of the Baltic Sea], Inż. Mors. Geotech., 2, 67–69.

Majewski A., 1998b, Największe wezbrania wód u południowych brzegów Morza Bałtyckiego, [The highest storm surges along the southern coast of the Baltic Sea], Wiad. IMGW, 21 (2), 81–98.

Majewski A., Dziadziuszko Z., Wiśniewska A., 1983, Monografia powodzi sztormowych 1951–1975, [Monograph of storm floods 1951–1975], Wyd. Kom. łączn., Warszawa, 216 pp.

The maritime hydrographic and meteorological bulletin (1961–1990), [Morski komunikat hydrologiczno-meteorologiczny (1961–1990)], Wyd. IMGW, Warszawa, (in Polish).

Samuelsson M., Stigebrandt A., 1996, Main characteristics of the long-term sea level variability in the Baltic Sea, Tellus A, 48 (5), 672–683, doi: 10.1034/ j.1600-0870.1996.t01-4-00005.x.

Skriptunov N.A., Gorelits O.V., 2001, Wind-induced variations in water level in river mouths, Water Resour., 28 (2), 174–179. http://dx.doi.org/10.1023/A:1010379601057

Stanisławczyk I., Sztobryn M., 2000, Zmiany napełnienia Bałtyku jako wskaźnik oceanicznych wlewów powierzchniowych, [Changes in water volume in the Baltic Sea as an indicator of surface inflows], [in:] Rola nawigacji w zabezpieczeniu działalności ludzkiej na morzu, XII Międzynarod. Konfer. Nauk.-Tech., Wyd. AMW, Gdynia, 250–256.

Suursaar Ü., Kullas T., Otsmann M., Kõuts T., 2003, Extreme sea level events in the coastal waters of western Estonia, J. Sea Res., 49 (4), 295–303.

Suursaar Ü., Kullas T., Otsmann M., Saarem¨ae I., Kuik J., Merilain M., 2006, Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Environ. Res., 11 (2), 143–159.

Sztobryn M., Stigge H. J., Wielbińska D., Weidig B., Stanisławczyk I., Kańska A., Krzysztofik K., Kowalska B., Letkiewicz B., Mykita M., 2005, Storm surges in the southern Baltic (western and central parts), Rep. No. 39, Ber. Bundesamt für Seeschifffahrt und Hydrographie (BSH), Hamburg, Rostock, 74 pp.

Sztobryn M., Weidig B., Stanisławczyk I., Holfort J., Kowalska B., Mykita M., Kańska A., Krzysztofik K., Perlet I., 2009, Negative surges in the southern Baltic Sea (Western and Central Parts), Rep. No. 45, Ber. Bundesamt für Seeschifffahrt und Hydrographie (BSH), Hamburg, Rostock, 71 pp.

Wielbińska Z., 1964, Wpływ cyrkulacji atmosfery na poziom morza, [The influence of the atmospheric circulation on the sea level ], Pr. PIHM, Zesz. 2.

Wiśniewski B., 1996, Wezbrania sztormowe na polskim wybrzeżu Bałtyku, [Storm surges on the Polish coast of the Baltic Sea], [in:] Ogólnopolska konferencja naukowa – Współczesne problemy inżynierii środowiska wodnego. 50-lecie Wydziału Budownictwa i Architektury Politechniki Szczecińskiej, Wyd. PS, Szczecin, 219–230.

Wiśniewski B., 1997, Zmienność zapasu wody pod stępką statku w czasie wezbrańsztormowych, [Variability of water reserves under a shipés keel during storm surges], Inż. Mors. Geotech., 5, 325–327.

Wiśniewski B., 2003, The influence of low-pressure systems on water levels in the Odra estuary, Severo-zapadny gosudarstvenny zaochny tekhnichesky universitet, St. Petersburg, 183–193.

Wiśniewski B., 2005, Bezpieczeństwo żeglugi w portach przy ekstremalnych poziomach wód w morzu, [The safety of shipping in ports at extreme sea levels], [in:] Regionalne problemy ochrony środowiska w Zjednoczonej Europie, XIII Sem. Nauk., Szczecin–Nürnberg.

Wiśniewski B., Holec M., 1983, Zarys oceanografii. Tom 2. Dynamika morza, [An outline of oceanography. Vol. 2. Marine dynamics], Wyd. WSMW, Gdynia, 137 pp.

Wiśniewski B., Kowalewska-Kalkowska H., 2001, Wpływ warunków meteorologicznych na wahania poziomu morza i cech fizycznych wód w estuarium Odry, [The influence of meteorological conditions on sea level fluctuations and the physical properties of water in the Odra estuary], Inż. Mors. Geotech., 5, 236–240.

Wiśniewski B., Kowalewska-Kalkowska H., 2003, Analiza typów wezbrańsztormowych w estuarium Odry, [Analysis of storm surge types in the Odra estuary], [in:] Człowiek i środowisko przyrodnicze Pomorza Zachodniego. II środowisko abiotyczne, R.K. Borówka & A. Witkowski (eds.), Oficyna In Plus, Szczecin, 227 pp.

Wiśniewski B., Kowalewska-Kalkowska H., 2007, Water level fluctuations in the Odra River mouth area in relation to passages of deep low-pressure systems, Oceanol. Hydrobiol. Stud., 36 (1), 69–82.

Wiśniewski B., Wolski T., 2009, Katalogi wezbrań i obniżeń sztormowych poziomów morza oraz ekstremalne poziomy wód na polskim wybrzeżu, [Catalogues of storm-generated sea level surges and falls and extreme water levels on the Polish coast], Wyd. AM, Szczecin, 158 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 2.62 MB


Variability of the marine boundary layer parameters over Baltic Sea sub-basins and their impact on nitrogen deposition
Oceanologia 2011, 53(1-TI), 391-413
http://dx.doi.org/10.5697/oc.53-1-TI.391

Marke Hongisto
Finnish Meteorological Institute (FMI),
Erik Palménin Aukio, Helsinki 00101, Finland;
e-mail: Marke.Hongisto@fmi.fi

keywords: Baltic Sea, airborne load, reactive nitrogen, marine boundary layer parameters

Received 21 September 2010, revised 16 February 2011, accepted 17 February 2011.

Abstract

The variability of the marine boundary layer parameters over the Baltic Sea and its sub-basins and their impact on the 6 h, monthly or seasonal deposition of oxidized nitrogen compounds was studied using results of the Hilatar chemistry-transport model, the 6th hour forecasts of the HIRLAM weather prediction model and meteorological measurement data. The monthly load of oxidized nitrogen was highest in the winters of 1993-1995 and 2000, and lowest in 1996-1997 and 2005; no trend was detected. Short-time correlations were low, but a significant correlation of the monthly deposition with the NAO index and ice-season was found over northern sub-basins.

  References logo

Ambaum M.H.P., Hoskins B. J., Stephenson D.B., 2001, Arctic Oscillation or North Atlantic Oscillation?, J. Climate, 14 (16), 3495–3507. http://dx.doi.org/10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2

Archer C. L., Caldeira K., 2008, Historical trends in jet streams, Geophys. Res. Lett., 35 (8), L08803. http://dx.doi.org/10.1029/2008GL033614

Asman W.A.H., Janssen A. J., 1987, A long range transport model for ammonia and ammonium for Europe, Atmos. Environ., 21 (10), 2099–2119. http://dx.doi.org/10.1016/0004-6981(87)90344-1

BACC – BALTEX Assessment of Climate Change, 2008, Assessment of climate change for the Baltic Sea basin, The BACC Author Team, Reg. Clim. Stud. Ser., Springer, Berlin, Heidelberg, 474 pp.

