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Abstract

Two wave theories are applied in calculations of longshore sediment transport rates:
the second Stokes approximation and the cnoidal theory. These approaches are
used to model sand motion in nearshore locations beyond and within the surf
zone. Wave-current interaction in the nearbed layer and bed shear stresses are
solved using a momentum integral method, whereas sediment transport is described
by a three-layer model encompassing bedload, contact load and suspended load.
Computational results for asymmetric waves are compared with the results
obtained using linear wave theory and the conventional sediment transport models
of Bailard (1981), Bijker (1971) and Van Rijn (1993).

1. Introduction

Coastal zones built of sandy sediment are subject to continuous evo-
lution as a result of frequently changing hydrodynamic conditions. This
morphodynamic evolution can be observed on many time scales and leads
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to changes in both the short (hours and days) and the long term (years and
decades).

Conventionally, it is assumed that seabed evolution takes place as
a result of the spatial variability of net sediment transport rates. In
theoretical descriptions, sediment transport is for convenience divided into
cross-shore and longshore. Similarly, coastal changes in the cross-shore
and longshore domains are assumed to result from the variability in the
respective components of the sand’s motion.

On sandy coasts, vulnerable to water flows, waves and currents elicit
a quick response on the part of the littoral system. The seabed is constantly
evolving towards a state of equilibrium with respect to instantaneous
hydrodynamic conditions. In the Baltic Sea, however, these conditions
seldom become steady and such an equilibrium cannot therefore be reached.
In particular, the cross-shore profile can never take on a permanent
shape, changing significantly even on short time scales (hours and days).
Theoretical descriptions, numerical models and predictive simulations of
this process are therefore often very difficult and unreliable. On the other
hand, hindcasts and forecasts of coastal evolution in the longshore direction
do very often allow distinct trends to be determined. Coastal engineering
problems treated in the longshore spatial domain are thus solved with a quite
high degree of accuracy and reliability. These solutions, most often obtained
by the use of the so-called one-line theory for sections of the shoreline where
the longshore sand motion is disturbed by coastal structures, can involve
very long time scales, up to tens of years (see e.g. Szmytkiewicz et al. 2000).

In mathematical models of longshore sand transport, in contrast to the
situation regarding cross-shore transport (Ostrowski 2003), wave asymmetry
does not seem to be very important, because the direction of this transport is
independent of wave shape. It is intuitively obvious that the transport rate
will increase if the wave asymmetry does so. Because of the highly non-linear
relation between hydrodynamic forcing and sediment transport, a much
higher contribution of sediment transport can be expected in the wave crest
phase (sediment motion in accordance with the longshore current) than in
the wave trough phase (sediment motion in the opposite direction).

Presumably, then, the greater the wave asymmetry, the more intensive
the longshore sediment transport. The present study was undertaken to
find out what qualitative increase in the longshore sediment transport rate
can be expected when asymmetric waves (with short, high crests and long,
shallow troughs) are taken into consideration; Ostrowski (2002) did likewise
with respect to cross-shore transport.

In the present study, the classical deterministic modelling approach
is followed, which comprises a theoretical description of the physical
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processes occurring in a coastal zone. Within this modelling system, wave
transformation and breaking are first determined, along with wave-induced
currents, which are quantitatively closely dependent on the features of the
cross-shore profile. Then, sea bed roughness and bed shear stresses are
calculated, from which the longshore sediment transport can be found.

The net longshore sediment transport rate at a point in the nearshore
zone can be expected to depend on the bed shear stress resulting from the
interaction of waves and the longshore current. This current, like most
wave-driven water motions, is modelled in the phase-averaged mode. The
calculations of the longshore current are based on a phase-averaged wave
field and have the same or a very similar degree of accuracy. At a local
point, however, where the specific water depth and wave parameters are
known from the phase-averaged model, the asymmetric shape of the wave-
induced nearbed velocity can be described by a wave theory appropriate to
the wave regime. Non-linear superposition of the asymmetric wave-induced
velocities and the steady longshore flow in the bed boundary layer yields
the resultant nearbed sediment flux at the point under consideration. The
rate of the net sediment transport in the upper layer of the water column
also results from the solution of the wave-current bed boundary layer.