Bott A., 1989, A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes, Mon. Weather Rev., 117 (5), 1006–1015. http://dx.doi.org/10.1175/1520-0493(1989)117<1006:APDASO>2.0.CO;2

Chang T.Y., 1984, Rain and snow scavenging of HNO3 vapour in the atmosphere, Atmos. Environ., 18 (1), 191–197. http://dx.doi.org/10.1016/0004-6981(84)90242-7

Chang T.Y., 1986, Estimates of nitrate formation in rain and snow systems, J. Geophys. Res., 91 (D2), 2805–2818. http://dx.doi.org/10.1029/JD091iD02p02805

Eek F., 2000, Stormar i Sverige och North Atlantic Oscillation från 1920 till 1998, Earth Sci. Centre, Dept. Phys. Geogr., Göteborg, 27 pp.

Eerola K., 2000, The new operational HIRLAM at the Finnish Meteorological Institute, HIRLAM Newslett., 35, 36–43.

Eerola K., 2002, The operational HIRLAM at the Finnish Meteorological Institute, HIRLAM Newslett., 41, 19–24.

Eerola K., 2003, The operational HIRLAM at the Finnish Meteorological Institute, HIRLAM Newslett., 43, 20–27.

Eilola K., Stigebrandt A., 1999, On the seasonal nitrogen dynamics of the Baltic proper biogeochemical reactor, J. Mar. Res., 57 (4), 693–713. http://dx.doi.org/10.1357/002224099321549648

Elmgren R., Larsson U., 2001, Nitrogen and the Baltic Sea. Managing nitrogen in relation to phosphorus, [in:] Optimizing nitrogen management in food and energy production and environmental protection, J. Galloway et al. (ed.), Proc. 2nd Int. Nitrogen Conf. Policy, Contrib. Papers, The Scientific World, 1 (S2), 371–377.

Feistel R., Nausch G., Hagen E. (eds.), 2009, Water exchange between the Baltic Sea and the North Sea, and conditions in the Deep Basins, http://www.helcom.fi/BSAPassessment/ifs/ifs2009/enGB/WaterExchange/.

Galloway J.N., Cowling E.B., 2002, Reactive nitrogen and the world, 200 years of change, Ambio, 31 (2), 64–71.     PMid:12078011

Galloway J.N., Dentener F. J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C., Green P., Holland E., Karl D.M., Michaels A. F., Porter J.H., Townsend A., Vörösmarty C., 2004, Nitrogen cycles: past, present, future, Biogeochemistry, 70, 153–226. http://dx.doi.org/10.1007/s10533-004-0370-0

Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A., 2008, Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions, Science, 320 (5878), 889–892. http://dx.doi.org/10.1126/science.1136674     PMid:18487183

Gruber N., Galloway J.N., 2008. An Earth-system perspective of the global nitrogen cycle, Nature, 451 (7176), 293–296. http://dx.doi.org/10.1038/nature06592     PMid:18202647

HELCOM, 2009a, Biodiversity in the Baltic Sea – An integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea, Balt. Sea Environ. Proc. No. 116B, Helsinki Commiss., Helsinki.

HELCOM, 2009b, Eutrophication in the Baltic Sea. An integrated thematic assessment of the effects of nutrient enrichment in the Baltic Sea region, Balt. Sea Environ. Proc. No. 115B, Helsinki Commiss., Helsinki, 148 pp.

HELCOM, 2009c, HELCOM Indicator Fact Sheets for 2009, http://www.helcom.fi/BSAPassessment/ifs/ifs2009/enGB/cover/

HELCOM, 2010, Ecosystem health of the Baltic Sea 2003–2007. HELCOM initial holistic assessment, Balt. Sea Environ. Proc. No. 122, Helsinki Commiss., 63 pp.

Hesstvedt E., Hov Ř., Isaksen S.A., 1978, Quasi-steady-state approximations in air pollution modelling: Comparison of two numerical schemes for oxidant prediction, Int. J. Chem. Kinet., 10 (9), 971–994. http://dx.doi.org/10.1002/kin.550100907

HIRLAM, 1990, HIRLAM forecast model level 1. On-line documentation manual, P. Kållberg (ed.), SMHI, S-60176, Norrköping, (June 1990).

HIRLAM, 2002, HIRLAM, a High Resolution Limited Area Model, Int. Project Description, http://www.knmi.nl/hirlam/, (October 2002).

Hongisto M., 2001, Air Quality during storm in August 2001: operative observation of long-range transport episodes, Magazine Finnish Air Pollution Prevention Society (FAPPS), Ilmansuojelu 4/2001, 19–26, Eiriprint, Jarkoskuva Oy, Helsinki, (in Finnish).

Hongisto M., 1998, Hilatar, a regional scale grid model for the transport of sulphur and nitrogen compounds, FMI Contributions No. 21, Yliopistopaino, Helsinki, 152 pp.

Hongisto M., 2003, Modelling of the transport of nitrogen and sulphur contaminants to the Baltic Sea Region, FMI Contributions No. 40, Helsinki, 188 pp.

Hongisto M., Joffre S., 2005, 6-year simulations of dispersion of acid contaminants over Fennoscandia and Baltic Sea area, Boreal Environ. Res., 10 (1), 1–17.

Hongisto M., Sofiev M., Joffre S., 2003, Hilatar, a limited area simulation model for acid contaminants, Part II. Long-term simulations results, Atmos. Environ., 37 (11), 1549–1560. http://dx.doi.org/10.1016/S1352-2310(02)01046-4

Horel J.D.,Wallace J.M., 1981, Planetary-scale atmospheric phenomena associated with the Southern Oscillation, Mon. Weather Rev., 109, 813–829. http://dx.doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2

IPCC, 2007, Climate change 2007: The physical science basis, IPCC Fourth Assessment Rep. (AR4), http://www.ipcc.ch.

Iversen T., Saltbones J., Sandnes H., Eliassen A., Hov Ř., 1989, Airborne transboundary transport of sulphur and nitrogen over Europe – Model descriptions and calculations, EMEP MSC-W Rep. 2/89.DNMI, Oslo.

Jalkanen J-P., Stipa T., 2009, Emission from the Baltic shipping in 2008, HELCOM Indicator Fact Sheets 2009, Online, http://www.helcom.fi/BSAPassessment/ifs/ifs2010/enGB/ShipEmissions/.

Jonsen J.E., Berge E., 1995. Some preliminary results on transport and deposition of nitrogen compounds by use of the Multilayer Eulerian Model, EMEP/MSCW, Note 4/95, 25 pp.

Kållberg P., 1992, HIRLAM, SMHIés nya prognosmodell, Polarfront, 19 (74), 4–13.

Källan E. (ed.), 1996, HIRLAM documentation manual, System 2.5, June 1996, 184 p. + App.

Krishnamurthy A., Moore J.K., Zender C. S., Luo C., 2007, Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry, J. Geophys. Res., 112, G02019. http://dx.doi.org/10.1029/2006JG000334

Lindfors V., Joffre S.M., Damski J., 1991, Determination of the wet and dry deposition of sulphur and nitrogen compounds over the Baltic Sea using actual meteorological data, FMI Contributions No. 4.

Lindfors V., Joffre S.M., Damski J., 1993, Meteorological variability of the wet and dry deposition of sulphur and nitrogen compounds over the Baltic Sea, Water Air Soil Poll., 66, 1–28. http://dx.doi.org/10.1007/BF00477058

Matson P., Lohse K.A., Hall S. J., 2002, The globalization of nitrogen deposition: Consequences for terrestrial ecosystems, Ambio, 31 (2), 113–119.     PMidPMid:12077999

NAO, 2011, Tim Osborn: North Atlantic Oscillation index data, http://www.cru.uea.ac.uk/~timo/datapages/naoi.htm and for the last two months: ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.noa.index.b500101.current.ascii.