Hence, the bed boundary layer at a point on the cross-shore profile,
the bed shear stresses and the sediment transport rates are determined in
the phase-resolving mode, yielding instantaneous values for the entire wave
period. By integrating the sediment transport rates over the wave period
in the individual locations of the cross-shore profile, the authors obtained
the net sand transport rates.

The above compound way of modelling, comprising phase-averaged
coastal hydrodynamics and a phase-resolving sediment transport module,
together constitute the quasi-phase-resolving approach.

2. Theoretical background

2.1. Wave transformation and longshore current

Coastal hydrodynamics is the force driving sediment transport pro-
cesses. A reliable description of the wave-current field is crucial for
a precise determination of sediment transport rates. The set of models
by Szmytkiewicz (1995) and Szmytkiewicz (2002a,b), enabling calculations
of wave transformation and wave-driven currents, has been validated
thoroughly using laboratory and field data, both from the literature and the
IBW PAN experimental facilities, namely the wave flume and the Coastal
Research Station (CRS) at Lubiatowo, Poland. A brief description of this
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computational framework, adapted to the purposes of the present study,
now follows.

In computations of wave motion, following Battjes & Janssen (1978),
it is assumed that waves are random and that their heights in the entire
coastal zone can be described by a Rayleigh distribution. The wave height
H is computed from the energy flux conservation equation, where the roller
effect is also taken into consideration:

∂

∂x
(E Cg cos θ) +

∂

∂x
(Er C cos θ) = −D, (1)

where E is the total wave energy, Er the kinetic energy of the roller (as
described by Svendsen 1984), C and Cg the phase and group velocity of
waves, respectively, θ the wave approach angle, and D the wave energy
dissipation.

In the above equation, which is a simplified form of the wave action
equation, the wave energy dissipation D is calculated on the assumption
that the dissipation is related to the wave breaking process only. Under this
assumption, the formula of Battjes & Janssen (1978) is used:

D =
α

4
pb fpρgH

2
m. (2)

Their approach was successfully adapted to a multi-bar coastal zone and
multiple wave breaking (Szmytkiewicz 1995).

In eq. (2), g denotes the acceleration due to gravity and ρ is the water
density; the factor pb, characterising the percentage of broken and breaking
waves at a given point in the coastal zone, is described by the relationship:

1− pb

ln pb
= −

(
Hrms

Hm

)2

(3)

in which α is an empirical coefficient of the order O(1), fp is the wave
spectrum peak frequency (fp = 1/Tp), Hm denotes the maximum possible
wave height at the considered location of the coastal zone, and Hrms is the
sought-after root-mean-square wave height.

In the longshore sediment transport model, the following main assump-
tions are made:

– isobaths are approximately parallel to the shoreline,

– shear stresses within the liquid in the cross-shore direction play
a predominant role,

– water flow velocities related to circulations of the open sea are
negligibly small in comparison to wave-induced currents in the
nearshore zone.
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The time- and depth-averaged momentum equations in the cross-shore
(x axis) and longshore (y axis) direction take the form:

∂Sxx

∂x
+
∂Mxx

∂x
+ ρ g h

∂η

∂x
= 0, (4)

∂Sxy

∂x
+
∂Mxy

∂x
=

∂τxy

∂x
− τby, (5)

where η denotes the mean elevation of the free surface above the still water
level, h the water depth, τby the bed shear stress, τxy the turbulence shear
stresses within the liquid, Sxx and Sxy the components of the radiation
stress tensor, Mxx and Mxy the components of the roller momentum tensor.

The above equations enable the set-up and set-down of sea water level
(eq. (4)) and the distribution of longshore currents, averaged over depth
and wave period, to be computed as functions of offshore distance (eq. (5))
above a multi-bar bottom and for multiple wave breaking.

The driving factors Sxy and Mxy of water flow are calculated as the
function of wave energy dissipation:

∂Sxy

∂x
= −sin θ

C
D, (6)

∂Mxy

∂x
=
sin θ
C
(D −Dr), (7)

where Dr is the wave energy dissipation due to the appearance of the roller.
The bed stress is calculated under the classical assumption of the

relationship between the shear stresses at the top of the bed boundary layer
and the flow velocities beyond this layer, whereas the turbulence stresses
are expressed by the mean parameters of the flow in accordance with the
Boussinesq hypothesis.

2.2. Asymmetric wave free-stream velocities

The ultimate effect of the nearbed interaction between asymmetric wave
motion and wave-induced steady flow (e.g. longshore current) depends on
the wave shape, in particular the shape of the wave free-stream velocity.

The most elementary description of asymmetric waves is provided by
the classical Stokes theory. This approach, however, can only be used for
a limited range of wave parameters. Close to the shore, at small water
depths, the Stokes approximations are not valid. In this area, therefore, the
application of the cnoidal wave theory is recommended.

Following conventional classifications, e.g. by Massel (1989), one can
assume the rough limit of L/h ≈ 10 as the interaction between short and
long waves. The wave theories stemming from Stokes approximations can
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be used for L/h < 10, whereas the theoretical approaches to long waves
– cnoidal theories – should be used for L/h > 10. According to Fenton
(1979), the above intersection lies at about L/h = 8. However, as deduced
by Fenton (1979), for smaller waves there is significant overlap between the
areas of validity of the Stokes and cnoidal theories. For instance, a wave with
H/h=0.2 can be solved using either the Stokes or the cnoidal approximation
for L/h lying between 5 and 12. The above wave conditions yield an Ursell
parameter, Ur = H/h(L/h)2, ranging from 5 to 28.8. This example shows
that an arbitrary choice can be made between the two theoretical approaches
within quite a wide range of wave regimes.

Sobey et al. (1987) proposed the following formulas for the free surface
elevation η and the horizontal depth-averaged velocity u (for the symbols,
see Fig. 1):

η(x, t) = ht +Hcn2(x, t, k), (8)

u(x, t) = ū+ (ght)1/2
[
− 1− H

htcn2(x, t, k)
(−0.5 + k2 −

− k2cn2(x, t, k))
]

(9)

in which

ht = h

{
1 +

H

k2h

[
1− k2 − E(k)

K(k)

]}
, (10)

u

y

x

H

ht

h

z

x

L

η

Fig. 1. Definition sketch for wave theories
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ū = (ght)1/2

{
1 +

H

k2ht

[
0.5− E(k)

K(k)

]}
, (11)

cn2(x, t, k) = cn2

[
2K(k)

(
x

L
− t

T

)
; k

]
. (12)

In the above expressions, K(k) and E(k) are complete elliptic integrals
of the first and second kind, respectively, with modulus k. Function ‘cn’ is
the Jacobian elliptic cosine. The function ‘cn’ is singly periodic, provided
k is a real number and 0 ≤ k < 1. The period becomes infinite when k = 1
(in which case we have a solitary wave). For k = 0 the wave is sinusoidal.

For the same as the above description of the free surface elevation,
Wiegel (1960) provided a more sophisticated equation yielding the hori-
zontal velocity u variable over the elevation y above the bed:

u(x, y, t)
(gh)1/2

= −5
4
+
3ht

2h
− h2

t

4h2
+

(
3h
2h

− htH

2h2

)
cn2(x, t, k)−

−H2

4h2
cn4(x, t, k) − 8HK2(k)

L2

(
h

3
− y2

2h

)[
− k2sn2(x, t, k)cn2(x, t, k)+

+cn2(x, t, k)dn2(x, t, k) − sn2(x, t, k)dn2(x, t, k)

]
, (13)

where ‘sn’ and ‘dn’ are the other two Jacobian elliptic functions (available
on the basis of ‘cn’ from the relations sn2+cn2 = 1 and k2sn2+dn2 = 1).