Nehring D., Matthäus W., Lass H-U., Nausch G., Nagel K., 1995, The Baltic Sea 1994 – Consequences of the hot summer and inflow events, Ocean Dynam., 47 (2), 131–144. http://dx.doi.org/10.1007/BF02732015

Niskanen T., Vainio J., Eriksson P., Heiler I., 2009, Maximum extent of the Baltic sea ice recalculated for the period 1971–2008, Rep. Ser. Geophys. 0355–8630; No. 61, 164–167.

NOAA, 2010, Arctic Oscillation index, http://www.cpc.noaa.gov/products/precip/CWlink/dailyaoindex/month.ao.gif.

Olsson B., 2002, Stormar längs Sveriges västkust 1919–2000, Earth Sci. Centre, Dept. Phys. Geogr., Göteborg, 31 pp.

Plate E., 2000, Variabilität der Zusammensetzung anorganischer Aerosole – insbesondere der reaktiven Stickstoffverbindungen – in küstennahen Gebieten der Nordsee und Ostsee, Dissertation zur Erlangung des Doktorgrades des Fachbereichs Chemie der Universität Hamburg, Schriftenreihe Angewandte Analytik, Institut für Anorganische und Angewandte Analytik Nr 37, Univ. Hamburg, 215 pp.

Rönnberg C., 2001, Effects and consequences of eutrophication in the Baltic Sea. Specific patterns in different regions, Licenciate thesis, Dept. Biology, Environ. Marine Biol., åbo Akad. Univ., åbo, 132 pp. + App.

Rönnberg C., 2005, Eutrophication of the Baltic Sea: from area-specific biological effects to interdisciplinary consequences, Environ. Marine Biol., Dept. Biology, åbo Akad. Univ., åbo, 166 pp.

Schmeltzer N., Seinä A., Lundqvist J-E., Sztobryn M., 2008, Ice, [in:] State and evolution of the Baltic Sea, 1952–2005: A detailed 50-year survey of meteorology and climate, R. Feistel, G. Nausch & N. Wasmund, Phys. Chem. Biol. Mar. Environ., John Wiley & Sons Inc., New Jersey, 199–240.

Schulz M., Ferm M., Hongisto M., Jylhä K., de Leeuw G., Marks R., Nadstazik A., Plate E., Tamm S., Sopauskiene D., Ulevicus V., 1999, Atmospheric nitrogen input to the Baltic Sea, Proc. 3rd BASYS Ann. Sci. Conf., IOW Warnemünde, 20–22 Sept. 1999, Zuelicke C. (ed.), 60–67.

Scott B.C., 1982, Theoretical estimates of the scavenging coefficient for soluble aerosol particles as a function of precipitation type, rate and altitude, Atmos. Environ., 16 (7), 1753–1762. http://dx.doi.org/10.1016/0004-6981(82)90268-2

Simmonds I., Burke C., Keay K., 2008, Arctic climate change as manifest in cyclone behavior, J. Climate, 21, 5777–5796. http://dx.doi.org/10.1175/2008JCLI2366.1

Simmonds I., Keay K., 2009, Extraordinary September Arctic sea ice reductions and their relationship with storm behaviour over 1979–2008, Geophys. Res. Lett., 36, L19715. http://dx.doi.org/10.1029/2009GL039810

Stipa T., Jalkanen J-P., Hongisto M., Kalli J., Brink A., 2007, Emissions of NOx from Baltic shipping and first estimates of their effects on air quality and eutrophication of the Baltic Sea, ISBN:978-951-53-3028-4, ShipNOEm and ShipNODep project, ShipNODeff programme, 33 pp.

Thomas H., Pempkowiak J., Wulff F., Nagel K., 2003, Autotrophy, nitrogen accumulation and nitrogen limitation in the Baltic Sea: A paradox or a buffer for eutrophication?, Geophys. Res. Lett., 30 (21), 2130. http://dx.doi.org/10.1029/2003GL017937

Thompson D.W. J., Wallace J.M., 1998, The arctic oscillation signature in the wintertime geopotential height and temperature fields, Geophys. Res. Lett.,25 (9), 1297–1300. http://dx.doi.org/10.1029/98GL00950

Tuovinen J.-P., 1992, Turbulenttisen diffuusion K-teoriaan perustuva ilmansaasteiden leviämismalli, Teknillinen korkeakoulu, Teknillisen fysiikan koulutusohjelma. Diplomityö, (A dispersion model of air pollutants based on the K theory of turbulent diffusion), 109 pp.

Undén P., Järvinen H., Rodriguez E., Cats G., 2003, HIRLAM-5 Final Rep., 67 pp., [http://www.hirlam.org].

Undén et al., 2002, HIRLAM-5 scientific documentation, HIRLAM-5 project, SMHI, Norrköping, 144 pp.

UNECE, 2010, Hemispheric transport of air pollution 2010, Informal Document No. 10, Co-Chairs Task Force Hemisph. Transp. Air Pollut. ECE/EB.AIR/2010/10, (corrected).

Walker G.T., Bliss E.W., 1932, World weather. V, Mem. Roy. Meteorol. Soc., 4 (36), 53–84.

Wenig M., Spichtinger N., Stohl A., Held G., Beirle S., Wagner T., J¨ahne B., Platt U., 2003, Intercontinental transport of nitrogen oxide pollution plumes, Atmos. Chem. Phys., 3, 287–393. http://dx.doi.org/10.5194/acp-3-387-2003

Zahn M., von Storch H. 2010, Decreased frequency of North Atlantic Polar lows associated with future climate warming, Nature, 467. http://dx.doi.org/10.1038/nature09388     PMid:20844533

Zheng X., Fu C., Xu X., Yan X., Huang Y., Han S., Hu F., Chen G., 2002, The Asian nitrogen cycle case study, Ambio, 31 (2), 79–87.     PMid:12078013

full, complete article (PDF - compatibile with Acrobat 4.0), 399 KB


PO4 release at the sediment surface under anoxic conditions: a contribution to the eutrophication of the Baltic Sea?
Oceanologia 2011, 53(1-TI), 415-429
http://dx.doi.org/10.5697/oc.53-1-TI.415

Bernd Schneider
Leibniz Institute for Baltic Sea Research,
Seestrasse 15, Warnemünde 18119, Germany;
e-mail: bernd.schneider@io-warnemuende.de

keywords: phosphate, anoxia, eutrophication, total, CO2

Received 22 October 2010, revised 3 January 2011, accepted 15 January 2011.

This study was supported by the Monitoring Programme of the Leibniz Institute for Baltic Sea Research, Warnemünde, Germany, and it is a contribution to the BONUS Baltic-C Project funded by the German Ministry for Science and Technology under FKZ 03F0486A.

Abstract

The vertical profiles of phosphate, total CO2 and oxygen/hydrogen sulphide were determined in the deep water of the Gotland Sea during March 2003 to July 2006 with a temporal resolution of 2-3 months. This time span included the shift from anoxic to oxic conditions resulting from a water renewal event, as well as the transition back to anoxic waters during the subsequent two-year stagnation period. The data from depths below 150 m were used to identify and quantify phosphate release and removal processes. The relationship between the total CO2 generated by mineralization (CT, min) and the PO4 concentrations indicated that the initial decrease in the phosphate concentrations after the inflow of oxygen-rich water was mainly a dilution effect. Only about one third of the PO4 removal was a consequence of the precipitation of insoluble iron-3-hydroxo-phosphates (Fe-P), which occurred slowly at the sediment surface under oxic conditions. From the CT, min/PO4 ratios it was also concluded that the formation of Fe-P was reversed during the later phase of the stagnation, when the redoxcline approached a depth of 150 m. A phosphate mass balance was performed for four deep water sub-layers in order to quantify the dissolution of Fe-P during the stagnation period and thus to estimate the amount of Fe-P deposited during the last inflow of oxygen-rich water. A value of about 50 mmol-P m-2 was found, which refers to the specific biogeochemical conditions during the change from anoxic to oxic conditions that preceded the stagnation period.