In all the above and other solutions for cnoidal waves, the modulus k
of the elliptic integrals, as well as the elliptic integrals K(k) and E(k) are
unknown. In the present study, they are found iteratively from the following
relationship, after Massel (1989):(

H

h

)(
gT 2

h

)
=
16
3
k2K2(k), (14)

whereas the cnoidal wave length is calculated from the following equation
(assuming the wave celerity C = L/T = (gh)1/2):(

H

h

)(
L

h

)2

=
16
3
k2K2(k). (15)

Where applicable, the Stokes theory can be applied in calculations of
the free surface elevation η and the nearbed wave-induced velocity u. In
case of the 2nd Stokes approximation, these quantities read (Massel 1992):
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η(x, t) =
H

2
cos

[
2π

(
x

L
− t

T

)]
+

+

(
πH2

8L

) cosh(2πh
L

)

sinh3
(
2πh
L

)
[
2 + cosh

(
4h
L

)]
cos

[
4π

(
x

L
− t

T

)]
, (16)

u(x, y, t) =
gHT

2L

cosh
(
2π(z + h)

L

)

cosh
(
2πh
L

) cos

[
2π

(
x

L
− t

T

)]
+

+
3
4

(
πH

L

)2

C
cosh

(
4π(z + h)

L

)

sinh4
(

2πh
L

) cos

[
4π

(
x

L
− t

T

)]
. (17)

Example computations of the free surface elevation using eq. (8), the
depth-independent velocity using eq. (9), the velocities at the bottom and
in the wave trough using eq. (13), as well as the free surface elevation and
nearbed velocity using the 2nd Stokes approximation from eqs. (16) and
(17) respectively, are plotted in Fig. 2.
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Fig. 2. Free surface elevation and wave-induced velocity by various approaches for
h = 5 m, H = 0.5 m, T = 8 s; L/h ≈ 11, Ur ≈ 11



Modelling longshore sediment transport under asymmetric waves 403

It can be seen that the cnoidal depth-averaged velocity computed from
eq. (9) corresponds to the cnoidal velocity in the wave trough found from
eq. (13), while the 2nd Stokes approximation yields a velocity almost
identical with eq. (13) for y = 0 (nearbed velocity). The latter demonstrates
that in the wave regime under consideration (L/h ≈ 11, Ur ≈ 11), both
Wiegel’s (1960) cnoidal approximation and Stokes’ theory can be applied to
describe nearbed wave-induced (free stream) velocities. For higher values
of L/h and Ur, Wiegel’s approach is recommended. More discussion on the
above can be found in Ostrowski (2002).

2.3. Bed shear stresses and sediment transport

Longshore transport is assumed to depend on combined wave and
current motion. This combined flow of water gives rise to a coupled bed
shear stress, which is the force driving the movement of sand.

According to the assumptions of the present theoretical model, the
motion of sediment is caused by the instantaneous bed shear stress (τ =
ρu2

f ), where uf is the friction velocity. The instantaneous values and
directions during a wave period are determined by the momentum integral
method for wave-current flow proposed by Fredsøe (1984). For the case
of a wave and a steady current interacting at an arbitrary angle, Fredsøe
(1984), using the dimensionless variable z1 described as

z1 =
Uκ

u∗f
, (18)

derived the following differential equation:
d(z1)
d(ωt)

=
z1(1 + z1 − ez1)
ez1(z1 − 1) + 1

1
U

dU

d(ωt)
+

+
30κ
ke

√
κ2U2 + z2

1u
2
f0 + 2z1κuf0U cos γ

ω[ez1(z1 − 1) + 1] . (19)

In the above equation, the input data consists of the von Karman
constant κ = 0.4, the angular frequency ω of the wave motion, the free-
stream velocity U(ωt), the friction velocity uf0 related to the steady flow
(e.g. longshore current) at the top of the wave bed boundary layer, the angle
between this flow (of the velocity um(δ) at the top of the bed boundary
layer) and the direction of wave propagation γ (see Fig. 3), as well as the
bed roughness height ke. From the solution of eq. (19), the function z1(ωt)
is obtained, from which one can calculate the distribution of the boundary
layer thickness δ(ωt) over the wave period using eq. (20).