  References logo

Conley J.C., Björck S., Bonsdorff E., Carstensen J., Destouni G., Gustafsson B.G., Hietanen S., Kortekaas M., Kuosa H., Meier H.E.M., Mueller-Karulis B., Nordberg K., Norkko A., Nuernberg G., Pitkaenen H., Rabalais N.N., Rosenberg R., Savchuk O.P., Slomp C., Voss M., Wulff F., Zillen L., 2009, Hypoxia-related processes in the Baltic Sea, Environ. Sci. Technol., 43 (10), 3412–3420. http://dx.doi.org/10.1021/es802762a

Conley J.C., Humborg C., Rahm L., Savchuk O.P., Wulff F., 2002, Hypoxia in the Baltic Sea and basin-scale changes in the phosphorus chemistry, Environ. Sci. Technol., 36 (24), 5315–5320. http://dx.doi.org/10.1021/es025763w

Gustafsson B.G., Stigebrandt A., 2007, Dynamics of nutrients and oxygen/hydrogen sulphide in the Baltic Sea deep water, J. Geophys. Res., 112, G02023, doi: 10.1029/2006JG000304. http://dx.doi.org/10.1029/2006JG000304

HELCOM, 2001, Environment of the Baltic Sea area, 1994–1998, Fourth Periodic Assessment of the State of the Baltic Marine Area, 1994–1998, Baltic Sea Environ. Proc. No. 82A, 23 pp.

Johnson K.M., Wills K.D., Buttler D.B., Johnson W.K., Wong C. S., 1993, Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector, Mar. Chem., 44 (2–4), 167–187. http://dx.doi.org/10.1016/0304-4203(93)90201-X

Larsson U., Hajdu S., Walve J., Elmgren R., 2001, Baltic Sea nitrogen fixation estimated from the summer increase in the upper mixed layer total nitrogen, Limnol. Oceanogr., 46 (4), 811–820. http://dx.doi.org/10.4319/lo.2001.46.4.0811

Mort H.P., Slomp C.P., Gustafsson B.G., Andersen T. J., 2010, Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions, Geochim. Cosmochim. Acta, 74 (4), 1350–1362. http://dx.doi.org/10.1016/j.gca.2009.11.016

Nausch G., Nehring D., Nagel K., 2008, Nutrient concentrations, trends and their relation to eutrophication, [in:] State and evolution of the Baltic Sea, 1952 –2005, R. Feistel, G. Nausch & N. Wasmund (eds.), Wiley, New York, 337 –366.

Redfield A.C., Ketchum B.H., Richards F.A., 1963, The influence of organisms on the composition of sea water, [in:] The sea, Vol. 2, M.N. Hill (ed.), Wiley, New York, 26–77.

Savchuk O.P., Wulff F., Hille S., Humborg C., Pollehne F., 2008, The Baltic Sea a century ago – a reconstruction from model sedimentations verified by observations, J. Marine Syst., 74 (1–2), 485–494. http://dx.doi.org/10.1016/j.jmarsys.2008.03.008

Schneider B., Kaitala S., Raateoja M., Sadkowiak B., 2009, A nitrogen fixation estimate for the Baltic Sea based on continuous pCO2 measurements on a cargo ship and total nitrogen data, Cont. Shelf Res., 29 (11–12), 1535–1540. http://dx.doi.org/10.1016/j.csr.2009.04.001

Schneider B., Kuss J., 2004, Past and present productivity of the Baltic Sea as inferred from pCO2 data, Cont. Shelf Res., 24 (15), 1611–1622, doi: 10.1016/j.csr.2004.06.023. http://dx.doi.org/10.1016/j.csr.2004.06.023

Schneider B., Nausch G., Pohl C., 2010, Mineralization of organic matter and nitrogen transformations in the Gotland Sea deep water, Mar. Chem., 119 (1–4), 153–161. http://dx.doi.org/10.1016/j.marchem.2010.02.004

Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea, Baltic Sea Science Congress, Stockholm 25–29 November 2001, Poster No. 147, Abstr. Vol., 2nd edn., Stockholm Mar. Res. Centre, Stockholm Univ.

Turnewitsch R., Pohl C., 2010, An estimate of the efficiency of the iron- and manganese-driven dissolved inorganic phosphorus trap at an oxic/euxinic water column redoxcline, Global Biogeochem. Cy., 24, GB4025, 15 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 230 KB


Simulation of nutrient transport from different depths during an upwelling event in the Gulf of Finland
Oceanologia 2011, 53(1-TI), 431-448
http://dx.doi.org/10.5697/oc.53-1-TI.431

Germo Väli1, Victor Zhurbas1,2, Jaan Laanemets1, Jüri Elken1
1Marine Systems Institute, Tallinn University of Technology,
Akadeemia tee 21, Tallinn 12618, Estonia
2P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences,
36 Nakhimovsky Prospect, Moscow 117851, Russia;
e-mail: germo.vali@phys.sea.ee, zhurbas@ocean.ru, jaan@phys.sea.ee, elken@phys.sea.ee

keywords: Princeton Ocean Model, upwelling, Baltic Sea, nutrient transport

Received 6 October 2010, revised 22 February 2011, accepted 24 February 2011.

This work was sponsored by the Estonian Science Foundation (grant No. 7467 & grant No. 7328) and the Russian Foundation for Basic Research (grant No. 09-05-00479).

Abstract

Numerical simulation experiments with a high-resolution circulation model were carried out to study nutrient transport from different depths to the surface 10-m layer during an upwelling event along the northern coast of the Gulf of Finland in July 1999. The initial nutrient distribution is based on field measurements performed in the north-western part of the Gulf. Wind forcing covering the period of the upwelling along the northern coast was turned through 180° to simulate an upwelling along the southern coast. The simulation results showed that the main phosphorus transport to the upper 10-m layer occurred from depths shallower than 30 m for the upwelling events along both the northern and the southern coasts. Nitrogen transport to the upper 10-m layer was the largest from depths of 40-55 m for the upwelling along the northern and 40-65 m for the upwelling along the southern coast. Simulated cumulative volume transports to the upper 10-m layer from different depths showed that the contribution from deeper layers was larger in the case of the upwelling along the southern coast. The reduction of wind stress had a bigger influence on water transport from the deeper layers.

  References logo

Alenius P., Nekrasov A., Myrberg K., 2003, Variability of the baroclinic Rossby radius in the Gulf of Finland, Cont. Shelf Res., 23 (6), 563-573. http://dx.doi.org/10.1016/S0278-4343(03)00004-9

Blumberg A. F., Mellor G. L., 1983, Diagnostic and prognostic numerical calculation studies of the South Atlantic Bight, J. Geophys. Res., 88 (C8), 4579-4592. http://dx.doi.org/10.1029/JC088iC08p04579

Blumberg A. F., Mellor G. L., 1987, A description of the three-dimensional coastal ocean circulation model, [in:] Three-dimensional Coastal Ocean Models, N. S. Heaps (ed.), Am. Geophys. Union, Washington, 1-16.