δ =
ke

30

(
ez1 − 1

)
. (20)
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Fig. 3. Calculated friction velocities (upper) and schemes of interaction between
waves and the longshore current in the bed boundary layer of the coastal zone

In accordance with Fredsøe’s (1984) approach, the distribution of the
friction velocity uf (ωt) is determined from the following equation, in which
u∗f is an auxiliary variable:

1
u∗f
=

uf0 cos γ
u2

f − u2
f0

+

√√√√√ u2
f0 cos2 γ(

u2
f − u2

f0

)2 +
1

u2
f − u2

f0

. (21)
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The angle φ(ωt) between the direction of the steady current and the
resultant instantaneous bed shear stress is calculated by the following
formula:

φ = arcsin

(
u∗f
uf
sin γ

)
. (22)

The upper part of Fig. 3 exemplifies the results of the computations; the
lower part shows the layout of velocity vectors together with the resultant
friction velocity uf during consecutive phases of the wave period.

The solution yields the instantaneous bed shear stresses τ = ρu2
f (ωt) and

the resultant directions of these stresses φ(ωt).
The shear stresses are the forces driving sediment transport rates,

which are determined using the model of Kaczmarek & Ostrowski (2002).
Successful, thorough testing versus experimental data allow this model to
be applied within the framework presented here.

The three-layer sediment transport model comprises the bedload layer
(below the theoretical bed level) and two suspension layers – the contact
load layer (nearbed suspension of sediment) and the outer layer (suspension
in the water column).

The mathematical model of the bedload transport is based on the
water-soil mixture approach, with a collision-dominated drag concept and
the effective roughness height ke (necessary for determining the bed shear
stresses). This roughness is calculated using the approximate formula
presented by Kaczmarek & Ostrowski (1996).

From the hydrodynamic input, described by the nearbed wave-induced
velocities and the longshore current velocity, the instantaneous values of bed
shear stresses ρu2

f (t) during a wave period are determined by the momentum
integral method proposed by Fredsøe (1984), i.e. from eq. (19). Then, for
known bed shear stresses ρu2

f (t), the instantaneous bedload velocities u(z′, t)
and concentrations c(z′, t) are found from the following equations (with the
vertical z′ axis directed downwards from the theoretical bed level):

α0

(
c− c0
cm − c

)
sinϕ sin 2Ψ + µ1

(
∂u

∂z′

)2

= ρu2
f , (23)

α0

(
c− c0
cm − c

)
(1− sinϕ sin 2Ψ) + (µ0 + µ2)

(
∂u

∂z′

)2

=

=

(
µ0 + µ2

µ1

)∣∣∣∣∣
c=c0

ρu2
f + (ρs − ρ)g

z′∫
0

cdz′, (24)
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where
ρs – is the soil density,
α0 – is a constant,
c0 – is the sediment concentration corresponding to soil fluidity,
cm – is the sediment concentration corresponding the closest possible

packing of grains,
µ0, µ1 and µ2 – are functions of the solid concentration c:

µ1

ρsd2
=

0.03
(cm − c)1.5

, (25)

µ0 + µ2

ρsd2
=

0.02
(cm − c)1.75

, (26)

where d is the grain diameter.
The symbol ϕ in equations (23) and (24) stands for the quasi-static angle

of internal friction, and the angle ψ between the major principal stress and
the horizontal axis (for simple shear flow) is equal to

Ψ =
π

4
− ϕ

2
. (27)

The following numerical values are assumed in the calculations:

α0

ρsgd
= 1 cm = 0.53 c0 = 0.32 ϕ = 24.4◦. (28)

In the contact load layer, following Deigaard (1993), the sediment
velocity and concentration is modelled using the following equations (with
the vertical z axis directed upwards from the theoretical bed level):

[
3
2

(
α
d

ws

du

dz

2
3
s+ cM
cD

+ β

)2

d2c2(s + cM ) + l2
](

du

dz

)2

= uf
′2, (29)


3
(
α
d

ws

du

dz

2
3
s+ cM
cD

+ β

)2

d2 du

dz
c+ l2

du

dz


 dc

dz
= −wsc. (30)

The term ρuf
′2(ωt) is related to the ‘skin friction’, calculated by

Fredsøe’s (1984) model for the ‘skin’ roughness ke
′ = 2.5d. In equations

(29) and (30) ws denotes the settling velocity of grains, cM and cD are the
respective added mass and drag coefficients, α and β are the coefficients,
and l is the mixing length defined as l = κz.
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The instantaneous values of the sediment transport rate are computed
from the distributions of velocity and concentration in the bedload layer
and in the contact load layer:

qb+c(t) =
δb∫

0

u(z′, t) c(z′, t)dz′ +
δc∫

ke
′/30

u(z, t) c(z, t)dz, (31)

where δb(ωt) is the bedload layer thickness, and δc denotes the upper limit
of the nearbed suspension (contact load layer thickness). The quantity δb
results from the solution of eqs. (23) and (24), and the value of δc is the
characteristic boundary layer thickness calculated on the basis of Fredsøe’s
(1984) approach (see Kaczmarek & Ostrowski 2002).