Gidhagen L., 1987, Coastal upwelling in the Baltic Sea - Satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling, Estuar. Coast. Shelf Sci., 24 (4), 449-462. http://dx.doi.org/10.1016/0272-7714(87)90127-2

Haapala J., 1994, Upwelling and its influence on nutrient concentration in the coastal area of Hanko peninsula, entrance to the Gulf of Finland, Estuar. Coast. Shelf Sci., 38 (5), 507-521. http://dx.doi.org/10.1006/ecss.1994.1035

Kahru M., Hakansson B., Rud O., 1995, Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery, Cont. Shelf. Res., 15 (6), 663-679. http://dx.doi.org/10.1016/0278-4343(94)E0030-P

Kowalewski M., 2005, The influence of the Hel upwelling (in the Baltic Sea) on nutrient concentration and primary production - the results of an ecohydrodynamic model, Oceanologia, 47 (4), 567-590.

Kowalewski M., Ostrowski M., 2005, Coastal up- and downwelling in the southern Baltic, Oceanologia, 47 (4), 453-475.

Krauss W., Brügge B., 1991, Wind-produced water exchange between the deep basins of the Baltic Sea, J. Phys. Oceanogr., 21 (3), 373-394. http://dx.doi.org/10.1175/1520-0485(1991)021<0373:WPWEBT>2.0.CO;2

Kuvaldina N., Lips I., Lips U., Liblik T., 2010, The influence of a coastal upwelling event on chlorophyll a and nutrient dynamics in the surface layer of the Gulf of Finland, Baltic Sea, Hydrobiologia, 639 (1), 221-230. http://dx.doi.org/10.1007/s10750-009-0022-4

Laanemets J., Kononen K., Pavelson J., Poutanen E.-L., 2004, Vertical location of seasonal nutriclines in the western Gulf of Finland, J. Marine Syst., 52 (1-4), 1-13, doi: 10.1016/j.jmsys.2004.03.0030. http://dx.doi.org/10.1016/j.jmarsys.2004.03.003

Laanemets J., Väli G., Zhurbas V., Elken J., Lips I., Lips U., 2011, Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006, Boreal Environ. Res., 16 (Suppl. A), 15-21.

Laanemets J., Zhurbas V., Elken J., Vahtera E., 2009, Dependence of upwelling mediated nutrient transport on wind forcing, bottom topography and stratification in the Gulf of Finland: model experiments, Boreal Environ. Res., 14 (1), 213-225.

Lehmann A., Myrberg K., 2008, Upwelling in the Baltic Sea - a review, J. Marine Syst., 74 (Suppl. 1), S3-S12, doi: 10.1016/j.jmarsys.2008.02.10. http://dx.doi.org/10.1016/j.jmarsys.2008.02.010

Lentz S. J., Chapman D.C., 2004, The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling, J. Phys. Oceanogr., 34 (11), 2444-2457. http://dx.doi.org/10.1175/JPO2644.1

Lips I., Lips U., Liblik T., 2009, Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea), Cont. Shelf Res., 29 (15), 1836-1837. http://dx.doi.org/10.1016/j.csr.2009.06.010

Mellor G. L., Yamada T., 1982, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20 (4), 851-875. http://dx.doi.org/10.1029/RG020i004p00851

Myrberg K., Andrejev O., 2003, Main upwelling regions in the Baltic Sea - a statistical analysis based on three-dimensional modeling, Boreal Environ. Res., 8 (2), 97-112.

Myrberg K., Lehmann A., Raudsepp U., Szymelfenig M., Lips I., Lips U., Matciak M., Kowalewski M., Krężel A., Burska D., Szymanek L., Ameryk A., Bielecka L., Bradtke K., Gałkowska A., Gromisz S., Jędrasik J., Kaluźny M., Kozłowski L., rajewska-Sołtys A., Ołdakowski B., OstrowskiM., Zalewski M., Andrejev 448 G. Väli, V. Zhurbas, J. Laanemets, J. Elken O., Suomi I., Zhurbas V., Kauppinen O.-K., Soosaar E., Laanemets J., Uiboupin R., Talpsepp L., Golenko M., Golenko N., Vahtera E., 2008, Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress at Rostock University, Germany, 19-22 March 2007, Oceanologia, 50 (1), 95-113.

Seifert T., Tauber F., Kayser B., 2001, A high resolution spherical grid topography of the Baltic Sea, Baltic Sea Science Congress, Stockholm 25-29 November 2001, Poster No. 147, Abstr. Vol., 2nd edn., [http://www.io-warnemuende.de/iowtopo].

Soomere T., Keevallik S., 2003, Directional and extreme wind properties in the Gulf of Finland, Proc. Estonian Acad. Sci. Eng., 9, 73-90.

Suursaar Ü., Aps R., 2007, Spatio-temporal variations in hydrophysical and chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006, Oceanologia, 49 (2), 209-229.

Uiboupin R., Laanemets J., 2009, Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea, Boreal Environ. Res., 14 (2), 297-304.

Vahtera E., Laanemets J., Pavelson J., Huttonen M., Kononen K., 2005, Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the Western Gulf of Finland, Baltic Sea, J. Marine Syst., 58 (1-2), 67-82. http://dx.doi.org/10.1016/j.jmarsys.2005.07.001

Zhurbas V., Laanemets J., Vahtera E., 2008, Modeling of the mesoscale structure of coupled upwelling/downwelling events and the related input of nutrients to the upper mixed layer in the Gulf of Finland, Baltic Sea, J. Geophys. Res., 113, C05004. http://dx.doi.org/10.1029/2007JC004280

full, complete article (PDF - compatibile with Acrobat 4.0), 2.21 MB


Variability in the distribution of phytoplankton as affected by changes to the main physical parameters in the Baltic Sea
Oceanologia 2011, 53(1-TI), 449-470
http://dx.doi.org/10.5697/oc.53-1-TI.449

Lidia Dzierzbicka-Głowacka*, Jaromir Jakacki, Maciej Janecki, Artur Nowicki
Institute of Oceanology, Polish Academy of Sciences,
Powstańców Warszawy 55, Sopot 81-712, Poland;
e-mail: dzierzb@iopan.gda.pl
*corresponding author

keywords: 3D ecosystem model, Baltic Sea, phytoplankton, nutrient, temperature

Received 15 September 2010, revised 17 February 2011, accepted 2 March 2011.

The study was financially supported by the Polish State Committee of Scientific Research (grants: No. N N305 111636, N N306 353239) and ECOOP IP WP 10.1.3 Project. Partial support for this study was also provided by the Satellite Monitoring of the Baltic Sea Environment - SatBałtyk project founded by the European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

Abstract

An integrated ecological system model was used to determine the influence on Baltic phytoplankton of the long-term variability in the sea's main physical parameters. A three-dimensional coupled sea-ice model was developed. A simple ecosystem was added to the sea-ice model and used to estimate phytoplankton variability during long-term changes in the main atmospheric forces. Scenarios similar to those of climate were performed by altering the main physical parameters such as temperature, wind speed, solar and thermal radiation (in different configurations). The influence of the variability in these parameters on phytoplankton is discussed.

  References logo

Azam F., Fenchel T., Field J., Gray J. S., Meyer-Reil L.A., Thingstad F., 1982, The ecological role of water-column microbes in the Sea, Mar. Ecol. Prog.-Ser., 10, 257–263. http://dx.doi.org/10.3354/meps010257

Billen G., Lancelot C., Maybeck M., 1991, N, P and Si retention along the aquatic continuum from land to ocean, [in:] Ocean margin processes in global change, 468 L. Dzierzbicka-Głowacka, J. Jakacki, M. Janecki, A. Nowicki R. F.C. Mantoura, J.M. Martin & R. Wollast, Phys. Chem. Earth Sci. Res. Rep., 9, Wiley & Sons, New York, 19–44.

Ciszewski P., 1983, Estimation of zooplankton biomass and production in the Southern Baltic, Pol. Ecol. Stud., 9, 387–396.

Dzierzbicka-Głowacka L., 2005, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 1. A Coupled Ecosystem Model, Oceanologia, 47 (4), 591–619.

Dzierzbicka-Głowacka L., 2006, Modelling the seasonal dynamics of marine plankton in the southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41–71.

Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2010a, Particulate organic carbon in the southern Baltic Sea: numerical simulations and experimental data, Oceanologia, 52 (4), 621–648.

Dzierzbicka-Głowacka L., Kuliński K., Maciejewska A., Jakacki J., Pempkowiak J., 2011, Numerical modelling of POC yearly dynamics in the southern Baltic under variable scenarios of nutrients, light and temperature, Ocean Sci., (submitted).

Dzierzbicka-Głowacka L., Żmijewska I.M., Mudrak S., Jakacki J., Lemieszek A., 2010b, Population modelling of Acartia spp. in a water column ecosystem model for the South-Eastern Baltic Sea, Biogeosciences, 7 (7), 2247–2259. http://dx.doi.org/10.5194/bg-7-2247-2010

Gordon D.C. Jr., Boudreau P.R., Mann K.H., Ong J.-E., Silvert W. L., Smith S.V., Wattayakorn G., Wulff F., Yanagi T., 1995, LOICZ biogeochemical modeling guidelines, LOICZ Rep. Stud., 5, LOICZ Core Proj., Texel, 96 pp.

Jickells T.D., Blackburn T.H., Blanton J.O., Eisma D., Fowler S.W., Mantoura R. F.C., Martens C. S., Moll A., Scharek R., Suzuki Y., Vaulot D., 1991, What determines the fate of materials within ocean margins?, [in:] Ocean margin processes in global change, R. F.C. Mantoura, J.-M. Martin & R. Wollast (eds.), Dahlem Workshop Rep., 9, Wiley & Sons, Chichester, 211–234.

Mańkowski W., 1978, Baltic zooplankton and its productivity, Productivity of the Baltic Sea ecosystem, Ossolineum, Wrocław–Warszawa–Kraków–Gdańsk, 113–134.

Mudrak S., 2004, Short- and long-term variability of zooplankton in coastal Baltic water using the Gulf of Gdańsk as an example, Ph. D. thesis, Gdańsk Univ., Gdynia, 323 pp.

Postma H., Rommets J.W., 1984, Variations of particulate organic carbon in the central North Sea, Neth. J. Sea Res., 18, 31–50. http://dx.doi.org/10.1016/0077-7579(84)90023-1

Radach G., Moll A., 1993, Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea, Progr. Oceanogr., 31 (4), 339–419. http://dx.doi.org/10.1016/0079-6611(93)90001-T

Rozwadowska A., Isemer H.-J., 1998, Solar radiation fluxes at the surface of the Baltic Proper. Part 1: Mean annual cycle and influencing factors, Oceanologia, 40 (4), 307–330.

Savchuk O., Wulff F., 1996, Biogeochemical transformations of nitrogen and phosphorus in the marine environment, Syst. Ecol. Contrib. No. 2, Stockholm Univ., 79 pp.

Shaffer G., 1987, Redfield ratios, primary production and organic carbon burial in the Baltic Sea, Deep-Sea Res., 34, 769–784. http://dx.doi.org/10.1016/0198-0149(87)90036-7

Steele J.H., 1962, Environment control of photosynthesis in the sea, Limnol. Oceanogr., 7 (2), 137–150. http://dx.doi.org/10.4319/lo.1962.7.2.0137

full, complete article (PDF - compatibile with Acrobat 4.0), 797 KB


Holocene evolution of the Pomeranian Bay environment, southern Baltic Sea
Oceanologia 2011, 53(1-TI), 471-487
http://dx.doi.org/10.5697/oc.53-1-TI.471

Robert Kostecki*, Beata Janczak-Kostecka
Department of Quaternary Geology and Palaeogeography,
Adam Mickiewicz University,
Dzięgielowa 27, Poznań 61-680, Poland;
e-mail: kostecki@amu.edu.pl
*corresponding author

keywords: geochemistry, diatom assemblages, Littorina transgression, southern Baltic Sea, Pomeranian Bay

Received 6 October 2010, revised 28 February 2011, accepted 30 March 2011.

The Polish Ministry of Science and Higher Education financed this study within the framework of project No. N N305 084235.

Abstract

This article focuses on the diatom assemblages and geochemical composition of sediment cores retrieved from the Pomeranian Bay. We also discuss similarities and differences in the diatom assemblages and the palaeogeographic development of nearby regions. Our main objective was to determine the characteristics and rate of the Littorina transgression in the Pomeranian Bay area. Sediments were divided into units based on differences in the distribution of diatom ecological groups and in geochemical ratios, such as Mg/Ca, Na/K and Fe/Mn. This study identified lacustrine sediments deposited during the time of the Ancylus Lake. This lacustrine-period sedimentation took place in a shallow lake under aerobic conditions. The record of the onset of marine environment dates to 8900-8300 cal BP and corresponds to the Littorina transgression. After about 8300 cal BP, sedimentation took place in a deeper marine environment with higher biogenic production and anaerobic conditions. The abrupt appearance of marine diatom species and increased geochemical salinity indicators reflect the large impact of the Littorina transgression on the Pomeranian Bay environment.

  References logo

Battarbee R.W., 1986, Diatom analysis, [in:] Handbook of Holocene paleoecology and paleohydrology, B.E. Berglund (ed.), John Wiley & Sons. Ltd., London, 527-570.

Borówka R.K., Latałowa M., Osadczuk A., Święta J., Witkowski A., 2002, Palaeography and palaeoecology of Szczecin Lagoon, Greifswalder Geographische Arbeiten, 27, 107-113.

Borówka R.K., Osadczuk A., Witkowski A., Wawrzyniak-Wydrowska B., Duda T., 2005, Late Glacial and Holocene depositional sequences in the eastern part of the Szczecin Lagoon (Great Lagoon) basin - NW Poland, Quat. Int., 130 (1), 87-96.

Boyle J. F., 2001, Inorganic geochemical methods in palaeolimnology, [in:] Tracking environmental change using lake sediments, W.M. Last & J.P. Smol (eds.), Phys. Geochem. Methods, 2, Kluwer Acad. Publ., Dordrecht-Boston-London, 83-141.

Bronk Ramsey C., 1995, Radiocarbon calibration and analysis of stratigraphy: The OxCal program, Radiocarbon, 37 (2), 425-430.

Broszinski A., Witkowski A., Borówka R.K., Wawrzyniak-Wydrowska B., 2005, Paleogeograficzny rozwój Zatoki Pomorskiej w późnym glacjale i holocenie w świetle analizy diatomologicznej, [in:] Środowisko przyrodnicze wybrzeży Zatoki Pomorskiej i Zalewu Szczecińskiego, R.K. Borówka & S. Musielak (eds.), Wyd. Oficyna In Plus, Szczecin, 38-42.

Jensen J.B., Bennike O., Witkowski A., Lemke W., Kuijpers A., 1999, Early Holocene history of the southern Baltic Sea: the Ancylus Lake stage, Boreas, 28 (4), 437-453. http://dx.doi.org/10.1111/j.1502-3885.1999.tb00233.x

Kramarska R., 1998, Origin and development of the Odra bank in the light of geologic structure and radiocarbon dating, Geolog. Quart., 42 (3), 277-288.

Krammer K., Lange-Bertalot H., 1991a, Bacillariophyceae 3, Centrales, Fragilariaceae, Eunotiaceae, [in:] Süsswasserflora von Mitteleuropa 2, H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (eds.), Vol. 3, Fischer, Stuttgart, 577 pp.