The net transport rate in the bedload and contact load layers is
calculated as follows:

qb + qc =
1
T

T∫
0

qb+c(t)dt. (32)

The net sediment transport rate in the outer flow is determined using
the following simplified formula:

qs =
h∫

δc

ū(z) c̄(z)dz, (33)

where the time-averaged concentration is obtained from a conventional
relationship, e.g. that by Ribberink & Al-Salem (1994):

c̄(z) = c̄(z = δc)

(
δc
z

)α1

. (34)

The quantity c̄(z = δc) in eq. (34) plays a key role in the determination
of concentration in the outer region. Known as a reference concentration, it
is assumed arbitrarily, assessed from experimental data or simply ‘guessed’
in the other theoretical approaches. In the present modelling system, the
concentration c̄(z = δc) is calculated from eqs. (29) and (30), whereas the
velocity ū(z) is determined from the solution of the bed boundary layer
presented by Kaczmarek & Ostrowski (1992). Beyond the bed boundary
layer in the water column the velocity ū(z) is assumed to be the constant
quantity. The concentration decay parameter α1 is an unknown value which
has to be determined, e.g. from experiments.

Next, using the angle φ, the instantaneous sediment transport rates
q(ωt) are projected on to the longshore direction, averaged over the wave
period; thus, the net longshore transport qy is obtained:

qy = q(ωt) cosφ(ωt). (35)
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The inner time-averaged velocity profiles in the bed boundary layer
(discussed by Kaczmarek & Ostrowski (1992) and assumed to lie within
z < 2δm + ke/30) in the direction of the steady current can be determined
using the formulas proposed by Kaczmarek & Ostrowski (1992):

ū(z) =
u2

fc

κûf
ln
30z
ke

for
ke

30
< z <

δm
4
+
ke

30
, (36)

ū(z) =
u2

fc

κûf

(
z

δm
4
+
ke

30

+ ln

δm
4
+

ke

30
ke
30

− 1
)

for
δm
4
+
ke

30
< z < 2δm +

ke

30
. (37)

The above relationships are completed as follows (notation similar to
Fredsøe 1984):

ûf = max [|uf (ωt)|] , (38)

δm = max(δ1, δ2), (39)

ufc =

√√√√√ 1
T

T∫
0

|uf (t)|uf (t) cosφ(t)dt, (40)

where δ1 and δ2 are the thicknesses of the bed boundary layer δ(ωt) at
the moments corresponding to the respective extreme positive and negative
resultant (wave-current) flow velocities at the top of the bed boundary layer.

The mean velocity in the outer region is known from the theoretical
solution for wave transformation and wave-driven currents, described in
section 2.1. An iterative procedure should be applied, by which the quantity
uf0 (unknown in eq. (19)) can be found. A scheme for the iterative
procedure was proposed by Ostrowski (2004). Knowing uf0 , one can
determine from eq. (19) the instantaneous value and direction of the shear
stress ρu2

f (ωt), which is the force driving sediment transport.