Krammer K., Lange-Bertalot H., 1991b, Bacillariophyceae 4, Achnanthacea, [in:] Süsswasserflora von Mitteleuropa 2, H. Ettl, G. G¨artner, J. Gerloff, H. Heynig & D. Mollenhauer (eds.), Vol. 4, Fischer, Stuttgart, 437 pp.

Krzymińska J., Przeździecki P., 2001, Palaeogeography of Late Glacial and Lower Holocene lakes in the Pomeranian Bay on the basis of malacofauna and ostracodes and seismoacustic data, Stud. Quat., 18, 3-10.

Lampe R., 2005, Late-glacial and Holocene water-level variations along the NE German Baltic Sea coast: review and new results, Quat. Int., 133-134, 121-136. http://dx.doi.org/10.1016/j.quaint.2004.10.005

Lampe R., Endtmann E., Janke W., Meyer H., Lubke H., Harff J., Lemke W., 2005, A new relative sea-level curve for the Wismar Bay, N-German Baltic coast, Meyniana, 57, 5-35.

Lemke W., 1998, Sedimentation und pal¨aogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkona Becken) vom Ende der Weichselvereisung bis zur Litorinatransgression, Meereswiss. Ber., 31, 156 pp.

Lemke W., Endler R., Tauber F., Jensen J.B., Bennike O., 1998, Late- and postglacial sedimentation in the Tromper Wiek northeast of Rügen (western Baltic), Meyniana, 50, 155-173.

Lübke H., 2002, Submarine Stone Age settlements as indicators of sea-level changes and the coastal evolution of the Wismar Bay area, Greifswalder Geographische Arbeiten, 27, 203-210.

Lübke H., Lüth F., 2009, Hunters and fishers in a changing world - Preliminary results of the archaeological fieldwork 2003-2008 of the SINCOS research unit in Wismar Bay, Germany, [in:] Proceedings of the international conference on Climate Change, The environmental and socio-economic response in the southern Baltic region, A. Witkowski, J. Harff & H.-J. Isemer (eds.), Publ. No. 42, Int. BALTEX Sec., Univ. Szczecin, Poland, 25-28 May 2009, 89-90.

Mörner J.E., 1976, Eustasy and geoid changes, J. Geol., 84 (2), 123-151. http://dx.doi.org/10.1086/628184

Moros M., Lemke W., Kuijpers A., Endler R., Jensen J.B., Bennike O., Gingele F., 2002, Regressions and transgressions of the Baltic basin reflected by a new high-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea), Boreas, 31 (2), 151-162. http://dx.doi.org/10.1080/030094802320129953

Reimer P. J., Baillie M.G. L., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Burr G. S., Edwards R. L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T. J., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., McCormac F.G., Manning S.W., Reimer

R.W., Richards D.A., Southon J.R., Talamo S., Turney C. S.M., van der Plicht J., Weyhenmeyer C.E., 2009, IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP, Radiocarbon, 51 (4), 1111-1150.

Rosa B., 1963, Über die morphologische Entwicklung der Küste Polens im Lichte der alten Strandformen, Stud. Soc. Scient. Torunensis, 5, 172 pp.

Rössler D., Lemke W., Moros M., 2007, Reconstruction of the Littorina Transgression in the Western Baltic Sea, Ber. Römisch-Germanischen Kommission, 88, 47-65.

Rössler D., Moros M., Lemke W., 2010, The Littorina transgression in the southwestern Baltic Sea: new insights based on proxy methods and radiocarbon dating of sediment cores, Boreas, 40 (2), 231-241. http://dx.doi.org/ 10.1111/j.1502-3885.2010.00180.x.

Rotnicki K., 2008, Problem wieku najstarszego Bałtyku holoceńskiego na polskim wybrzeżu środkowym, [Age of the oldest Holocene Baltic Sea on the Polish middle coast], [in:] Holoceńskie przemiany wybrzeża i wód południowego Bałtyku - przyczyny, uwarunkowania i skutki, K. Rotnicki, J. Jasiewicz & M. Woszczyk (eds.), Wyd. Tekst, Poznań-Bydgoszcz, 103-111.

Rotnicki K., 2009, Identyfikacja, wiek i przyczyny holoceńskich ingresji i regresji Bałtyku na polskim wybrzeżu środkowym, [Identification, age and causes of the Holocene transgressions and regressions of the Baltic on the Polish Middle Coast], Wyd. Słowińskiego Parku Narodowego, Smołdzino, 100 pp.

Schmölcke U., Endtmann E., Klooss S., Meyer M., Michaelis D., Björn-Henning R., Rössler D., 2006, Changes of sea level, landscape and culture: A review of the south-western Baltic area between 8800 and 4000 BC, Palaeogeogr. Palaeocl., 240 (3-4), 423-438. http://dx.doi.org/10.1016/j.palaeo.2006.02.009

Uścinowicz S., 2006, A relative sea-level curve for the Polish Southern Baltic Sea, Quat. Int., 145-146, 86-105. http://dx.doi.org/10.1016/j.quaint.2005.07.007

Witkowski A., Broszinski A., Bennike O., Janczak-Kostecka B., Jensen J.B., Lemke W., Endler R., Kuijpers A., 2005, Darss Sill as a biological border in the fossil record of the Baltic Sea: evidence from diatoms, Quat. Int., 130 (1), 97-109. http://dx.doi.org/10.1016/j.quaint.2004.04.035

Witkowski A., Cedro B., Kierzek A., Baranowski D., 2009, Diatoms as a proxy in reconstructing the Holocene environmental changes in the south-western Baltic Sea: the lower Rega River Valley sedimentary record, Hydrobiologia, 631, 155-172. http://dx.doi.org/10.1007/s10750-009-9808-7

Witkowski A., Lange-Bertalot H., Metzeltin D., 2000, Diatom flora of marine coasts I, Iconographia Diatomologica, 7, Gantner, Rugell, 925 pp.

full, complete article (PDF - compatibile with Acrobat 4.0), 245 KB


Analysis of 50-year wind data of the southern Baltic Sea for modelling coastal morphological evolution - a case study from the Darss-Zingst Peninsula
Oceanologia 2011, 53(1-TI), 489-518
http://dx.doi.org/10.5697/oc.53-1-TI.489

Wenyan Zhang1,*, Jan Harff2, Ralf Schneider1
1Institute of Physics, Ernst-Moritz-Arndt University of Greifswald,
Felix-Hausdorff-Str. 6, Greifswald 17489, Germany;
e-mail: wzhang@ipp.mpg.de
*corresponding author
2Institute of Marine and Coastal Sciences, Szczecin University,
Adama Mickiewicza 18, Szczecin 70-383, Poland

keywords: representative wind series, statistical analysis, morphodynamic model, southern Baltic Sea

Received 6 October 2010, revised 1 March 2011, accepted 2 March 2011.

Abstract

High-resolution wind series in the southern Baltic Sea for the period of 1958-2007 are analysed to generate representative climate input conditions for a multi-scale morphodynamic model to simulate decadal-to-centennial coastline change. Four seasonal wind classes, each characterized by a predominant distribution of wind direction and speed, are derived from statistical analysis. Further calibration of this statistical description is done by sensitivity studies of the model to generate similar coastline changes of the Darss-Zingst peninsula as the measured data for the last century. The coastline change of this area is then projected for the next 300 years based on four different climate scenarios, through which impacts of accelerated sea level rise and storm frequency on the long-term coastline change are quantified.