3. Results and discussion

The model was run for a typical bathymetric cross-shore profile measured
at CRS Lubiatowo. Some 1100 m long and more than 9 m deep on its
offshore boundary, the profile comprised the entire coastal zone, with 4
distinct bars, as shown in Fig. 4c. The offshore wave parameters used in
the model were as follows: root-mean-square wave height Hrms = 1.5 m,
wave period corresponding to maximum energy (wave peak period) Tp = 6 s
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Fig. 4. Cross-shore sea bed profile at CRS Lubiatowo with wave heights, longshore
flow velocities and Ursell numbers calculated for incipient wave parameters:
Hrms = 1.5 m, Tp = 6 s and θ = 45◦ (c); longshore sediment transport rate
distribution over the cross-shore profile at CRS Lubiatowo determined by the
present modelling system and the models of Bailard (1981), Bijker (1971) and
Van Rijn (1993) (b); distributions of longshore sediment transport rates over the
cross-shore profile at CRS Lubiatowo determined by the present modelling system
for sinusoidal and asymmetric waves (a)
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and wave approach angle (angle between the wave ray and the cross-shore
direction) θ = 45◦. Such parameters correspond to typical winter storm
conditions on the southern Baltic coast. The hydrodynamic outputs of the
model, i.e. wave height variability and longshore flow velocity on the cross-
shore profile, together with the distribution of the Ursell parameter, are also
shown in Fig. 4c.

The median grain size diameter was assumed to be d50 = 0.22 mm (with
fall velocity ws=2.5 cm s−1), in accordance with actual sediment sampled at
the Lubiatowo site. The distribution of longshore sediment transport rates
on the cross-shore transect, determined by the present modelling system
for asymmetric waves, is illustrated in Fig. 4b. The concentration decay
parameter α1 = 2.1 was used in computations of sediment transport rates
above the bed. For comparison, the rates determined (using the same
hydrodynamic forcing) by the sediment transport models of Bailard (1981),
Bijker (1971) and Van Rijn (1993) are also plotted in Fig. 4b.

It can be seen from the plots of Fig. 4b that the present modelling results
lie below the other solutions presented, except for the locations 230–310 m
offshore (at the second bar), where the present model for asymmetric waves
gives the highest rates. At the other cross-shore locations, Van Rijn’s (1993)
approach yields higher rates than all the other models.

In order to assess the influence of wave asymmetry on sediment transport
rates, the results for sinusoidal and asymmetric waves are presented in
Fig. 4a; this shows clearly that an asymmetric wave shape leads to significant
growth in sediment transport.

In coastal engineering practice, the detailed distribution of the longshore
sediment transport rate on the cross-shore profile is not as important as
the total (global) sediment transport rate in the longshore direction. This
quantity is particularly significant in calculations of shoreline evolution using
the one-line theory, in which shoreline advance or retreat depends on the
spatial variability of the total longshore sediment transport rates (integrated
over the cross-shore transect).

Therefore, for an ultimate assessment of the results, the computational
data integrated over the cross-shore profile are given in Table 1, in which
the present model output is shown, together with the quantities obtained
using conventional theoretical models. In addition, Table 1 shows the results
obtained with the well-known CERC ‘global’ sediment transport model (see
Shore Protection Manual 1977).

Table 1 shows that the present model result for asymmetric waves lies
between the solution by the CERC formula and the result of Van Rijn’s
(1993) model. At the same time, it is higher than the results obtained
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Table 1. Total longshore sediment transport rates by the present approach
and the models of Bailard (1981), Bijker (1971) and Van Rijn (1993)

Present model
Approach asymmetric sinusoidal Bailard Bijker Van Rijn CERC

waves waves (1981) (1971) (1993)

rate 0.426 0.114 0.151 0.228 0.464 0.376
[m3 s−1]

with Bailard’s (1981) and Bijker’s (1971) models. The present model for
sinusoidal waves yields a very low value, smaller than all the other results.

On the basis of Table 1, it can be concluded that the present modelling
system does provide an accurate prediction of longshore sediment transport
rates. Nevertheless, this is not clearly confirmed by detailed graphical
inspection of the computational results in Fig. 4, which reveals a highly
nonlinear relationship between the hydrodynamic input (Fig. 4c) and the
sediment transport rates (Fig. 4b). The results obtained with all the models
considered here show that most of the longshore sediment transport is
concentrated in a relatively narrow zone near the major wave breaker, where
high waves are accompanied by a strong longshore flow. The present model
very distinctly highlights this effect.

It should be pointed out that the results obtained with the present
three-layer model do not depend on any parameters for bedload or contact
(transitional) load. Only sediment transport rates in the outer region can
be ‘tuned’ slightly, by modifying the concentration decay parameter α1.
The present approach is thus more unbiased than the other models, the
results of which depend on a number of arbitrarily assumed coefficients and
parameters.
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