  References logo

Cayocca F., 2001, Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France, Coast. Eng., 42 (2), 115-142. http://dx.doi.org/10.1016/S0378-3839(00)00053-3

de Vriend H. J., 2001, Long-term morphological prediction, [in:] River, coastal and estuarine morpho-dynamics, G. Seminara & P. Blondeaux (eds.), Springer, Berlin, 223 pp.

de Vriend H. J., Copabianco M., Chesher T., De Swart H.E., Latteux B., Stive M. J.F., 1993a, Approaches to long-term modelling of coastal morphology: a review, Coast. Eng., 21 (1-3), 225-269. http://dx.doi.org/10.1016/0378-3839(93)90051-9

de Vriend H. J., Zyserman J., Nicholson J., Roelvink J.A., Pechon P., Southgate H.N., 1993b, Medium term 2DH coastal area modelling, Coastal Eng., 21 (1-3), 193-224. http://dx.doi.org/10.1016/0378-3839(93)90050-I

Dastgheib A., Roelvink J.A., Wang Z.B., 2008, Long term process-based morphological modelling of the Marsdiep tidal basin, Mar. Geol., 256 (1-4),90-100. http://dx.doi.org/10.1016/j.margeo.2008.10.003

Dissanayake D.M.P.K., Roelvink J.A., 2007, Process-based approach on tidal inlet evolution - Part 1, Proc. 5th Symp. ‘River, coastal and estuarine morphodynamics’, 225-269.

Douglas B.C., Crowell M., 2000, Long-term shoreline position prediction and error propagation, J. Coast. Res., 16 (1), 145-152.

Ekman M., 2009, The changing level of the Baltic Sea during 300 years: A clue to understanding the Earth, Summer Inst. Historical Geophys., Åland Islands, 155 pp.

Fagherazzi S., Overeem I., 2007, Models of deltaic and inner continental shelf landform evolution, Annu. Rev. Earth Pl. Sci., 35 (1), 685-715. http://dx.doi.org/10.1146/annurev.earth.35.031306.140128

Froehle P., Dimke S., 2008, Analysis of potential long shore sediment transport at the coast of Mecklenburg-Vorpommern, [in:] Proc. Chinese-German Joint Symposium of Hydraulic and Ocean Engineering, U. Zanke et al. (eds.), Inst. Hydraulic and Water Resources Engineering (Hrsg.).

Froehle P., Kohlhase S., 2004, The role of coastal engineering in integrated coastal zone management, Coast. Rep. 2, 167-173.

Harff J., LemkeW., Lampe R., Lüth F., Lübke H., Meyer M., Tauber F., Schmölcke U., 2007, The Baltic Sea coast-A model of interrelations among geosphere, climate, and anthroposphere, [in:] Coastline changes: Interrelation of climate and geological processes, J. Harff, W.W. Hay & D.M. Tetzlaff (eds.), Geol. Soc. Am. (GSA) Spec. Papers 426, 133-142

HELCOM, 2006, Climate change in the Baltic Sea area, HELCOM Stakeholder Conf. "Baltic Sea action plan", HELCOMthematic assessment in 2006, Helsinki Commiss., Helsinki.

Hupfer P., Harff J., Sterr H., Stigge H.-J. (eds.), 2003, Die Wasserstände an der Ostseeküste. Entwicklung - Sturmfluten - Klimawandel, Archiv für Forschung und Technik an der Nord- und Ostsee, Die Küste H. 66, 331 pp., Boyens & Co. KG, Heide i. Holstein.

IPCC, 2007, Climate change 2007: The physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge.

Jiménez J.A., Arcilla A. S., 2004, A long-term (decadal scale) evolution model for microtidal barrier systems, Coast. Eng., 51 (8-9), 749-764. http://dx.doi.org/10.1016/j.coastaleng.2004.07.007

Jones O.P., Petersen O. S., Hansen H.K., 2007, Modelling of complex coastal environments: Some considerations for best practise, Coast. Eng., 54 (10), 717-733. http://dx.doi.org/10.1016/j.coastaleng.2007.02.004

Klavins M., Briede A., Rodinov V., 2009, Long term changes in ice and discharge regime of rivers in the Baltic region in relation to climatic variability, Clim. Change, 95 (3-4), 485-498. http://dx.doi.org/10.1007/s10584-009-9567-5

Kliewe H., 1995, Zeit- und Klimamarken in Sedimenten der südlichen Ostsee und ihrer Vorpommerschen Boddenküste, J. Coast. Res., Special Issue. 17, 181-186.

Kolp O., 1978, Das Wachstum der Landspitze Darsser Ort, Petermanns Geographische Mitteilungen 122, 103-111.

Lampe R., 2002, Holocene evolution and coastal dynamics of the Fischland Darss Zingst peninsula, Greifswald Geographische Arbeiten, 27, D1, 155-163.

Lampe R., 2005, Late-glacial and Holocene water-level variations along the NE German Baltic Sea coast: review and new results, Quatern. Int. Vol. 133-134, 121-136. http://dx.doi.org/10.1016/j.quaint.2004.10.005

Latteaux B., 1995, Techniques for long-term morphological simulation under tidal action, Mar. Geol., 126 (1-4), 129-141. http://dx.doi.org/10.1016/0025-3227(95)00069-B

Meier H.E.M., Broman B., Kjellström, E., 2004, Simulated sea level in past and future climates of the Baltic Sea, Climate Res., 27 (1), 59-75. http://dx.doi.org/10.3354/cr027059

Meyer M., Harff J., Gogina M., Barthel A., 2008, Coastline changes of the Darss-Zingst peninsula - a modeling approach, J. Marine Syst., 74 (Suppl. 1), S147-S154. http://dx.doi.org/10.1016/j.jmarsys.2008.03.023

Milbradt P., Lehfeldt R., 2002, Littoral processes at micro-tidal coasts of the southern Baltic Sea, Adv. Hydro-Sci. Eng.

Morton R.A., Paine J.G., Gibeaut J.G., 1994, Stages and durations of poststorm beach recovery, southeasterly Texas coast, U.S.A., J. Coast. Res., 10 (4), 884-908.

Otto T., 1913, Der Darss und Zingst: Ein Beitrag zur Entwicklungsgeschichte der vorpommerschen Küste. 13., Jahresber. Geogr. Ges. Greifswald, 1911-1912, 237-485.

Roelvink J.A., 2006, Coastal morphodynamic evolution techniques, Coast. Eng., 53 (2-3), 277-287. http://dx.doi.org/10.1016/j.coastaleng.2005.10.015

StAUN - State Agency for Environment and Nature (StAUN) Rostock, 1994, Generalplan Küsten- und Hochwasserschutz Mecklenburg-Vorpommern, Landesentwicklung und Umwelt Mecklenburg-Vorpommern, Ministerium für Bau, 108 pp.

Schiewer U., 2008, Chapter 2: The Baltic coastal zones, [in:] Ecology of Baltic coastal waters, Springer. http://dx.doi.org/ 10.1007/978-3-540-73524-3

Schumacher W., 2002, Coastal evolution of the Darss Peninsula, Greifswalder Geographische Arbeiten, 27, D2, 165-168.

Schumacher W., Bayerl K.-A., 1999, The shoreline displacement curve of Ruegen Island (Southern Baltic Sea), Quatern. Int., 56 (1), 107-113. http://dx.doi.org/10.1016/S1040-6182(98)00027-5

Schwarzer K., Diesing M., 2003, Coastline evolution at different time scales - examples from the Pomeranian Bight, southern Baltic Sea, Mar. Geol., 194 (1-2), 79-101. http://dx.doi.org/10.1016/S0025-3227(02)00700-4

Trouet V., Esper J., Graham N.E., Baker A., Scourse J.D., Frank D.C., 2009, Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly, Science, 324 (50)2009, 78.

Voss R., Mikolajewicz U., Cubasch U., 1997, Langfristige Klimaänderungen durch den Anstieg der CO2-Konzentration in einem gekoppelten Atmosphäre-Ozean-Modell, Ann. Meteorol., 34, 3-4.

full, complete article (PDF - compatibile with Acrobat 4.0), 1.89 MB